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Malliavin calculus for stable processes
on homogeneous groups

by

PIOTR GRACZYK (Wroclaw)

Abstract. Let {p#¢}¢y>0 be a symmetric semigroup of stable measures on a homoge-
neous group, with smooth Lévy measure. Applying Malliavin calculus for jump processes
we prove that the measures p; have smooth densities.

§ 0. Introduction. Stable semigroups of measures on homogeneous Lie
groups are a natural generalization of the notion of a strictly stable measure
on R™. Nevertheless, stable measures on homogeneous groups revealed first
their importance in connection with some problems in harmonic analysis.
A 1-stable semigroup of measures on a homogeneous group G was used to
construct a commutative approximate identity on G (see [4]), which plays an
important role in a characterization of the Hardy spaces HP(G). This was
done in 1986 by Glowacki [8] (for the Heisenberg group cf. [6] and [7}). In
particular, Glowacki showed that if {j:}50 is a symmetric stable sem:group
with smooth Lévy measure then the y; have smooth densities.

The aim of this paper is to prove the smoothness of {y:}¢50 in a prob—
abilistic way using the methods of Malliavin calculus. Qur approach, based
on elementary facts concerning Poisson processes and random measures,
seems to be simpler than the methods used by Glowacki.

Malliavin calculus, initiated by Malliavin in 1976 ([13]), is a collection

. of probabilistic methods for showing smoothness of semigroups of measures

connected with stochastic processes. The main idea is to integrate by parts
on a probability space. The classical Malliavin calculus deals with diffu-
sions. The Malliavin calculus for R%-valued jump processes was developed
by Bismut ([1], [2]), whose approach is here adapted to the case of stable
semigroups on homogeneous groups.

§81 and 2 have a preliminary character. In §1 we present the basic prob-
abilistic facts needed in the sequel. Most of them are well-known in the case
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184 P. Graczyk

G = R™ and the proofs remain the same in the nonabelian case. §2 pro-
vides necessary information on homogeneous groups and stable semigroups
of measures. In §3 we formulate the main lemma of Malliavin calculus on
G and we justify the reduction to a “truncated” stable process,

§4 is the main section of the paper. We integrate by parts on jumps of
the process for differential operators of order 1. The difficulties arising in
the nonabelian case are treated in points (b) and (c) of that section. In §6
the method presented in §4 is adapted to differential operators of arbitrary
order.

The results of this paper are contained in the author’s Ph.D, thesis. The
author is indebted to Professor T. Byczkowski for suggesting the problem
and for many conversations on this topic. He would also like to thank
Professor A. Hulanicki for the opportunity of presenting the results of the
paper at the conference on harmonic analysis in Tuczno, 1989, The author
is also grateful to J. Dziubanski, P. Glowacki and §. Kwapier. for helpful
comments and remarks.

§1. Independent increment jump processes on Lie groups. In
this section we introduce some notation and collect basic probabilistic facts
needed in the sequel.

Let G be a separable Lie group. A family {1:}1>0 of probability measures
on G is called a continuous semigroup of measures if

Be* P = ftyqy,  1,8>0,
Be=8, ast—0,

Let {ste}s>0 be a continuous semigroup of measures on @. Since G is
a complete separable metric space, there exists ([5]} a stochastic process
{2t}+>0 with values in G such that:

(i) p¢ is the probability law of z, t > 0
(ii) the left increments of {z:}i>0 are homogeneous, i.e. for any s < ¢
the probability law of 2,12, is py_,;
(iit) {2:}:>0 has independent left increments, i.e. foranyt; < ... < 1,
the random elements ztl,z{llz;,, A 1 1%, are independent;

(iv) all sample paths of the process {#t}t>0 are right-continuous with
finlte left-hand limits.

We denote by D¢ the Skorokhod space of functions defined on R+ with
values in G which are right-continuous with left-hand Limits. Under the 50~
called Skorokhod distance, D¢ is a topologically complete separable metric
space ([3]). We assume that {z,},5¢ is the canonical process on Dg. Sim-

Hlarly, for T > 0 we consider the spaces Dg[0,T] with [0,7] in place of
R+, '
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The infinitesimal generator A of a continuous semigroup {u¢}e>0 on G is
described by the Hunt formula ([10]). The generating functional P of {s:}
is defined by (P, f) = Af(e), f € CX(G). P is a distribution on G such
that for f € C°(G)

(.P,f)‘—‘yf%%(ﬂt—ae,f)‘

We will use the following limit theorem, which is a special case of [3],
Thm. 4.2.5.

THEOREM 1.1, Let {zi“) Yo<i<r, {2t}o<i<r be stochastic processes on G,
with homogeneous independent increments and sample paths in Dg[0,T].
Let A,, A be the infinitesimal generators of the corresponding semigroups
of measures. If im, oo Anf = Af for every f € C°(Q), then

() e
{zi"}o<icr = {ziocicr a8m— 00,
i.e. the probability distributions of {2{™} on Dg[0,T] are weakly convergent
te the distribution of {z:}. m

The Lévy measure v of a continuous semigroup {y¢}+>0, which appears
in the Hunt formula, is a measure on G \ {e} such that »(U®) < oo for any
open neighbourhood U of e and (see [10])

(1.1) (/Do = v|lpe ast—0 fv(dU)=0.

