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There seems to be no simple way to obtain this as a direct consequence of
Theorem 5.2.
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Almost everywhere summability of Laguerre series
by

KRZYSZTOF STEMPAK (Wrocaw)

Abstract. We apply a construction of generalized twisted convolution to investigate
almost everywhere summability of expansions with respect to the orthonormal system
of functions £3 (2} = (n!/I(n +a 4+ 1))Y2e2/2[3(2), n = 0,1,2, ..., in L2(Ry, z° dz),
a > 0. We prove that the Cesiro means of order § > a+2/3 of any function f € L?(z? dx),
1 < p £ oo, converge to f a.e. The main tool we use.is a Hardy-Littlewood type maximal
operator associated with a generalized Euclidean convolution.

1. Introduction. The problem of mean convergence of Laguerre expan-
sions has attracted considerable attention in the last thirty years or so. The
articles by Askey and Wainger [2] and Muckenhoupt [12, 13] are fundamen-
tal in the subject but also papers by Freud and Knapowski [6], Poiani [15]
and Dlugosz [5] brought interesting results. A new impulse was given to the
field in the ’80s by Gorlich and Markett in a series of papers [7-11]. Their
method of investigation of the mean convergence problem was based on a
convolution structure for Laguerre polynomials defined first by McCully and
extended by Askey. An underlying device there is Watson’s product formula
for Laguerre polynomials.

In contrast with mean convergence surprisingly little is known for alimost
everywhere convergence of Laguerre series. The first result in this direction
was obtained by Muckenhoupt for expansions with respect to the Laguerre
polynomials. '

Let

_ Li(z) = (1) e*2™(d/dz)"(e""z™1?) _
denote the nth Laguerre polynomial of order @ > —1. Then the normalized
polynomials

(1.1)  I%(z)=(aY/T(n+a+ ))2L5%z), n=0,1,2,...,
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Key words and phrases: Laguerre expansions, generalized twisted convolution, Riesz,
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form an orthonormal basis in L2(R;, z% % dz). With any f € L(z%e™* dx),
we associate its formal series expansion f ~ Ef’:o dolip,dn = do(f) =
{f, HI:;‘,) L3(zse~= dz), Provided such an expansion exists (there is no problem
when f € LP(z%¢ % dz), p > 1). In 1969 Muckenhoupt [12] proved the
almost everywhere convergence of Poisson integrals for expansions with re-
spect to the system E;’, for any a > —1 and f € L (z®e™* dz)

(1.2) 9(r,z) — f()

almost everywhere as r — 1. Here, the Poisson integral
[» 5]
g(r,z)= [ K(r,2,9)f(y)y’e ™" dy
0

with K(r,z,y) = 150, r"La(z)L4(y), 0 < r < 1, is well defined for any f
in L'(2%¢~* dz) whether or not it has a Laguerre expansion. Moreover, if
f(z) has the Laguerre expansion 3°°° | d,L%(x) then for every 0 < r < 1,
g(r,z) has the Laguerre expansion Y% r*d, L2(z). However, we cannot
simply expect that the almost everywhere convergence (1.2) still holds for
every f in LP(z%e~*dz), p > 1, with g(r,z) replaced by 3520, r"d, L2 (z).
As pointed out by Muckenhoupt in [12}, for every 1 < p < 2, f(z) = €*® with
1/2 < e < 1/p (cf. [16], p. 367) is an example of a function in LP(z%~* dx)
such that for all r < 1 sufficiently close to 1 the series 30 o r"d, L3 ()
diverges for every z.

The second kind of expansion deals with the Laguerre functions
(1.3) L£i(2) = 2%/%~*[3(z), n=0,1,2,...,
which form an orthonormal basis in L?(R,,dz). Now, for any f € LP(dz),
1 < p £ oo, we write its formal series expansion f ~ Y 0° ¢, L2, where
en = en(f) = {f,£3)1a(az). In [5] Dlugosz proved the a.e. convergence of
the Riesz means: let a = 0,1,2,... and § > 10; then for any f € LP(dz),
1<p<oo,

N
(14) 2 (1 —n/N) e Li(z) — f(x)
n=0

almost everywhere as N — co. The restriction on a is due to her method,
which is based on a group-theoretic approach.

Still another kind of expansion is considered if the functions

(1.5) @(z) = e**L3(z), n=0,1,2,,..,
forming an orthonormal basis in L?*(Ry,z%dz), are taken into account.

