A new proof of Kelley's Theorem

by

Siu-Ah Ng (Hull)

Abstract. Kelley's Theorem is a purely combinatorial characterization of measure algebras. We first apply linear programming to exhibit the duality between measures and this characterization for finite algebras. Then we give a new proof of the Theorem using methods from nonstandard analysis.

First some notation and definitions. \mathcal{B} always denotes a Boolean algebra of the form $(\mathcal{B}, 0, 1, +, \cdot, -)$ with the induced ordering \leq . We sometimes write \sum and \prod for + and \cdot , especially when the operations are infinitary. By a measure μ on a subalgebra $\mathcal{A} \subseteq \mathcal{B}$ we mean a finitely additive monotone function $\mu : \mathcal{A} \to [0, 1]$ so that $\mu(0) = 0$ and $\mu(1) = 1$. A Boolean algebra \mathcal{B} is called a measure algebra if there is a measure $\mu : \mathcal{B} \to [0, 1]$ which is strictly positive, i.e. $\mu(b) = 0$ iff b = 0. A σ -algebra \mathcal{B} is called a σ -measure algebra if there is such a σ -additive μ . Following [K], we define for $\mathcal{A} \subseteq \mathcal{B}$ the intersection number of \mathcal{A} as

$$\alpha(\mathcal{A}) = \inf\{\widehat{\alpha}(a_1,\ldots,a_n): a_1,\ldots,a_n \in \mathcal{A}, \ n < \omega\},\$$

where $\widehat{\alpha}(a_1, \ldots, a_n) = n^{-1} \max\{|I| : I \subseteq \{1, \ldots, n\}, \prod_{i \in I} a_i \neq 0\}$. (The a_i 's are not necessarily distinct.) We also define the *measure number* of \mathcal{A} as

 $\beta(\mathcal{A}) = \sup\{r \in [0,1]: \text{ there is a measure } \mu \text{ on the subalgebra} \}$

generated by \mathcal{A} such that $\mu(a) \geq r$ for all $a \in \mathcal{A}$.

A σ -algebra \mathcal{B} is said to be *weakly* ω -distributive if given $\{b_{ij} : i, j < \omega\}$ such that $b_{i,j} \geq b_{ij+1}$, then

$$\sum_{i=0}^{\omega} \prod_{j=0}^{\omega} b_{ij} = \prod_{n=0}^{\omega} \sum_{i=0}^{\omega} b_{if_n(i)}$$

for some $f_n: \omega \to \omega$ such that $f_n \leq f_{n+1}$ (i.e. $\forall i, f_n(i) \leq f_{n+1}(i)$).

¹⁹⁹¹ Mathematics Subject Classification: Primary 03H05, 28A60.

S.-A. Ng

We assume some basic knowledge of nonstandard analysis (cf. e.g. [HL] and [L]) and work in a \aleph_1 -saturated nonstandard universe that has the enlargement property (i.e. every standard set has a hyperfinite extension). We use nonstandard analysis and the duality theorem for linear programming to prove the following theorem of J. L. Kelley. See [K] or [F] for a standard proof.

KELLEY'S THEOREM. (1) A Boolean algebra \mathcal{B} is a measure algebra iff there are $\mathcal{A}_n \subset \mathcal{B}$ such that $\alpha(\mathcal{A}_n) > 0$ and $\mathcal{B} = \bigcup_{n < \omega} \mathcal{A}_n \cup \{0\}$.

(*)

(2) A σ -algebra \mathcal{B} is a σ -measure algebra iff \mathcal{B} is weakly ω -distributive and also satisfies (*).

The proof is based on the following lemma, which exhibits the duality between measures and Kelley's characterization.

LEMMA. Let $\mathcal{A} \subseteq \mathcal{B}$ such that \mathcal{A} is finite. Then $\alpha(\mathcal{A}) = \beta(\mathcal{A})$ and both the infimum and supremum in the definitions of α and β are attained.

Proof. Write $\mathcal{A} = \{a_0, \ldots, a_n\}$, and identify the finite Boolean algebra generated by \mathcal{A} as a power set algebra $\mathcal{P}(X)$ for some $X = \{p_0, \ldots, p_r\}$.

For $i \leq r, j \leq n$, define

$$m_{ij} = \begin{cases} 1 & \text{if } p_i \in a_j, \\ 0 & \text{otherwise} \end{cases}$$

and write $M = [m_{ij}]$, an $(r+1) \times (n+1)$ binary matrix.