There are various connections between the Lévy measure v of {is}i>0
and the jumps of the corresponding process {z:}ivo. We will preient some
of them now. The jumps of the process are denoted by Az, = 242, # e.

The following theorem is well-known for G = R™ ([5]); !:he: proof for an
arbitrary Lie group is similar, using (1.1) and the Poisson limit theorem.

THEOREM 1.2. Let B € Bg with v(B) < co. Then for everyt > 0
N(t,B) = card{Az,: s <t, Az, € B}

is a random variable with the Poisson law and mean value EN(1,B) =
tv(B). Moreover, {N(%, B)}+>0 is a Poisson process. m

Similarly to the abelian case {[5]) we have

TueoreMm 1.3. If B; € Bg, v(B;) < 00, i=1,...,n,and BN B; = @
for i # j then N{(t, B1),...,N(t, B,) are independent. u

We will need a stochastic integral with respect to the random measure
N(t, B). We use the notation of Bismut ([1], [2]). If w : G\ {e} — R is
v-integrable then we define

Sscit = Z ‘U,(AZ_,), S:St'"' = S,stu ad ES,stu .
- Az fe, 1<t
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The following theorem shows that §,<;u and §¢.,u are well-defined and
gives their properties. : -

THEOREM 1.4. Let u: G\ {€} = R be measurable and let t > 0.

(a) If [ luldv < o0, then S,ciu = 2 Az, e, s<t W(A2,) is convergent a.e.,
Ssciw € L' and ES,cqu = t fudy.

(0) If [ luldv < o0 and [u?dv < oo, then E[(Sicu)’l =t fu?dv.

(¢) If [ |uldv < 0o and [ |u|*dv < o for ann € N, then Siciu € L™,

Proof. Statements (a) and (b) are special cases of general results con-
cerning stochastic integrals with respect to point processes ([11)). They may
also be easily proved directly, using Theorems 1.2 and 1.3. To prove (¢) one
uses the Laplace transform of S,<,Ju|, which equals

xe(r) = exp { [ [ ~ 1jew (dz)} . m

CoROLLARY 1.5. Ifu : G\ {e} — R is a bounded function such that
J lul dv < 0o then Ssctt € LP for everyt >0 andp>1. m

We will also be interested in integrability of (Ss<eu)™. The following
simple criterion, whose proof uses the Laplace transform of Ss<iu, is taken
from Bismut ([1]). -

LEMMA 1.6. Let u: G — R™ be v-integrable. If
v{u"'(z, +0)}
m D T
z—+0 log(l/a:)
then (S,ciu)™t € L? for every p Zlandt>0.n

Now fix a bounded neighbourhood U of ¢. Each trajectory z € Dg{0, T
has only a finite number of jumps such that Az g U. Let §1,5,,... be the
increasing sequence of stopping times at which z has a jump Az ¢ U. The

following lemma. is well known in the real case and its proof for a Lie group
G iz identical. '

LEMMA 1.7. (a) For every n € N the probability law of Azg, is given by
vlpe fv(U°).

gb) S1,82 = 8140, 80 = Snetyee Azg,, Azs,,...,Azg_,... are inde-
pendent. m

=+00,

To end this section we present one more result concerning a connection
between the Lévy measure of a semigroup and the semigroup itself. It is an
easy consequence of a theorem of Hulanicki ([9]).

We say that a function ¢ on G is submultiplicative if

(i) ¢ is locally bounded and ¢ >1;
(i) p(z") =p(z) s € G;
(iii) e(zy) < w(2)p(y), z,¥ € G.
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THEOREM 1.8. Let U be an open neighbourhood of e such that U is
compact. Let v be the Lévy measure of a continuous semigroup {tit}i>0 on
G. If ¢ is a submultiplicative function on G and Jue pdv < o then for
every T > 0 there exists a constant k such that Jedpe <k for alit € [0,TY.

u

§ 2. Stable semigroups of measures on homogeneous groups. In
this section we present basic facts about homogeneous groups (see [4]) and
stable measures.

A family of dilations on a nilpotent Lie algebra g is a one-parameter
group {7:}¢so0 of automorphisms of g determined by

(2.1) P Xj =14 X;

where {Xy,...,Xas} is a linear basis for gand 1 < dy < ... < dps = d are
real numbers called the ezponents of homogeneity. A nilpotent Lie group
G whose Lie algebra g admits a family of dilations {7} is said to be a
homogeneous group. The mappings exp oy;0exp~! are group automorphisms
on ¢ and are called dilations on G. They are also denoted by v;{z) or simply
tx, x € G. The homogeneous dimension of G is the number @ = dy+. . .4-dpr.
The group identity of G is denoted by 0 and will be referred to as the origin.