Then, for any f € LP(z%dz), 1 < p < o0, the corresponding formal ex-
pansion is f ~ 3370 b, 03 where b, = b,(f) = (f, €3)13(zodz)- The mean
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convergence problem for such expansions has been undertaken by the author
in [18] and, among other things, the LP-convergence of the Riesz means of
order § > a + 5 was proved for any f € LP(z%dz),1 < p < oo, a > 0.

Recently, Thangavelu [20] proved the almost everywhere convergence of
the Riesz means of such expansions: let a = 0,1,2,...and § > a+1/2; then
for any f € LP(2%dz), 2 < p < o0,

N
2 (1= n/NYbati(z) - f(=)
n=0
almost everywhere as N — oo,

As in the case of Dlugosz’ result the restriction on a is motivated by the
group-theoretic method used in [20], while the restriction on p is caused,
roughly, by a technique applied by Thangavelu depending on L2-estimates
of Riesz kernels.

In this paper we prove the following result concerning the Cesiro means.

THEOREM 1.1. Leta > 0 and § > a +2/3. Then for any f € LP(z° dz),
1<p< oo,

N
(1.6) (AR Y Al _xbata(2) = J(2)

na=0

almost everywhere as N — oo.

Observe at this paint that Theorem 1.1 immediately gives the almost
everywhere convergence of the Cesaro means of expansions of functions in
L*(z*e~* dz), and therefore in LP(z%¢~%dz), p > 2, with respect to the
gystem Z:‘,(z). More specifically, we have

COROLLARY 1.2, Leta 2 0 and § > a + 2/3. Then for every f €
L} (z%e=* dx)

N
(1.7) (A§)71 Y Al_ndnLi() = f(2)

nel )
almost everywhere as N — oo, For every 1 < p < 2 there exists a funclion
[ in LP(x%€~" dx) for which the left-hand side of (1.7) diverges for every =,

Proof. 'The mapping f(z) — f(z)e==/?
L*(z%~* dz) onto L*(z* dz) and thus

is an isometry from

N _ .
(A%)! EAfv_n(fe'“‘”ﬁ,L:(x)e'"’“)y(m.dx)L;‘,(x)e“"”” — f(z)e*/*
Nl i
almost everywhere with N — co. But

(fe—::['a’, Z:(z)e;mlg)L’(I“d”) = (_f, i:)Lz(m- e=*dz)
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and therefore (1.7) follows. Since the convergence of the Cesaro means of
any order implies the convergence of the Abel-Poisson means the counterex-
ample mentioned above works in case 1 < p < 2.

It is interesting to note here that despite the a.e. convergence given in
(1.7) for p > 2 the mean convergence of these expansions fails to hold.
More precisely, Askey and Hirschman [1] proved that for any § > 0 the
mean convergence of the §-Cesaro means of the expansions of functions in
LP(2%e~7 dz), p > 1, with respect to the system La () is restricted to p =2
only.

The present paper is a natural continuation of [18] where the author
investigated mean summability of Laguerre expansions with respect to the
system £2, n > 0. The main tool used there was a convolution structure
in YR, x R,z**1dzdt), « > 1, coming, when &« = n, n > 1, from
convolution of radial functions on the Heisenberg group H,,, identified with
C" x R; while in the present context we use a convolution structure in
LY(R,,2?*"1dz), @ > 1, now coming when a = n, n > 1, from radial
twisted convolution on C* (cf. Section 4 for a detailed discussion). The idea
of working with the radial twisted convolution, which is much simpler and
natural than the radial Heisenberg convolution, became clear to the author
after reading a series of papers by Gérlich and Markett [7,8] and Markett [9-
11]. Also the recent papers by Thangavelu [19, 20] confirm the right choice
of the method. The present approach also allows us to improve a result of
[18] concerning the LP-convergence of the Riesz means and provides more
straightforward proofs of convergence in LP-norms for both the Abel~Poisson
and Riesz means. Specifically, we prove

THEOREM 1.3. Let § > a +1/2, a > 0. Then for every f € LP(z" dx),
1 £ p < 00, the Cesdro means

N
(1.9) (A5 AN lfo £8) Laqwedny £2

n=0

converge in LP-norm to [ as N — oc.