CLAIM 1. (a) $\alpha(\mathcal{A})$ is the minimal $\alpha \in \mathbb{R}$ such that

$$M \cdot \begin{bmatrix} x_0 \\ \vdots \\ x_n \end{bmatrix} \le \begin{bmatrix} \alpha \\ \vdots \\ \alpha \end{bmatrix}$$

for some $x_0 + \ldots + x_n \ge 1, x_0, \ldots, x_n \ge 0$.

(b) $\alpha(\mathcal{A}) = \widehat{\alpha}(a_{i_0}, \dots, a_{i_l})$ for some $a_{i_0}, \dots, a_{i_l} \in \mathcal{A}$.

Proof. Let $(\alpha_0, \ldots, \alpha_n, \alpha) \in [0, \infty)^{n+2}$ be an extreme point in a region determined by some of the r + 2 hyperplanes

$$m_{i0}x_0 + \ldots + m_{in}x_n = x_{n+1}, \quad i = 0, \ldots, r,$$

 $x_0 + \ldots + x_n = 1,$

with the property that α is minimal.

Then this is the minimal α such that $M \cdot [x_0, \ldots, x_n]^T \leq \alpha$ among all $x_0, \ldots, x_n \ge 0$ satisfying $x_0 + \ldots + x_n \ge 1$. Since the coefficient of each one of the x_i is either 0 or 1, the extreme point is a rational point of the form

$$(\alpha_0,\ldots,\alpha_n,\alpha) = (s_0/s,\ldots,s_n/s,\alpha),$$

where $s_0, \ldots, s_n \in \mathbb{N}$ and $s_0 + \ldots + s_n = s$.

Any such rational point $(s_0/s, \ldots, s_n/s)$ is in one-to-one correspondence with the following sequence from \mathcal{A} :

$$\sigma = (a_0 \dots a_0 \ a_1 \dots a_1 \dots a_n \dots a_n),$$

where a_0 repeats s_0 times, a_1 repeats s_1 times, etc.

Moreover, for the above extreme point, we have $\widehat{\alpha}(\sigma) = \alpha$, and for any other sequence τ from \mathcal{A} , we have $\widehat{\alpha}(\tau) \geq \alpha$. Therefore $\alpha(\mathcal{A}) = \alpha$ and (a) is proved. Since $\alpha(\mathcal{A}) = \widehat{\alpha}(\sigma)$, (b) holds as well.

CLAIM 2. (a) $\beta(\mathcal{A})$ is the maximal $\beta \in \mathbb{R}$ such that

$$M^T \cdot \begin{bmatrix} y_0 \\ \vdots \\ y_r \end{bmatrix} \ge \begin{bmatrix} \beta \\ \vdots \\ \beta \end{bmatrix}$$

for some $y_0 + \ldots + y_r \le 1, y_0, \ldots, y_r \ge 0$.

(b) $\beta(\mathcal{A})$ is attained by some measure on the subalgebra generated by \mathcal{A} .

Proof. Similar to Claim 1, the maximal β satisfying the matrix inequality is given by some rational point $(\beta_0, \ldots, \beta_r, \beta)$. This corresponds to the measure that assigns weights β_0, \ldots, β_r to p_0, \ldots, p_r respectively. Conversely, any such weights β_0, \ldots, β_r satisfy the matrix inequality for some β , thus the claim is proved.

The linear programming problems in the above two claims are dual to each other, so $\alpha(\mathcal{A}) = \beta(\mathcal{A})$ and the lemma is proved.

COROLLARY. $\alpha(\mathcal{A}) \geq \beta(\mathcal{A})$ for arbitrary $\mathcal{A} \subseteq \mathcal{B}$.

Proof. $\alpha(\mathcal{A}) = \inf \alpha(\mathcal{A}_0) = \inf \beta(\mathcal{A}_0) \ge \beta(\mathcal{A})$, where the infimum is taken over all finite $\mathcal{A}_0 \subseteq \mathcal{A}$.

Proof of Kelley's Theorem (1). (\Rightarrow). Let $\mu : \mathcal{B} \to [0,1]$ be a strictly positive measure and let $\mathcal{A}_n = \{b \in \mathcal{B} : \mu(b) \geq 2^{-n}\}$. Then $\mathcal{B} = \bigcup_{n < \omega} \mathcal{A}_n \cup \{0\}$. Since $\beta(\mathcal{A}_n) \geq 2^{-n}$, so by the Corollary, $\alpha(\mathcal{A}_n) > 0$.