A function f on G\ {0} is called homogeneous of degree A € R if
foy =1 ffort >0, A distribution 7 on G is homogeneous of degree
AMif{r,#79f 0 y;1) = Mr, f) for f € C°(G) and t > 0. A linear differen-
tial operator D on G is homogeneous of degree A if D(f o y;) = tNDf) oy
for any f in its domain and ¢ > 0. The vector fields X; appearing in (2.1)
are homogeneous of degree d;.

We define a Euclidean norm | - || on g by declaring the X;’s to be or-
thonormal. One may regard this norm as a function on & in the obvious
way: ||z]| = || exp~? =]

We choose and fix once for all a homogeneous norm on (3, that is, a
¢omtinuous positive function £ — |z| which is smooth on G\ {0} and satisfies
|z| = |27, fiz| = t|z], |z| =0 z = 0 for any z € G and t > 0.

LEMMA 2.1. (a) There ezisis a constant c >0 such that
lz|| < ¢lz| for|z{ <1, |=z| < clz|* for|z|> 1.
(b) There exists o constant c > 0 such that
|lzy| < ell=[ + 1), 2yEG. W

A continuous semigroup {u;} of measures on G is said to be stable (with
exponent &, 0 < a < 2) if for every B € Bg and t > 0

pe(B) = #1_(*‘”"3)-
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This is equivalent to the generating functional of {g;}¢>0 being a homoge-
neous distribution of degree —@Q — a. The Lévy measure v of {fi¢}:>0 has
the property

v(t™1B) =t*y(B) forall B € Bg.

Homogeneity of the generating functional and of the Lévy measure of
{p:}e»0 applied to the Hunt formula implies that P is a generating func-
tional of an a-stable semigroup of symmetric measures with smooth Lévy
measure if and only if P is of the form

oy 2zl '2) 1

|x|Qte

(2:2) {Bfy=lm [ [f(=)-

lx|2e

where {2 # 0 is a nonnegative symmetric C'* function on the unit sphere

2 ={z € G : |z| = 1} and dz is the bi-invariant Haar measure on G such

that the measure of the unit ball {z : |z] < 1} is 1. (For an analytic proof
- of (2.2) of. [8].)

We conclude this section with some technical remarks involving the ad-
joint representation on G (see e.g. [16]). They are true for an arbitrary Lie
group G. We denote respectively by L, and R, the left and right translation
by o.

LEMMA 2.2. Let X € g, f € C*(G), o,1,2 € G. Then
Xf(rzo) = Ad, X(f o L. o R,)(2).

Proof. By the invariance of X and elementary properties of the adjoint
representation ([16])

X f(rzo) = %l (foLrs)(o lzoexptX)
S 0

= % u(f 0 Lo )07z exp Ady(tX) - o)

=Ad; X(foL,oR,)(2). u
To simplify notation we use the multiple Lie brackets defined by

[Xl,{XQ,. ..{Xu_1,Xn] . s .]] = [X], . -,Xﬂ] y
XX, ) = Y.

™m

R

In=0weset [X*Y]=

icm
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LEMMA 2.3. Let G be nilpotent of degree d and let Sy S, X € g
{(n € N). Then

1
(2.3) Adexp S1..exp S, X= Z —-;—T[Sl . S:-,X] .

0Sart. tan<d
ai €N
Proof. For n = 1, (2.3) is an immediate consequence of elementary
facts concerning the adjoint representation Ad and its differential ad ([16]).
The formula for all n follows by induction.

§3. A probabilistic approach to the smoothness problem for
stable semigroups. Glowacki ({8]) proved

THEOREM 3.1. Let {ji;} be a stable semigroup of symmetric measures on
a homogeneous group G. If the Lévy measure of {u;} is smooth, then the p,
have smooth densities on (.

The aim of this paper is to prove Theorem 3.1 using a version of Malliavin
calculus for jump processes, based on methods of Bismut ([1}, [2]). In this
way we obtain a probabilistic proof of Theorem 3.1.

First we formulate the basic lemma of Malliavin calculus on a nilpotent
Lie group G. Fix a linear basis X3,..., Xpr of the Lie algebra g and write
XT=X; ...X;, for a multiindex I = (44,. verin)y flyeersin < M.

LeMMA 3.2, Let G be @ connected and simply connected nilpotent Lie
group and let pu be a finite Borel measure on G. If for every multiindez I
there exists a constant ¢; such that

(3.1) {1, X < x| flloo

for every f € C°(G), then p has a smooth density with respect to the Haar
measure on G.

Proof. The exponential map is a diffeomorphism of g and &, and the
image of the Lebesgue measure on g is the bi-invariant Haar measure on G
([4]). Since the derivatives in a global coordinate system on G are linear
combinations of the X; with smooth coefficients, it is enough to prove the
lemma for G = RM. The proof in this case may be found e.g. in [15]. w

Remark. Lemma 3.2 is true for an arbitrary Lie group G and for any
distribution on G.

We are going to apply Lemma 3.2 to prove Theorem 3.1.