It is known that the convergence in LP-norms of the Riesz means of an
order § > 0 is equivalent to the LP-convergence of the Cesiro means of the
same order. The equivalence is also true for almost everywhere convergence.
For technical reasons we will consider the Cesiro means rather than the
Riesz means. Recall that the nth Cesaro mean of order § > 0 of a function
f € LP(z* dz) is given by

N :
A0 Z Ad_ulhy ) La(zedx)bn(2)

n=0

Chf(z)=

icm
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where A5, = (™) = LS (0). Further, instead of working with the or-
thonorma.l sequence £5 (:c), n=101,2,..., we will use the functions

1(6) = (T 4 ) e 1313,
forming an orthonormal sequence in L?(Ry, 21 dz).

For any fixed p, 1 < p < oo, the mapping A : LP(a22-1dz) —
LP(z*~1 dz), Af(x) = 2"1/2f(:n’/2), is a bijection satisfying:

a) | AfllLs(za-1dz) = 2712 f|| Logara—1asy,
b) (Af’Ay)L’(w""’dm) (f:!])lﬂ(x*u-ldx),
c) Al = €31,

Thus, any convergence result proved for the Cesiro means

azl1,

N
CRS = (AR)71 3 Al u(fs ) pa(ernmrany i (2)
n=l
with f € L?’(w“ Vdz) will also imply the corresponding result for the
Cesaro means C§ f with f € L?(z°ds),a=a—1> 0.

The paper is organized as follows. In the next section we discuss a
product in L'(Ry., 22~ dz) turning this space into a commutative Banach
algebra. In the third section the weak type (1, 1) result is established for
a maximal operator connected with still another product in L'{z?*~! dz),
which, roughly speaking, majorizes the previous one, The connection of both
products and the Heisenberg convolution will be discussed in the fourth
section. Finally, we prove almost everywhere as well as LP-convergence
results,

The author would like to thank Rysiek Szwarc for a valuable remark,
and the referee for pointing out the reference [3).

2. Twisted generalized convolution. Let F, G € L}{(Cn, dw), n>1.
Then the twisted convolution F x G is defined by

(2.1) F X G(z) = f F(z - w)

Here dw denotes the Lebesgue measure on C* and (7, w) = L7, 2;%;, |2] =
{#,2)'/* are the scalar product and the norm in C" respectively. The space
L(C", dw) equipped with the product (2.1} is a noncommutative Banach
algebra. However, if F' and @ are radial functions then F X G = G x F, that
is, the algebra L}(C", dw) of radial integrable functions is commutative,
Suppose now f and g are the radial parts of radial functions F, G €
Li(C",dw), i.e. F(z) = f(|2]), G(#) = g(|2]), and denote by f x ¢ the radial

)cilm(z,w) dw.
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part of the twisted convolution F' X G. As one can verify
02 Ixo0)= o T o) f 1 407 - rrcosoy
. X = e | g(r r? - 2Ur cos
I = a1/ ;

X Jn—3/2(trsin #)(sin 0)*r=% dor*"~t dr.
Here J,(z) = I'(s + 1)J,(z)/(z/2)*, and J,(z) denotes the Bessel function
of order s > —1. An important well-known estimate we will use is
(2.3) |7zl <1, =20,

which is valid for any s > ~1/2.

From now on we fix an arbitrary real parameter o > 1 and equip the
half-axis [0,00) with the measure du(z) = 22*~'dz. Next by LP(u) we
denote the corresponding Lebesgue spaces endowed with the norms

F 1/p
17t = ( f Pdn) s 1<p< o0, [l = estsup |£(o)]-

Also, we define the probability measure dv on [0, 7) by
I'(a)
" /2Ma—1/2)

Next according to (2.2) we define the twisted generalized convolution (cf.
also [8])

(2.4) C dv(8) = (sin §)*°~1) dp.

(2.5) fxg(@y= [ T%f(y)g(y)du(y)
0
where T, z > 0, are the twisted generalized translation operators
(2.6) T=f(y) = [ f((,9)6)Tes/2(zy sin 8) d(8)
0

with 8-product (z,y)s given by

(2.7 (z,9)s = (2 + 9% — 2zycos )2, =z,y20, 0 €0,n].
The operator T can also be described by
) Tty
(2.8} T f(y) = f (O Ta=3p2(A(,,1)) dW, (1)
fe~3|

where the probability measure dW,, ,(¢) is supported on [|o — y|, z + y] and
given by
Az, y,t)*

29 AW y(t) = c(a)_(")—ﬁT

dﬂ(t)

icm

Almost everywhere summability of Laguerre series 135

with (@) = 22¢3 (o) '(a~1/2)~1x~1/2, In the above formula z,y,f > 0,
|z —y| £t < 2+ yand Az, y,t) denotes the area of a triangle with sides
z,y, t. It is quite straightforward to go from (2.6) to (2.8) by a change of
variables. Algo, as one can immediately remark the measure

Ta—s2(D(z,y,1)) dWo (1) du(y)
is symmetric with respect to y and i, i.e.
(210)  Ta-s/2(D(%,9,1)) dW5,(2) dp(y)
= Ja-—a/z (A(xn £ y)) dWw,t(y) dp,(t) *

LEMMA 2.1, For every 1 € p < oo and & > O the twisted generalized
translation T® is a contraclion, i.e. ||T7)| £ 1.