(⇐). Suppose $\mathcal{B} = \bigcup_{n < \omega} \mathcal{A}_n \cup \{0\}$ and $\alpha(\mathcal{A}_n) > 0$. Use the enlargement property and let \mathcal{B}' be a hyperfinite algebra such that $\mathcal{B} \subseteq \mathcal{B}' \subseteq {}^*\mathcal{B}$. Let $\mathcal{B}_n = \mathcal{B}' \cap {}^*\mathcal{A}_n$. It follows from $\{{}^*a : a \in \mathcal{A}_n\} \subseteq \mathcal{B}_n \subseteq {}^*\mathcal{A}_n$ and the transfer principle that ${}^*\alpha(\mathcal{B}_n) \approx \alpha(\mathcal{A}_n) > 0$ and both are noninfinitesimal. By transferring the Lemma, ${}^*\alpha(\mathcal{B}_n) = {}^*\beta(\mathcal{B}_n)$, and hence there is an internal measure ν_n on the subalgebra generated by \mathcal{B}_n such that for each $b \in \mathcal{B}_n$, $\nu_n(b) \geq {}^*\alpha(\mathcal{B}_n) > 0$, noninfinitesimal. For each $m < \omega$, there is an internal measure ν on \mathcal{B}' such that $\nu \geq 2^{-n}\nu_n$ on \mathcal{B}_n for all n < m. So by \aleph_1 saturation, there is an internal measure ν on \mathcal{B}' such that for all $n < \omega$, $\nu \geq 2^{-n}\nu_n$ on \mathcal{B}_n . Let $\mu = {}^\circ\nu \upharpoonright \mathcal{B}$, i.e. $\forall b \in \mathcal{B}, \ \mu(b) = {}^\circ\nu({}^*b)$. Then μ is a strictly positive measure on \mathcal{B} . Proof of Kelley's Theorem (2). (\Rightarrow) . Let $\mu : \mathcal{B} \to [0,1]$ be a strictly positive σ -measure. By (1), (*) holds. To show the weak ω distributivity, let $\{b_{ij}\}$ be such that $b_{ij} \geq b_{i,j+1}$. For each n and $i < \omega$, let $f_n(i) = \text{least } j$ such that

$$\mu\left(b_{ij} - \prod_{k=0}^{\omega} b_{ik}\right) \le 1/2^{n+i+1}.$$

Then $\mu(\sum_{i=0}^{\omega} b_{if_n(i)} - \sum_{i=0}^{\omega} \prod_{j=0}^{\omega} b_{ij}) \le 1/2^n$. Hence

$$\prod_{n=0}^{\omega} \sum_{i=0}^{\omega} b_{if_n(i)} = \sum_{i=0}^{\omega} \prod_{j=0}^{\omega} b_{ij}.$$

(\Leftarrow). Let \mathcal{B}' be a hyperfinite algebra so that $\mathcal{B} \subseteq \mathcal{B}' \subseteq {}^*\mathcal{B}$. Let ν be the internal measure given by the proof in (1). Then ${}^{\circ}\nu(b) > 0$ for each $b \in \mathcal{B}' \cap {}^*\mathcal{A}_n$. Let

$$\mathcal{D} = \{ b \in \mathcal{B}' : \text{ there is a decreasing sequence } \{c_n\}_{n < \omega} \text{ from } \mathcal{B} \\ \text{ so that } \prod_{n=0}^{\omega} c_n = 0 \text{ and each } *c_n \ge b \}$$

Note that $\prod_{n=0}^{\omega} c_n$ is defined for the σ -algebra \mathcal{B} , while in general, \mathcal{B}' is not a σ -algebra, and $\{*c_n\}_{n<\omega}$ may have nonzero lower bounds in \mathcal{B}' .

Define $r = \sup\{\circ\nu(b) : b \in \mathcal{D}\}.$

CLAIM. r is attained by some $a' \in \mathcal{D}$. In other words, there are $a' \in \mathcal{B}'$ and decreasing $d_n \in \mathcal{B}$ so that $\prod_{n=0}^{\omega} d_n = 0$, each $*d_n \ge a'$ and $r \approx \nu(a')$.