From now on, G will always denote a homogeneous group and {,u,}bg
a symmetric a-stable semlgroup on G with a smooth Levy measure v. All
constants are denoted by c.
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Now we show that the question of smoothness of {i;} may be reduced
to the problem of smoothness of a truncated semigroup {;}.

ProPoSITION 3.3. Let b be a smooth function on G such that 0 < h <1,
h(z) =1 for |x| < 1/2 and k(z) = 0 for |z| > 1. Let {fi;}i50 be a semi-
group of measures on G with the Lévy measure ¥ = hv and the generating
functional

(Pfy=1m [ [f(=)- f(0))di(x).
lz]2e
Assume that the measures i, are smooth. Then so are the ;.

Proof. Set k = v — ¥. Then k is a smooth function on G. By (2.2),
k(z} = 2(|z|"1z)/|z|9+= for |z} > 1 where 2 € C*°(X). Hence k and X'k
are bounded for any multiindex 1. Using (2.2) and the perturbation formula
([14]) we get

. ‘
Froe=frii+ [frpnkaf,,ds
0
where fi, = eIt and f € C°(G). In particular, for any multiindex I
¢
(32)  (XTue )= (XTFp )+ [ (X s xbn ), f) de.
0

Observe that
(3.3) pexkrB ()= [y m ) dfE,,(2) dpa(y).
By Lemma 2.2, for any vector field X € g
X(ko Ly-10Ry1)(z) = Ad, X(k)(y 1z271),
Define § == exp~1(z). If § = Egl ai(2)X;, then using Lemma 2.3 we have

L
Ad X = X 4[5, X] 4 ... [ 5971
X+ ok 84X

=1
1 .
:X+Zﬁ Z aj,(2)...a;(2)[Xy,..., Xz, X]
I=1 " dedt
where d is the degree of nilpotency of G and jy,...,5 € {1,..., M}.
For any jy,...,5 the function [Xj,...,X;,X)k is bounded. Lem-

ma 2.1(a) implies that
laj(2) . ai (2 S IS < el +14]').

Thus | Ad, X (k)(o)| < (1 + |2|*~14) for every ¢ € G. From Theorem 1.8
applied to the function |z{(4~19 4+ K| which is submultiplicative for K suf-
ficiently large, it follows that X k(y~'x27!) is dominated by a function
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integrable with respect to dji,_,(2) dut,(y) and independent of z. Therefore
we may differentiate in (3.3) under the integral sign.
Similarly, for X7 = X; ... X;,

X(ko Ly o0 R )(z) = (Ad, Xy,)...(Ad, X;, k(v 1zz71).

The same argument as for X shows that such a function is estimated by
e(1 + |z|™%=19) and one may differentiate in (3.3) writing X7 under the
integral sign. Coming back to (3.2) and using Theorem 1.8 we have

t i 1
| [ X vk 2B, Dds| < el [ f (U4 12099 i (2) ds
0 0 & .

< el flloo -

The distribution fJ ts * k * Ji,_, ds satisfies the assumptions of Lemma 3.2

so it is a smooth function. Since, by assumption, the %, are smooth, the
same is true for the y,;. m

§4. Integration by parts for differential operators of order 1.
As in the preceding section, let G be a homogeneous group and {u:}+>0 a
symmetric a-stable semigroup on G with a smooth Lévy measure v. Let
{Z¢}t>0 be the truncated semigroup defined in Proposition 3.3. The purpose
of this section is to show that (3.1) holds for the measures fi; and for X € g.
This is certainly of little value in itself because we merely obtain in this way
the absolute continuity of {f;}:>0, already stated by a theorem of Janssen
([12]). However, the approach for all X/ is similar and we want to present
first the most transparent situation when |I| = 1.

Denote by g the density of the Lévy measure ¥ of {fi;}. By (2.2) and
the definition of {fi,}

(4.1) g(x) = 2(|z| " x)/|z|9t>  for |z| < 1/2.

Let {z;}i»0 be an independent homogeneous increment process with sam-
ple paths in Dg, corresponding to the semigroup {#i¢}. Observe that the
estimate (3.1) for i, and X € g may be expressed in terms of the process

{z} as
(42) BIX F()l € el fleo-

We will show (4.2) following the technique of Bismut ([2]). For the sake
of clarity we divide our procedure into four parts. Part (a) presents the basic
integration by parts formula. In part {b) we deal with random coefficients
appearing in this formula in the nonabelian case. In (¢} and (d) we remove
additional assumptions made in (a} and finally derive (4.2).
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(a) Integration by parts on jumps of the process. Fix e > 0 and T > 0.
Let 51,53,... be the sequence of consecutive stopping times at which the
process {z;} has jumps |[Az| > ¢. By Lemma 1.7 and Theorem 1.2 the
independent increment process {z{*} defined by

(e) _
z = Azg .. .Azsm',“nl)‘”

corresponds to the semigroup of measures {exp (¥, —¥¢(G))} 50 where ¥, =
V|{jz|>¢}. The generating functional of this semigroup is

43 (P.fy= [ [f(&)-f(0)]di(), feC(G),
{l=|><}

and its Lévy measure is 7.