Proof. The above is an easy consequence of the estimate (2.3), the
definition (2.8), the symmetry property (2.10) and the fact that the Wy,
are probability measures.

Furthermore, we have

LEMMA 2.2. The operator T%, & > 0, is selfadjoint on L?(u). Moreover,

J T2 0ot duty) = f 1)T%9(v) du(y)

0

Jor any reasonable pair of functions f and g, e.g. for f € LP(p), 1 < p < o0,
and g € L'(p).

Proof. Straightforward consequence of (2.10).

THEOREM 2.3. The space L'(p) with the product given by (2.3) is a
tommutative Banach algebra. Moreover,

(2.11) £ x gllp < 17 Wpllglla
for any f € LP(u), 1 € p £ o0, and g € L' ().

Proof. The inequalily (2.11) is an easy consequence of the fact that
T=, ¢ > 0, are contractions. Commutativity is implied by Lemma 2.2.

Having defined the twisted generalized convolution structure in L'(p) it
is remarkable to note that an underlying differential operator is

&  2a-~1d 2
L= (gt % &)

which is a positive symmetric operator in L2(p). Moreover L has a' dnscrete
spectrum and the functions

(2.13) on(z) =

(2.12)

nll(a)

—a?f2 pa—L 2
F(ﬂ"*‘ Q’)e Li’l (iE )
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are eigenfunctions of L. More precisely,
(2.14) Lon(z) = 4(n + af2)pn(c),

which can be easily verified by using the well-known differential identities
for the Laguerre polynomials. Note also that the normalization constant
in (2.13) is such that |pa(z)] < 1, 0 < = < oo (cf. [21]). We use the
eigenfunctions as kernels in a transform defined on LP(u): for any f € L?(p),
1< p< o0, weput

Fn)= [ f@)en(z)du(z), n=0,1,2,...

(2.15)

Then

(ZNN(5) = 4(n + a/2)f(n)
provided Lf is also integrable with some power. In 1939 Watson [21] gave
the following integral representation for the product L¥~1(z?)Lx~1(y?):
I'(n+a)
w20 (a - 1/2)

(2.16) L7 (2®)L37M(vP) =

a
X f LG (2, 4)5) Toma 2 (zy sin )™ °* (sin §)*~2 dg .
0

In terms of the generalized translation operator (2.6) this is nothing else but
the following identity:

(2.17) T%0a(y) = pnl(2)ea(y).
Note also that (2.17) immediately implies

[ Xpn= f(n)(pn
for any function f € LP(u). This formula can be thought of as an analogue
of the spherical functions formula in Gelfand pairs theory. Though we will
not use this fact the product formula (2.17) also yields an identification of

the Gelfand space of the Banach algebra 1" () with the get N = {0,1,2,.. 3
Specifically, we have

THEOREM 2.4, For any n € N the mapping f — f(n) is a multiplicative
functional on L'(ut) and every multiplicative functional is of this form,
3. Euclidean generalized convolution and maximal functions.

Consider now the Eulidean convolution

F«G(2)= [ F(z-w)G(w)dw
cn

icm
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of two radial integrable functions on C*, n > 1. If F(2) = f(|2]), G(2) =
g(|z]) then F'+ G(z) = f+g(|z|) where f +g is a function on [0, 00) given by
a formula like (2.2) with the factor J,_3/2(tr sin 8) dropped.

By allowing n to be an arbitrary real parameter > 1 we then come to
the well-known generalized convolution structure

(3.1) Frg(=)= [ TEF(v)e(v) du(y)
0
where T, z 2 0, are the (Buclidean) generalized translation operators
kil
(3.2) TEf(y) = [ £((z,9)s) du(6).
0

Here as before du(y) = y**~1dy, dv and (z,y)s are given by (2.4) and (2.7)
and the range of the parameter & can now be even enlarged to o > 1/2. As
in the case of T'* an equivalent description of T'g is

oy
(3:3) TEA)= [ f(8)dWau(®)
|2~
with dW, ,(t) given by (2.9), Tt is well known that L'(u) with (3.1) as
multiplication is a commutative Banach algebra. Moreover, the second order
differential operator

& 20-1d
34) Lp=- ('a““f e z.r)
has Jo-1(Az), A = 0, as its eigenfunctions:
LEJQ—-l(/\-T) = Azja—l(Aw) .

