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I also wish to thank Professor J. B, Conway for pointing out the following
mistake made in my basic work [8]. The assumption 2.8(a)(b) in [8]
{appearing in the main results) should have been made earlier and replace its
weaker form (2.3). The gap in the proof of Proposition 2.5 resulted from the
possibility of the situation where there are more than one nontrivial Gleason
parts of R{Q). This gap is then filled as follows. If U is the connected
component of int({2) containing Q, then points of AU either belong to the same
part of R{({3) as U, or are peak points for R({) (cf. Exercise 8 in Chapter VI of
T. Gamelin’s Uniform Algebras). Thus, any other nontrivial part of R(£3) must
lie in 8@\ AU, a subset of the inner boundary of 2, which by (2.8)(a) is small.
S decomposes as a direct sum of operators with spectra contained in the
closures of nontrivial parts of R({3). All summands except one are normal, since
8Q\ 8,0, being a peak (hence closed} set of small Hausdorff dimension, has
zero area, but the purity assumption implies that no nontrivial normal
summands exist.
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Inequalities for exponentials in Banach algebras

by
A J PRYDE (Clayton, Vie)

»

Abstract. For commuting elements x, v of 2 unital ‘Banach algebra & it is clear that
e ) & el le?]l. On the other hand, M. Taylor has shown that this inequality remains valid for
a selt-adjoint operator x and o skew-udjoint operator p, without the assumption that they
cominute, Jn this paper we oblain gimilar inequalities under conditions that lie between these
eatremes. The inequalitics are used to deduce growth estimates of the form [¢*%?| < (1 + [£]F for
all £eR", where x = (x,, ..., X,)e#" and ¢ s are constants.

1. Introduction. Let # be a unital Banach algebra. Then e*™* = ¢*¢” for all
commuting pairs (x, y)e #* and hence

(1) le* ™| < lesl e’}

In this paper we consider the validity of this inequality, and modifications
of it, in the case that x, y do not commute. To begin with, let # = .4, the
space of 3 by 3 complex matrices, together with any norm. The following
example shows that there is no constant ¢ >0 such that for all x, ye.;,

2) el < cleXlle]-
100 0t —32
ExampLE 1.1, Let x= |0 0 0| andy= |OQ O t where teR.
000 00 0
Then
e 00 1 ¢ 0 : e tle—1) t*(e—3)/2
&= 010, e=|011¢t], =0 1 t .
001 001 0 0 1

So lle*| = O(l), ||| = Ot [le**?]| = O(t?) as t—co,

Nevertheless, inequality (1) remains valid for certain classes of not neces-
sarily commuting pairs x, y. For example, Taylor [7] obtained - (1) for
self-adjoint operators x and skew-adjoint y. In Section 3 we show that (1) holds
whenever x, y are normal elements of a C*-algebra.

In Section 4 we obtain a weaker estimate for triangular matrices. Indeed, let
7, be the space of n by n (upper) triangolar matrices with any suitable norm.
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We show that there is a constant ¢ > 0 such that for all diagonal matrices
Ded, and all nilpotent matrices Ne .7,

(3} le” V) < elleP]| le™e M.

Here, mod NeZ, is defined by (modN); = N

We also describe a class of norms for which the constant in (3) is ¢ = 1. This
enables us in Section 5 to obtain inequalities for exponentials of triangular
operators on separable Hilbert space.

Our motivation for studying these inequalities is to deduce Paley Wiener
type growth estimates for m-tuples (x,,..., x,} of elements of #. This is
described in Section 2 and developed in subsequent sections.

2. Paley-Wiener inequalities. As elsewhere, let # denote a unital Bagach
algebra. Let x = (x,, ..., x,) &€ #". We shall say that x is of type s if 5 = 0 and
there exists ¢ > 0 such that for all £eR",

) e < e(1+ 4],

where, for {eC”, {x, {) =371 x;{; ‘
Moreover, we shall say that x = (x,, ..., x,,) is of Paley—Wiener type (s, r) if
520, r 20 and there exists ¢ > 0 such that

() o [0 | < el +[E)Pe™H for all {eC™

The following proposition follows immediately from the fact that inequality
(1) holds for commuting elements (namely, |&**%Y < e*]| |&|).