We shall integrate by parts on the process {zgz)}. To integrate by paris
in E[X f(£4)] we must have a term to transfer X on from the function f.

Consider a smooth function g on R such that 0 < ¢ < 1 and g(s) = 1
when |s| > 1, o(s) = 0 when |s] < 1/2. For n > 0 we write 9,(s) = o(s/n).
Let u € C'(@) be a nonnegative function with support in {jz| > £}. We
will integrate by parts in integrals of the form

Elo(Secru)X f(#7)], [ € C2(G).
Write N = N(T,{|z| > ¢}). By Lemma 1.7{b}, N is independent of the

Jumps Azg,, Azg,,... and we have

Eloy(Sscru) X £(25)]

= i P{N =n}E [g,, (i u(Azsi))Xf(Ale o Azs, )] .

n=1 . =1

Putting o(s)/s = 0 for s = 0 and using again Lemma 1.7 we get

n

E [gﬂ (Z u(Azs, )) X f(Azs, ... Azs, )]

i=1

= El E [Q”EEE,I:TL’(‘QA;) ) w(Azg, )X f(Azs, ... Azs, )]

¥

7

n
on(K; + u(2)) 9(2)
E S Tg TR
> [Gf KT u(z) W)X f(Azs,... 2. Azs,) 2 o d
where K; = 5. . u(Azs,). Since f has a compact support one may inte-
grate by parts in the variable z in each integral over G in the last sum. By
using Lemma 2.2 and setting o; = Azg,,, ... Azg,_, these integrals are equal
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to

g [9:7(1(;" +u(2))  og(K; +u(2))

Ry oater 06 Tt | (1A S0

G

X f(Azg, ...z.. 'Azs“)ﬂgig) dz

_ f 0q(K; + u(2)) (Ady, X)(ug)(z)
G

Kj_}.u(z) g(z) f(AZSr--z---AZS“)V;

(one may divide by g(z) because g(Az,} # 0 almost everywhere so that
v{z:¢(z) = 0} = 0).
Now we teverse our procedure. Defining

_ QW(SDST”) & = Q:'J(S-’ST'H‘) _ QH(SSSTu)

. Py = ————",
4 °T Sieru SegT Seert

T

we obtain the following integration by parts formula.

LEMMA 4.1.

(4.5) E[g,,(S;gTﬂ)Xf(zgr‘e))]
N

B[00 w5, (Ad tas,,, oirsy Xl A25) F)]

o
N

wJe[szsﬂ 5 (%Admm s, X(ug)) (Azs,) f(zg))] .

=1

Now we analyse the form of the operators Ad Azsyyy BEsy occurring in
(4.5). Observe that when G is nilpotent of degree 2 then by Lemma 2.3

N
Ada,,, ansy X =X+ D [exp™(Azs,), X].
i=j+1

If
M

(4.6) exp (Azg,) = Z ap(Azs; ) Xk
k=1

for X1,...,Xnr as in (2.1) then

M
Adasy,,, orsy X =X + ;Y_jl A7 [Xx, X]
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where

N
&= 3" an(Azs,).
i=j+1
For an arbitrary degree of nilpotency of G the formula for AdAzs,-+1 dAzgy

is more complicated. Using Lemma 2.3, in the same way as for d = 2 we
obtain

(A7) Adas,, ar, X=X+ 3 dd L [Xese o Xay X]

1<i<d
’:1 ,...,kl =1 ,...,M

where

(4‘8) dgci)...kr

I
= 5 h'_l__1 Y (aky--.an, N(Azs,) -

4= Gadekj=l ""Jq'j<-';<...<i,,
Jlo-*qu#o

can (t.‘l.,'c,__‘fq_'_1 ‘e .ak,)(Azs_.q)

and the functions ay are given by (4.6). For instance, the coefficient of the
vector field (X, , Xx,, X] equals

N N
- 1
) = 3 > an(Azs)ap,(Azs)+ Y ar, (Azs, Jar,(Azs,, ).
i=g41 j(i](l‘g

Now we substitute (4.7) into (4.5). Using the Schwarz inequality and setting
forYeg

(4.9) o =uvu, oV =Y(ug)/y,
we obtain
LEMMA 4.2. If G is nilpotent of degree d then
(410)  |Elon(Secrw)X f(A70
< W llo{ EU@1S,<r#0 | + 1808,

+ Z (E sup
1<i<d 1<i<N
k1 ,...,E:],‘..,M

X [(E[B}S3eqlwy o XDy

CAMDEE

+ (BBl XX iy
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where $y, P, are defined in (4.4), !FI(Y), !I’,_EY) in (4.9) and the di"l) Lk @re
given by (4.8). a

Observe that in the abelian case the right-hand side of (4.10) contains
only the first term.