These functions are also kernels of the Fourier-Bessel (also called Hankel)
transform '

foFO) = [ (@) Taa(e)due), A2 0,
[1}

which satisfies (f * )MA) = FINF(A) and (Lef)NA) = A F(A) for any

f;.q € Ll(#). . .
From our point of view the most important conrfectmn_between the

twisted and Euclidean convolution is expressed by the inequality

|f x g(=)| < 1/l *1gl(=),
immediately implied by |T*f()] < TE(|f|)(y), which in turn is a conse-
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quence of (2.3). We will also make use of the heat kernel
2 -
(3.5) Wi(z) = m(u) % exp(—xf4t), t>0,

for the operator Lg.
With the convolution structure (3.1) we also associate a maximal oper-
ator

(36) f*(z)=sgp;z0l£—) [ T8 £1)(=) du(s)
e>0 5 0

defined for any reasonable function f on [0, 00). We also define the dilations
fes €2 0, by setting -

3.7 feo(z) = 723 f(z[e).

The following proposition justifies the consideration of this operator.

ProrosITioN 3.1. Suppose w is a posilive nonincressing funcilion on
[0, 00} with ||w|l1 < c0. Then

(38) sup o+ (2)] < ol f*(2).

Proof. It suffices to prove (3.8) when w is a simple function w =
E;-';l €iX[o,a;)> @; and ¢; being positive reals, and this may be obtained
by straightforward calculations. The general case then follows by a simple
limiting argument.

By a space of homogeneous type we mean a topological space X equipped
with a continuous pseudometric p and a positive measure m satisfying the
doubling condition

(3.9) m(Bre(z)) < Cm(B.(=))

with a constant € independent of z € X and £ > 0. Here B,(z) = {y € X :
o(z,y) < £}. Let (X, p,m) be a space of homogeneous type. For any locally
integrable function f on X define

(3.10) Mf(e)=supm(B(2)™" [ 1f(g)ldm(y).

B, {(z)

It is well known (cf. [4]) that the maximal operator f +—+ M f is of weak type
(1,1), ie.

m({x: Mf(z)>s})<—— f |£(z)| dm(=),

with C' > 0 independent of s>0and fe LY(X,dm), and, in virtue of
Marcinkiewicz’ interpolation theorem, is of strong type (p, p) 1<p<oo,

icm
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i.e.

J MGy in() <0, [P dmte),

with Cp > 0 independent of f € LP(X,dm).
The following may be proved by a straightforward calculation.
PROPOSITION 3.2. Consider X = [0,00) equipped with the Euclidean

metric and the measure du(z) = 2%V dx, « > 1/2. Then du satisfies the
doubling condition (3.9).

We are going to show that the maximal function f* is majorized by M f.
We start with the following

ProrosiTion 3.3. There exists & constant C > 0 independent of 0 < t <
x such that

(3.11) 1TExp,4llec S C(t/2)?%1,

Proof. For any function f on [0,00) set 7. f(z) = f(ez), ¢ > 0. In
virtue of the easily verified identity
TExp,4 = 1 /dTa X0,1])
it sufﬁces to show (3.11) for ¢ = 1 and z > 1. Clearly we can assume

that # is large enough, say « > 10. The function T§x,y is supported in
[z — 1,2+ 1]. Thus using (3.3) we write for y € [z — 1,2 + 1]

1 2003
1 =z NERR
TEx () = el@) 5= = . S (————————( ;y’ )) tdt.

Je—yl

(3.12)

Since z/y < 2 we need only check that the integrals on the right side of
(3.12) are uniformly bounded on z,y > 0, |z — y| < 1. Clearly this is the
case when a > 3/2 since then A(z,y,t) < Lyt and 20— 3 > 0. Suppose
now 1/2 < a < 3/2. Then for [z —y| <t <1

1
Aa,y,t) =} [((= + 9)F = )8 = (2 =)' 2 Ju(#* = (= - 9))'/2.
Hence, with b = |2 — y|, the integral in (3.12) is, up to a constant, bounded
by
1

1
- 52y gy L (1 )1/ 1
IRGEY: tdt = o——(1- %) L

This finishes the proof of Proposition 3.3.
We now come to the main result of this section.
THEOREM 3.4. There exista a constani C such that
(3.13) [e) < CMf(z).
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In this way the mazimal operator f v— f* is of weak type (1,1) and sirong
type (p,p), L < p < co.