ProrosiTioN 2.1. Let x = (xy, ..., X,,) be a commuting m-tuple in #". If x; is
of type s; for 1<j<m then x is of type s=s4-..
Paley- Wlener type (s;, 1) for 1 <j < m then x is of Paley-Wiener type (s, 1)
where s = 5, + ... +s, and r = (4 ... 422

To provide some initial examples of vectors having a Paley—~Wiener type we
consider the algebra .4, of n by n complex matrices provided with any suitable
norm. For Ae#,, or more generally Ae @, let ¢(4) denote the spectrum of
A and r(A) the spectral radius.

It is proved in McIntosh, Pryde and Ricker [2], for example, that each
Ae . #, with real spectrum is of type J(4)—1, where J(A4) is the size of the
largest block in the Jordan decomposition of A. The following proposition
improves that result.

ProrosITION 2.2. If A& .4, has real spectrum then A is of Paley-Wiener type
(s, 1) where s =J(4)~1 and r = r(A).

Proof. From the Jordan decomposition theorem we know there exists an
invertible matrix @, a diagonal matrix D, and a nilpotent matrix N commuting

Sy If xp is of
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with D such that A = Q(D--N)Q !

. For {eC,

A e Qe

e QGH)C Z (ENC

k()

from which the result follows,

From Propositions 2.1 and 2.2 we obtain the following result (which will be
improved in Section 4).

CorotLArY 2.3, Let A = (A, ..., A,) be an m-tuple oj‘cammutfnq matrices
with real  spectra. Then A is of  Paley-Wiener Egpc? (s,#) where
s=JANF AT A)~m and r= (AP 4L (AP

Other examples of m-tuples of vectors with a Paley-Wiener type will appear
in subsequent sectious. Our motivation for discussing them is in the construe-
tion of joint functional caleuli. See for example [1]-[4].

Indeed, for a Banach space X, let L(&(R™), X) denote the space of X-valued
tempered distributions, This is the space of continuous linear functions W from
the Schwartz space ““(R™) of rapidly decreasing functions into X.

An m-tuple x & %™ of type y defermines a %-valued tempered distribution
W, by the formuia ,

W ()= Q2m)™m [ &0 P (g)de

Rt

H= e " f()dA is the Fourier transform of the function
e

where f'(

fe#(R™ and the first integral is a Bochner integral. So W, is the Fourier

transform of the entire function {rse"¥&: C"— 4.

The type (s, r) conditions atise in the Paley—Wiener theorem below (whose
proof follows readily from the corresponding theorem for scalar-valued
distributions: for the latter, see for example Reed and Simon [6]).

PALEY-WiENuR THEOREM 24, Let We L{(#(R™), X) where X is a Banach
space, Then W has compact support if and only iff W is the Fourier transform of
an entire func rfrm e CM s X satisfving [le(0] < e(14+|¢)F ™ for all { & C™ and
some ¢ >0, s 20, r 20, In that case, W has support in {LeR"™: |A| € r}.

COROLLARY 2.5. Let x&#@" be of Paley-Wiiener type (s, 1) for some s 2 0,
= 0. Then the tempered distribution W, has support. in {AeR"™ |4 < r}.

3. Normal elements of a C*-algebra. There is 4 classical theorem of Lie for
matrices that extends to unital Banach algebras:

LE PropucT FormuLa 3.1, Let x, ye, a unital Banach algebra. Then

&1 s lim (ex;‘n ey/n)n.
y-ron



90 A J. Pryde

Proof. Reed and Simon [6, Theorem VIIL29] supply a proof for matrices
which also holds in this setting.

THEOREM 3.2. Let x, y be normal elements of a C*-algebra @. Then inequality
(1) holds, namely

le” ™ < Je¥] fle’ll-

Proof. When x is normal, so is e* and ||¢*|| = r(¢”), the spectral radius of ¢*.
Hence, .

Je*2) = | lim (™) < lim {e*|" |&*"]"
= lim [r(e"")r(@™]" = lim r(cYr{e’) = || ||

This result was obtained, with a similar proof, by Taylor (7], for the case of
a self-adjoint operator x and a skew-adjoint operator y.

Thompson [8] obtained a stronger result for Hermitian matrices x, y and
any unitarily invariant norm:

(6) le=**) < fleve’]l.