(b) Estimation of random coefficients. We now estimate the coefficients
E sup 4 g2
20 1D

occurring in (4.10). The estimation will not depend on &. Consider first
the case [ = 1 (when G is nilpotent of degree 2 this is the only possibility).
Since

, ki il 2
E sup d? = P{N =2}F s ap{Azs,
L 0P =2 PV = ey | 3 ax(dzs)

it suffices to estimate Esupy¢;c, | 3im;pq ar(Azs,)]? for a fixed n € N.
Observe that ax(Azg,),...,ar(Azg,) are independent symmetric bounded
random variables. By the Lévy inequality and (4.6)

b 2 n 2
Z a;,(Az_g_.)I < 2E’ E a.k(AzS..)l
i=1

i=j+1

E sup
1<j<n

" n
=2EY a}{Az5) S2EY |lAzs, |

i=1 i=1
Since |Azg,| < 1, by Lemma 2.1(a) we have ||Azs,||* £ c|Azg,|? and finally,
writing r(2) = |2,
E sup |t:l$f)|2 <cE Z
1<i<N lAz,|>e, s<T

|Az,|? < cES,STr2 .

This estimate does not depend on £ and by Theorem 1.4(a) it is finite.
We generalize it in the following lemma.

LEMMA 4.3. For every m € N there exists a constant ¢ = c¢(m) such that

E sup &P < cBST 0t < oo,
1<5<N -

Proof. As in case m = 1 the Lévy inequality impliés
() : N 2m
E sup |dP™ <2E[Y an(dzs)] -
1<i<N =

Set b; = ax(Azg,). Then the b; are independent symmetric random variables
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with mean value 0. For a fixed n € N, by the multinomial formula

L (2m)! i pda
@y (3w =3 X R S bLb

i=1 =1 j14..+j,=2m i ,<'--_<‘.q
F1.aGq #0 1,4y

We take the expected value of both sides of (4.11). Then only the terms
corresponding to even exponents ji,...,J; will remain on the right-hand
side. Since for each such sequence ji,...,J,

Y obit. b < (i‘bf)m

i=1
we get
n 2m kid ™m
(3 b,-) < ¢E (E bf) .
i=l i=1
Arguing as for m = 1 and using Corollary 1.5 we finally obtain
E sup |dg¢j)l’"‘ < eESTpr? < o0,
1Li<N =
PROPOSITION 4.4. For every m € N there ezisis a constant ¢ = c(m)
independent of ¢ such that

E sup |d@  Pm<e.
lsjENl Kok |
Proof. Forl = 1 the proposition reduces to Lemma 4.3. For ! > 1
we need a stronger tool than the Lévy inequality. Consider the case | = 2,
m = 1. Just as for [ = 1 we may treat N as a constant. By (4.8), di‘?ka =
'wgl) + w£-2) , Where

N N
n_ 1 2
'wg' )= 9. E : (aklakz)(AzSi)! wS' )= Z akn.(AzS;l Yk, (Azstg) .
|.=j+1 j(l':l(ig
We estimate these terms separately. Since

N N
i1 < 3 lakan(dzs)] < 3 llAzs P < cSucrr?
i=§+1 =1
we have

E “sup w2 < eE§%r? < 00.
155<Ni 3 " < eBlagr _

In onier t;) estimate Esupycjon |1.:J£-"")|2 we notice that {wg)_z,...
...,wg ),w((, )} is a martingale with respect o the increasing family of
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o-fields {o(Azsy_,,Azgy),...,0(Azs,,...,Azs,)}. Indeed, by the inde-
pendence and symmetry of {Azg, }

E{w{®, | o(Azs;,,, -0, A2y )}
= E{ah(AZS,' )[akn(AzS_,-+1 )+- ety (AZSN )]+w_(,2) l U(AzS_,-.u PR )AZSN)}
= “’5'2) +[akz (Az-5'5+1 )+' cohag, (A:“'SN )]E{ah (Azsi) | U(AZSJ'+1 yorey Azgy )}
(2) '
= 'IDJ .

By the Doob—Kolmogorov inequality for martingales ([11])

N
E sup v <4Euf)? =4E Y o}, (Azs,)e},(Azs,)
1si<N 1<8: <4z

N N .
<4B(Y NlAzs, | 3 1825, IF) < cESierr? < oo

i1=1 fa=1
For I > 2 the idea of the proof is the same as for | = 2. Omne combines
the methods of estimation of w!") and wg_z) and uses martingale inequalities
for moments of higher order (111]) For m > 1 one follows the proof of
Lemma 4.3. We omit the details. =

By Proposition 4.4 and Lemma 4.2 we get
COROLLARY 4.5.

412)  |Elen(Sscr) X H(A)
< [1flloo{ 101507 + ElS0Ssca¥i™)|

to Y (Bl@dSieple e Xy
k1yeenki=1,0,M
1<i<d

+ (E[@3Sh g XDy}

where the constant ¢ depends only on the process {z}i<T and Sy, $1, ¥,
¥, are defined in (4.4) and (4.9). m _

Remark. Observe that the right-hand side of (4.12) does not depend on
g; all the stochastic integrals ate taken with respect to the process {z:}i<r-

(¢) The estimate for a specific function u. We first let £ — 0 in (4.12)
under the assumption that w € C'(G) and suppu C {|z| > &} for an
g9 > 0. Next, for a specific function u such that 0 € supp u, we will get rid
of the assumption on the support of .