Proof. We can assume that f is a nonnegative function. Thuslet f > 0
and denote by ff, f; two auxiliary maximal functions

¢ ] 1 : 3
fi(e) = swp =i of T3 f(z) dp(s),

" — 1 r 3 £l
f (”)“ﬁgﬁm!TEf( ) dp(s) .

Clearly f*(z) < ff(z) + f3(2), so we will show that f(z) < CM f(x),i=
1,2. Since for £ > = we have e~%* < 22(g 4 z)~?* and TEXp0,e] S Xio,eda]
we write

1 c 2 z 2 .
0 of TE f(s) du(s) = Ez_(:[(TE FrXo,d) = 25%( £, TExp0.4)

a22otl  £tE

[ f(s)du(s).

T (et ape
Thus ff(z) £ CMf(z). To complete the proof we use Proposition 3.3

writing for ¢ < z
(3'14) (T.E-f! X[O.S]) = (f’ TEX[O,E]) < C(E/m)aa_l (f! X[a:—t:,:u+€]> y

since, as one can note, TEx|o | is supported in [z — £,2 + £]. Furthermore,
z?*le > Culz — g,z + €) for £ < = and thus

1 ET:: J ‘ ¢ x4 p
w0e) J THO W < oy [ 1) dute)
1 x4

reErrrr BURIOLICE

This gives fy(z) < CM f(z) and concludes the proof.

4. Heisenberg generalized convolution. In this section we are
going to explain a natural connection between the twisted convolution we
investigated and a convolution structure considered by the author in [17,18].
Let H, = C" xR, n=1,2,..., denote the (2n + 1)-dimensional Heisenberg
group with the product '

(7 I, ¢) = (2 + 2/, + ¢ + Im({z, #'))
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where {z,2') = _’,-‘:lzﬁ;: Similarly denote by H, the quotient H,/K,
K = {(0,0,2kr): k € Z}, isomorphic to C* x T with muliiplication

(z’ eit)(zl’eit') = (2 + zljei(l+i’+lm(z,z'))) .

For any function F on C* define Fl(z,¢) = F(z)e=¥. It is easy to check
that

(4.1) Fix Gl = (Fx Q)

where # stands for the convolution inﬁ“ and F'XG is the twisted convolution
given by (2.1). A function ¥ on H, is called radial provided F(z,t) =
F(|z],t). Clearly F is radial on H,, if and only if 7' is radial on C™. It is well
known that the algebra of radial integrable functions on H,, is commutative.
Thus (4.1) shows that the algebra of radial imtegrable functions on C" with
X as product is commutative, too,

We now recall a construction of a generalized convolution considered in
[17]. Let & > 1 be a fixed parameter, the same as in the previous two sections
(since in the limiting case & = 1 definitions are slightly different than those
for @ > 1 we decided, for simplicity, to consider only the case a > 1).
Keeping the notation from Section 2 we endow the space X = [0, c0) xR with
the measure djix(#,1) = du(z)dt and denote by LP(X) the corresponding
Lebesgue spaces. Tor £ = (2,1), n = (y,u) € X and 8, € R we define the
(6, p)-product

(&Moo = (=, %8, ~ u + vy cos sin §)
and the probability measure vx on [0, 7) X [0, 7] by

dvx (8, ) = %(sin ©)*3(sin 8)2*~2 dp df .

The generalized translation operators T", n € X, and the convolution f * g,
are then defined by

@) Y@= [ [HEnndixOe)  fe 2(X),
0 ¢
(4.3) Fr9(€y= [ T/(€)g(n) dux(n),

X
where, for instance, f € LP(X),1< p < oo, and g € L(X).