For unbounded operators on a Hilbert space, weaker estimates are valid.
For example, Segal’s lemma [[6, Theorem X.57] asserts that for semibounded
self-adjoint operators x, y for which the closure of x+y is self-adjoint,

M le™™| < e 2e™7e™2].

CorOLLARY 3.3, If x,, ..., X, are self-adjoint elements of a C*-algebra,
then x=(xy,...,%,) is of Paley-Wiener type (0, |x]}) where
el = (g 12+ -+ M2

Proof For (eC™ set {=¢+in where &, neR™ Then [*9| <
Ilei(x.{) [ !|e"<""’>|| < el =l Int,

4. Triangular matrices. In this section we prove an inequality for matrices
that ailows us to generalize Corollary 2.3.

Let 4,, 9,0 and g, denote the subalgebras of .4, consisting of upper
triangular, nilpotent upper triangular and diagonal matrices respectively, For
each A= (4,) in .#,,,, the space of m by n matrices, define a matrix
modAe#,, by (modd); =|4,

Exoample 1.1 shows that there is no constant ¢ such that for all De g, and
Ned. 3y

(8) 1?1 < clleP] el

However, a weaker version of this inequality, with N replaced by mod N on the
right side, is valid. Firstly we require
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Lemma 4.1, Let Te . #, be a matrix of the form T = [3 &] where Ac.#,,
Be My dnd CeMy.,. Then for each £eR,

e = 1:‘3“ Q&)

¢
cx ] where  Q(&) = fe* Bef0dr.
0 ¢ o

“eAd A§ A
Proof. Let f(é)wro Qegf)] Then f'(2) = [e OA ¢ B;g%(&)c]m

S{HT. Since f(0) = I, the identity matrix, we conclude that f(£) = e,
Limma 4.2, Let De@, NeZ,® and T = D+N. Then
9 el € P} e, for L j<n.

Proof Since the result is trivial for n =1 we use induction on n. Write
T=[4 %) where AeH,.-,, Be M,y and zea(D), the spectrum of D. So
A =D, 4+ N, where

[D, O [N, B
p-[2 %] s =[]

Defining ¢(A, @) = [§eA** " d; and using Lemma 4.1, we find

e[ oA 9B [ O
g° = 0 & 1 Ok o s
emodN . [emule g(mOle, O}modB:l
ms 0 | .

For 1<i,j<n~1 it follows from the induction hypothesis that
e}l < r(e®) (™M), For i=n and 1<j<n the result is trivial. Finally,
suppose 1 € i< n—1 and j=n Then

lp=1
eyl = (g4, ) B)| < | T (et +e0 ), |Bjldt
0 Jm ]

L]
< j' "X r(gplmua:(fl.ml)f)(emud ”“)U(mod B)J de
0 =1

(by the induction hypothesis again)
1
< r(e”) [ (¢™*V* mod B),dt = r(¢”)(g(mod N, O)mod B);
1]

== p{e?)(e™4¥),, as required,
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From Lemma 4.2 there follows immediately

THEOREM 4.3. For any norm on 7, there is a constant ¢ such that for all De %,
and all NeZ0 inequality (3) holds, namely |e®*¥| < ¢|e”|} [le™V]).

We will define a class of norms for which the constant in this last inequality
is ¢c=1.

For this, let .4 be a subspace of #,. We shall call a norm | || monotonre on

A if |A| < |B| whenever A, Be.# and [A4,] < |B,| for all i, ].

For example, let | {, denote the operator norm on .4, induced by the I,
norm on C" for 1<p<co Then Jd|, = max; 3|4, and |A|,, =
max;y |4,| are monotone operator norms on ., The Frobemius norm
IA4le = (3l A1) is also monotone on .#,. I is easy (o see that the only
monotone operator norm on %, is ||DlI = r(D).

From Lemma 4.2 we obtain

ProPOSITION 4.4. For any monotone norm on F, and all De %, and Ne7,°

(10) _ le® ¥ < rieP)| e

In particular, for any monotone operator norm on 7, inequality (3) holds with
c=1

We come now to an application of inequalities {3) and (10). We will use the
spectral set

p(A) = {leR"‘ Oeo( ) (AJ.—AJ)Z)}
=1
and the corresponding joint spectral radius r(A) = sup{|4|: 1ey(4)} defined for
m-tuples 4 =(4,, ..., A, )e.#". This set was also used in [17-[4].