PROPOSITION 4.6, Letu € CY(G) with supp u C {|z| > €0} for ango > 0.
Then (4.12) holds for E[g,(S.<cTu)X f(2r)).
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Proof. According to the remark after Corollary 4.5 we only have to
prove that

(413)  Elon(Secrm)X F(7)] = Elon(Socrw)X f(2r)] a5 e~ 0.

By (4.3} and the Taylor formula, the generators of {zS‘)} converge on C°(Q)
to the genera,tor of the process {z,}. By Theorem 1.1 this means that the
processes {zt )}KT converge as £ — 0 to {z;}+¢T on the Skorokhod space
Dg. Using the Skorokhod metric on D¢ ([3]) it is not difficult to see that the
mapping Dg 3 2 — 3, o<t u(Az,) is continuous on Dg. Since the projection
{#} — 27 is continuous a.e. with respect to the probability law of {2} on

Dg[0,T) and the functions g, and X f are continuous and bounded it follows
that (4.13) holds. m

THEOREM 4.7. Let u(z) = |z|™2(z)k(z), where m = d + 2 (d the mazi-
mal exponent of homogeneity), 2(z) = 2(|z|™*z) is as in (4.1) and h was
defined in Proposition 3.3. Then
(414)  |Elen(Sscru)X f(z1))

< 1flloo{ Bl#15,<790) + Eldo S|

Xio o Xay
e Y ((B[#S2ep| g T R X XDy
kl,....k;=1&...,M

+ (E[QOS <TIW([XF=1:---'X&| .X])”)]/z]} .

Proof. For ¢ > 0 we consider u, = 9.u, where g(z) = o(|z|), o de-
fined at the beginning of point (a). Then suppu, C {z : |z] > £/2} and
lim, .o . = u. By Proposition 4.6 the estimate (4. 14) holds for u..

Since S,crUe — S;<ru for every w, the dominated convergence the-
orem implies that the left-hand side of (4.14) for u, tends as ¢ — 0 to

| E[en(Ss<Tu)X f(zr)]|l- It is easy to see that the random variables @,
&1 given by (4.4} are bounded by a constant independent of u. Since
Po(us) - Po(u) and $1(u.) — P1(u) everywhere, the convergence of the
right-hand side of (4.14) for v, — u will be proved when we show that for
Z=2Xy,...,Xn

Secrl¥(®(u) - ¥ () > 0 in 17, i =1,2.
To prove this, it is sufficient to show that, as £ — 0,
Sser 8P (ue) - ¥ P (w)| >0 i L2,
Serl¥{ (ue) — ¥P () ~ 0 in 12
First observe that S,ST|LF,-(Z)(u)| € L? for every p > 1. Indeed, by {(4.9),

(4.15)
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|W§z)(u)| = {uZu| < c|z|*™ 9 for |z| < 1/2 and !F}z)(u) is bounded for
|z| > 1/2 (dz denotes the degree of homogeneity of Z). Therefore !F{z) is ¥-
integrable and bounded and we apply Corollary 1.5. Similarly I!Fz(z)(u)l <
cjz|™=4z < elef? for |z| < 1/2 and ¥{P)(x) is bounded for |z| > 1/2 so
S,5T|!P§Z)(u)| € LP forallp> 1.

To prove (4.15) we use Theorem 1.4. For i = 1 we have

ElS,crl¥P(ue) - D)< [ |ueZu, — uZulg()dz

{J=l<<}
<2 [ 9@ de+ [ wi(z)e |26z /e)lg(c) d
{lal<e} {I=I<e)

Since !F( ) is - -integrable, the first integral tends to 0 as ¢ — 0. The same
is true for the second integral because Zg is bounded and u(z) < ce?? for
|z] < &. Next,

E[Secrl¥{P(us) ~ 02w < [ |ueZu. - uZuf*g(z) dz

{I=Se}
<6 [ P Pglz)de+4 [ uwte|Z8(z/c)g(z) dz .
{J=l<e)  {lelge)

Arguing as before we see that both integrals tend to 0 as £ — 0. The proof
in case 1 = 2 is similar. m

(d) The final estimate. The final step in our procedure is to let p — 0.
To do this we need the following fact.

PROPOSITION 4.8. Let u(z) = |z|™02%(z)h!(z) for m,k,0 € N. Then
(Ss<)~t € LP for all 1 < p < oo.