We proved in [17] that L'(X) endowed with (4.3) is a commutative
Banach algebra. Moreover, the generalized translations T", 5 € X, are
submarkovian contractions on every L?(X), 1 < p < oo. Furthermore, an
underlying differential operator is

- 82 20.'--16 g_ai)
Luwm(wﬁ-*—;-—*b-;-f“ﬂ? Pz )
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We mention that for @ = n, (4.3) describes the Heisenberg convolution of
two radial functions and Ly is the radial part of the Heisenberg sublaplaciat};

Next consider a periodic analogy of the situation described above. By X
we denote the measure space [0,00) X T equipped with djix(z) == du(z) dt,
dt being now the normalized Lebesgue measure on T. Analogously we de-
fine the generalized tramslations T, n € X, and the convolution f * g
of two functions f,g € L‘(X) As before, for a function f on [0, 00)
write fi(z,e) = f(z)e~*. Then, as one can check, for { = (a,¢"),
’7“—-(%3{“)6){: ‘

TfE) = eI f)

which immediately implies

flegt=(fxg)
Furthermore, Ly f! = (Lf).

5. Almost everywhere convergence results. We are now in a
position to prove our main results. It is well known that the convergence of
the Cesiro (or, equivalently, Riesz) means of any nonnegative order implies
the convergence of the Abel-Poisson means (both, in LP-norm and almost
everywhere). Nevertheless, to illustrate the simplicity of the method used
we include here the results concerning the Abel-Poisson means.

We start with finding the heat kernel associated to the operator

L=~ (dw“;‘“&r”)-

Using the same character L to denote its selfadjoint extension we write
L= f0°° A dE) for the spectral decomposition. Then we define

o0
Pf= f e~} dE, .
0

We are going to show that {P;}4>0 constitutes a twisted convolution semi-
group with positive integrable kernels. Normalizing the eigenfunctions ¢, (2)
we write

¢alz) = (2ul/ T(n + @) e P LG o ’)
Then ¢}, = m(21‘(n+a)/n')‘/2¢n and ¢}, n=0,1,2,..., is an orthonot-
mal sequence in L*(p). Next

Pof(z) = Y e el (g oiyor(a) = [ Ko, 4) f(y) du(y)

n=0
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with

e~ ito hiaid o
Kiz,9) = S 2 e S o a)nty)
ne=0

2e~ Mo ( = I'in+a)
- Y e—“n ©n (y) ]
I'{a) ?; I'{a)n!
Substituting r = exp(—41) and using a formula for the generating function
for Laguerre polynomials we get

o D+ a) e o ol s 2
2;;'” m%()——ﬂ Yo mLei ()

n=0

- — 11+r

Finally, P, f = ps X f with

o

pi(y) = Tlaj2e T )2a 7oy (sinh 2t) ™% exp (- 5 coth 2t)
An easy evaluation also shows that ||p¢|l1 = (cosh2t)~*. This gives rise to
the following mean convergence result.

THEOREM 5.1. Let f € LF(z%dz), a > 0,1 < p < co. Then the Abel-
Poisson means

00
Z Tn(f; £:.)L’(m' d:r)gg

n={
converge in LP-norm to f asr — 17,

Proof. We work with a > 1 and prove Theorem 5.1 with a replaced
with & — 1. The mean convergence above is clearly implied by

r—-vl-”zr f"pﬂ :‘z—f""m

f € L?(z**~1dz),1 < p < 0o, which in turn is a consequence of the uniform
boundedness of ||pil1, ¢ > 0.

As far as almost everywhére convergence is concerned, note that by
sinh 28 > 21, coth 2t > 1/2¢, for t > 0, we estimate

pily) < Croe v/t = CW(y),

where W, is the heat kernel associated to Lg (cf. (3. 5)) Therefore, due to
Proposition 3.1, '

sup |pe X f(z)| < Crsup Wy * | f|(2) < Caf*(2),
it>0 t>0 .
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which obviously implies

THEOREM 5.2. For every f € LP(2%dz), 1 < p € 00, a > 0, the Abel-
Poisson means

Zr f’ n)L’(w‘d‘m}e

ﬂ_

conuverge almost everywhere to f(z) as r — 1-,

We now pass to the Cesiro means. We write

AR Y AL ek ()

=0

= (A" [ Ku(z,0)f(y) 9> Vdy

Céf(z) =

for the nth Cesaro mean of a function f € L?(p). Here

ZAnukr(k+ %) ou(z)ou(y)

(l“(a)z E ag_ S a)‘Pk) (¥).