TeEOREM 4.5. Let A = (4, ..., A,,) where the A; are simultaneously trian-
gularizable matrices in M, with real spectra. Then A is of Paley—Wiener type
(s, r) where s=n—1 and = r(A).

Proof Let @ be a matrix such that for each j, Q"' 4,0 = T, =D+ N,
where D64 and N,eZ)0. Set T=(T,..,T,), D=(D,,...,D,) and
=(Ny,..., N,). For & neR™ and { = {+in we have 49 = QT -1,

Take | | =] li, for example. Then

14401 < @I 197 1647 < D) e

enie-

< 10110 e ®)| S mod .

<lenieT e ®n Z ||N!s 6 < et + 1) Lt
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where

mn
VD= (5 I and o= qolig™ ) max @R D
=1 Ogksn~1 (?’l— )

In order to prove analogous results for operators on infinite-dimensional
Hilbert space we obtain a better value for the constant ¢ in the proof of
Theorem 4.5, Recall that the spectral norm || ||, on .4, is the operator norm
induced by the [, norm on C*, '

PROPOSITION 4.0, Let Ay, ..., 4, e s umullanenum’f) triangularizable mutrices
in i, with real spectra and set 8 = 2(37. |4 _;||z) Then for all {eC™

(11) [l <A |, & (14 S|t ertdiimel

Prool. We use the notation of the proof of Theorem 4.5. The trian-
gularization of the matrices A; can be effected by a unitary similarity matrix Q.
(Perhaps the simplest proof of this fact is by induction on n, using the fact that
the 4, have a common unit eigenvector and the result of Radjavi [5] that
4 semigroup % of matrices is (riangularizable if and only if
trace{ABC -~ BAC) = 0 for all 4, B, Ce%) Now recall that the spectral and
Frobenius norms are related by |4, € Ay < (rank 4)Y2| 4|, for all 4 € .4,.
Moreover, Nyo Tp=D), s0 [N, € [Tl +1Dll; = 1 Tjl+r(D) < 2[ Ty,
=2 Als. Hence, [Ny € 2/n=1)A4,l; and [Nl </n=1.

By inequality {10),

440, = 470, < K70,

< r(ci(f).q‘,)) ” gmodLN.L> ”F

....ll

e 3 o NI <0+

since

(’.A_k..'."__l_}_ ne 192 = 1
o e TR

5, 'Triangular operators on Hilbert space. Let # = #(H), the space of
bounded linear operators on the separable Hilbert space H. We exhibit
noncommuting but umngulurl?able m-tuples in # of Paley-Wiener type.

For £ 2 (X, ... %) € #" we again set p(x) = {AeR": 0€0(} ey (x;—4)°)}
and r{x) s sup{[&l: Aey(x)}.

We shall impose the following condition on xy, ..., X,

CONDITION 5.1, There is an orthogonal decomposition H = @, H, where
Jor each k and each j, the subspace H, is an x -invariant subspace of H. Moreover,
H, is of finite dimension n, < n and the restriction of x = (%, ..., X,,) to Hy Is
trigngularizable.
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ProposITION 5.2, Let x4, ..., X, be operatorisl 2in &(H) with real spectra and
satisfying condition 5.1. Let & = 2(37=y Ix;I?) . Then for all {eC"

(12) Hel(x.c)” < (1 +5|C|),'“18r(x)llmtl,

In particular, (x,, ..., %,) is of Paley-Wiener type (n—1, r(x)).

Proof Relative to the decomposition H = P H, we have
x, = O 1x, where x,e#(H,) and o(x,) =R For each k the m-tuple
X = (Xygs +o+y Xpy) 18 triangularizable in #(H,). By Proposition 4.6

=8| < (1 +5k|c|)nk~1er(x,k)lul

for all {eC™, where §, = 2(}1-: |ix4,,c||2)”2 and # =Im¢{.
Now x|l =suplixyl, so & <48 Also y(x)=[Ji v(x,), so0
r(x) = sup,r(x,). Finally, x = @, x,, so & = DL, ¥« Hence

€50 | = sup [0 < (1+3[( e
k

as claimed.
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