Proof. Choose b_0, b_1, \ldots from \mathcal{D} so that ${}^{\circ}\nu(b_i) \to r$. For each i, choose $c_{in} \in \mathcal{B}$ $(n < \omega)$ so that c_{in} decreases to 0 as $n \to \omega$ and each ${}^*c_{in} \ge b_i$. By the weak ω -distributivity, $\sum_{i=0}^{\omega} \prod_{j=0}^{\omega} c_{ij} = \prod_{n=0}^{\omega} \sum_{i=0}^{\omega} c_{if_n(i)}$ for some $f_n : \omega \to \omega$ such that $f_n \le f_{n+1}$. The left hand side equals 0. Write $d_n = \sum_{i=0}^{\omega} c_{if_n(i)}$. Then $\prod_{n=0}^{\omega} d_n = 0$. Note also that $d_n \in \mathcal{B}$ and decreases. For any n, m, there is $a \in \mathcal{B}'$ such that $b_0 + \ldots + b_m = a \le {}^*d_n$, so by \aleph_1 -saturation, there is an internal $a' \in \mathcal{B}'$ such that $b_i \le a' \le {}^*d_n$ for all $i, n < \omega$ (so in particular $a' \in \mathcal{D}$), and ${}^{\circ}\nu(a') \ge \sup_{i < \omega} {}^{\circ}\nu(b_i)$. Hence ${}^{\circ}\nu(a') = r$. The claim is proved.

Notice that $\nu(a') \not\approx 1$. Suppose otherwise; then for each $n < \omega$, $^{\circ}\nu(^{*}d_{n}) = 1$, so $^{\circ}\nu(1 - {}^{*}d_{n}) = 0$, and by the strict positivity of $^{\circ}\nu \upharpoonright \mathcal{B}$, it follows that $d_{n} = 1$, contradicting $\prod_{n=0}^{\omega} d_{n} = 0$.

Now define the internal measure $\mu(b) = \nu(b-a')/(1-\nu(a')), b \in \mathcal{B}'$. For $b \in \mathcal{B}$, write $^{\circ}\mu(b) = ^{\circ}(\mu(^{*}b))$. Then $^{\circ}\mu$ is a strictly positive σ -measure on \mathcal{B} . To show this, it suffices to verify the following.

(i) If $0 \neq b \in \mathcal{B}$ then $^{\circ}\mu(b) > 0$.

Proof. Let d_n decrease to 0 in \mathcal{B} and $*d_n \ge a'$ for any $n < \omega$, as in the claim. Since $b \ne 0$, b is not a lower bound of $\{d_n\}$, therefore $b - d_n \ne 0$ for some n. Then $\circ \nu(*b - *d_n) > 0$, so $\circ \nu(*b - a') > 0$, so $\circ \mu(b) > 0$.

(ii) $^{\circ}\mu$ is σ -additive on \mathcal{B} .

Proof. Let $\{c_n\}_{n<\omega}$ be a sequence decreasing to 0 in \mathcal{B} . By enlargement, this extends to a sequence $\{c_n\}_{n<\mathrm{H}}$ in \mathcal{B}' , where H is an infinite hyperfinite integer, and for convenience, we omit the "*" from $*c_n$ for finite n. From the definition of \mathcal{D} , $c_{\mathrm{N}} \in \mathcal{D}$ for each infinite N. By a' being maximal, for any infinite N, $\nu(c_{\mathrm{N}} + a') \approx \nu(a')$, so $\nu(c_{\mathrm{N}} - a') \approx 0$. Thus $\mu(c_{\mathrm{N}}) \approx 0$ for any infinite N. Therefore $^{\circ}\mu(c_n) \to 0$.

Acknowledgements. I was supported by an SERC Grant during the writing of this paper. I am very grateful to the unknown referee for his careful reading and very helpful suggestions.

References

- [F] D. H. Fremlin, *Measure algebras*, in: Handbook of Boolean Algebra, Vol. III,
 J. D. Monk and R. Bonnet (eds.), North-Holland, Amsterdam 1989, 877–980.
- [HL] A. Hurd and P. A. Loeb, An Introduction to Nonstandard Real Analysis, Academic Press, New York 1985.
- [K] J. L. Kelley, Measures on Boolean algebras, Pacific J. Math. 9 (1959), 1165–1177.
- [L] T. L. Lindstrøm, An invitation to nonstandard analysis, in: Nonstandard Analysis and its Applications, N.J. Cutland (ed.), Cambridge University Press, 1988, 1–105.

DEPARTMENT OF PURE MATHEMATICS UNIVERSITY OF HULL HULL, HU6 7RX ENGLAND

> Received 22 November 1990; in revised form 24 June 1991