Kﬂ(zs y) -

Using the formula
n .
D L)L) = L5 (s 4 1)
k=0

and the identity A% , = Lf_, (0), we finally obtain

F(a)2 ZAu—k AL +a) er(y) = P—(—) e iA"_ka:_l(Uz)
k=0

2
I'e)

= e“”gszf;F”’(y’) .
Cif = D5 X [ with
= (A} =~

( )
We now want to know for which values of §

(3.1) sup [ 511 < oo,

Consequently,

ﬁn,a(y) e~V /2L6+ox(,y2)

icm
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which is equivalent to

00
supn~? f |L&H8(z)[e=* 2"  dz < o0
n
0

(we used A% ~ n’ where ay, ~ by, stands for a, = O(b,) and b, = O(a,) as
n — o). Applying the estimate (cf. [10], Lemma 1)

nlat1)/2 b<3/2
f |La+b(m)|emm/2 a2 dx ~ n(“"'l)/" In n, b= 3/2
no/ -1, b>3/2,
valid for a + & > —1, & > -2, we eagily verily that (5.1) holds if and only il

§>a~1/2.
We thus come to the following mean convergence result.

THEOREM 53. Let 1 < p < o0, @ > 1L and § > o —1/2,
liMyesoo [CEf ~ fllp = 0 for any f € Lr(z?>1 dz). :

Proof. Straightforward consequence of (5.1).

Then

Next, working with @ = a — 1, a > 1, we immediately obtain The-
orem 1.3. Qur next goal is to obtain an almost everywhere convergence
result. We start with

LEMMA 5.4. Let « > 1, 6§ > a—1/3 and £ > 0 be such thal § >
a—1/3+ 2. Define w(z) = (1 4 22)~(>+9). Then

|0,5(z)| S Cuwy(n)(z) _
with £(n) = n~1/* and C independent of n where w, is defined by (3.7).
The lemma above is sufficient to prove :

THEOREM 5.5. Let 1 < p< oo, a> 1 and 6§ > a—1/3. Then for any
f e LP(z¥* 1 dx)
Caf(z) = f(z)
almost everywhere as n — oo,

Proof. Given § > a~1/3+2,¢> 0, f € LP(z?* 1V dx), 1 <p < o0,
we estimate

sup [Caf(=)l < sup |#n 5| #]/1(2) S € supwe(n) * Ifl(w) < Cf (=),
which clearly gives almost everywhere convergence for the Cesaro means.
Consequently, Theorem 5.5 implies Theorem 1.1.
Proof of Lemma 5.4. Since A% ~n’ we write
[Br (@) < €10 |3 4(a")
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and thus the inequality we are going to prove is
(5.2) n~0e /2| Lo (y)] < Cn(1 4 ny)~(a+9)
But
n~8eTV 2| Lato(y)| < C nla=f2y=~(atD)f2| Lotd(y))],
therefore, to prove (5.2) it is sufficient to obtain
(5.3) MEZH ) < C (ny)+O2 (1 + ng)™+e.
We prove (5.3) using the fundamental estimate for Laguerre functions (cf.

13}, (2.5))

(yv)latd)/a ifo<y<1/e,
_1/4 .
cotin < ¢ d () if 1/v<y<v/2
l n (y)l = (v(u" 3+ ly‘ VI))—]/! if V/2 <y< 3,,/2,
e if3v/2 <y,

where v = 4n +2(a + 8) + 2 and ¥ is a positive constant. We verify (5.3)
step by step:
a) 0 < y < 1/y; then (5.3) is obvious.
b) 1/v <y < v/2; then vy > 1 and C < (vy)(@tD/2H14)(1 4 py)ate
since § > a — 1/2 4 2¢ by the assumption.
¢) v/2 <y < 3v/2; then vy > »* /2. What we now need is the estimate
(y(vi/.‘i +ly - yl))-«l/d{ < C(ny)(a+5)/2/(1 + ny)a-}-e
or, equivalently, |
(54) GO g A< Ol (1 4 gyt
Clearly, on (v/2,3v/2] the left-hand side of (5.4) is bounded from above by
Cv'/8, while the right-hand side of (5.4) is bounded from below by
C(Vz)(a+.s)/2+1/4—(a+s) .
?y the assumption § > a — 1/3 4 2¢ so »1/¢ < Cué—at1/2~2¢ yhich proves
5.4).
d) 3v/2 < y; what we need is
C < e™(ny) @21 4 ny)ate,
which is clearly implied by
eV > C(ny)@=8/te

Since (& — §)/2 + £ < 1/6 we are done if €" > C(ny)!/8, But this is valid
when y > 3»/2. This concludes the proof of Lemma 5.4.

A final remark. It would be interesting to know if we could enlarge
the range of the parameter a in Theorems 1.1 and 1.3 to all a > —1 or lower
the index & in Theorem 1.1t0 6§ > « + 1/2.
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