Proof. We will use Lemma 1.6. Integrating in polar coordinates on G
({4]) we have

7{u"l(t, +o0)}

il

J 1t 400y (u(2))g(2) d=

J 1(=.+m)(u(x))ﬂ|(llal;+:)
{l=|<1/2} -

v

1/2
O f Lty (™ 24(0)) AL 9 dr

Iy

1 Qy)ke/m
L e

tajm
{2 >}

2“] do(y)-
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Hence
v{u(t,+0)}
TN e
-0+ log(1/t)
J ewteimde) 2= [ a@)de(y)
> l " {7*>2™ 1) ___{a*>em)
o0t ta/mlog(1/t) log(1/t)

:l‘he.integrals on the right-hand side converge as t — 0 to the correspond-
ing integrals over the set {£2 > 0}, which are positive for £2 2 0. Since
limy o4 t*/™ logt = 0 we get
p{u~1(t, +00}}
=0+ log(ljy) T

THEOREM 4.9. Let u(z) = |z|™2(z)h(z), m =+ 2. Then

E[X flzp)]] < SacrP 0} L Sucrlef)|
|EIX f(ze)ll < ||fllooq E +E

SEST" - SsgTu
52<le([xkl '---,.xkt ,XDI 1/2
+c E [(E #<TI¥1
By bi=1,0, M ngT“
i<i<d

Xa, s Xy, 1/2
+ ESEgTW:g[ Pt X”| !
SEST'U '

Proof. By Proposition 4.8, (S,cru)1 € IP forp> 1. In particular,
S,ST‘u-> 0 a.e. The dominated convergence theorem implies that the left-
hand side of (4.14) tends to | E[X f{z1)]| as n — 0. Observe that for all n > 0

IPol <1/ 8scru, |&1| < e/S2qu.
As we saw in the proof of Theorem 4.7, S,STIW,'(Z)l € I?, i = 1,2, for
all 1 < p < 0. It follows that functions of the form l¢;S,<T!IfJ(-X) | and

z .
?? 33$T|!II_$ )| are dominated by an L? function independent of 7. Applying
the Lebesgue theorem to the right-hand side of (4.14) completes the proof. =

COROLLARY 4.10. Let X € g. Then there erists a constant ¢ such that
Jor f € C(@)

(e, X1) < e||fllo. m

§§. Infegration by parts for differential operators of order n.
In this section we generalize the procedure of integration by parts and the
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estimation presented in §4 to the case of operators X! where |I| = n. Our
aim is to derive estimates of the type (4.2):

NEV f(zn)]l £ ellflloo

for an operator V = X7 = X;,...X;_ where X,...,Xps form a homoge-
neous linear basis of g.

All the notation as well as the scheme of the procedure are the same as
in §4.

(a) Integration by parts on jumps of the process. Fix € > 0 and T > 0.
Let v € C™{G) be a nonnegative function such that suppu C {|z| = €}.
Similarly to §4(a) we have

Eloq(Ss<ru)V £()]
=Y P{N=m}>E [MK" + u(Azs, ))u(Azsj)Vf(Az_sl ...Azs, )] .
i=1

Kj + H(AZSj)

m=1

In the integrals in the last sum we integrate with respect to the probability
law of Azg; and next we integrate by parts on G. The jth integral is then
equal to )

(5.1) E[% [ ad,, x? (%R{f—’f-u—@ug)(z)

xf(Azg,...2...425,) dz]

where Ad, X! = Ad, X;_...Ad, X;,. By (4.7),
Adysg,,, tngy X1 = Zdww
w

where the sum is taken over all W of the form

(5.2) W= [ng,.),...,XkEI),X,'“]...[Xk?),.. .,ng),x,-l]

for 0 < l; <d—1, with _
3 . i _
(5.3) dg;") = H d.(le?‘)...k,(f) (for I; = 0 we put d? =1).
i=1 '
For a fixed W of the form (5.2) we will calculate the derivative
on(K;j +u) )
W ( K +u ug) .

Write W =Y7,.. Yl = YJ where 1/3 = [ngl):- - ':Xkl(')!xis]-'
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I F € C*(R) and v € C*(G), then by induction

(54) YI(Fov)(z)= f: F (v(2)) 3
=1 I04 4IO=s
I 20

In our case F has the form F(t) = p(t)/t, 0 € C*°(R), and by induction
we obtain for k > 1 '

(0 (1)
Y. ¥h e,

(k) t U‘"l) { ' t
(5.5) FO(@) =& t( n ck-l,kg_ia“u +oont cokt‘ek%

for some constants Cke1,ks~~+ 3 COK-

Using the Leibniz formula, (5.4) and (5.5) we find that the term corre-
sponding to the operator W in the integral (5.1) is

COME[E) Y s T s Axs,) - S(40)]
K<J  ogiIK|
where the cx ; are constants from the Leibniz formula,
(5.6) & = F(S,cru)
for F{ given by (5.5) and

J-K
o = L) YR, Ky

g KMy +KD=Kk
K{Pz0
(if 1= 0 then K = 0). Defining
(5.7) : W‘(W) = Z CKJ!p}(P;/)
K<, [K|21
we obtain the following integration by parts formula,
LEMMA 5.1.
© " N )
Blen(Sesra)V S = (1" 3 3 E[on Y aiu{™ () 1(:9)]
W i=0 i=1

where the W are of the form (5.2), &} is given by (5.3) and &,, ¥}
defined in (5.6) and (5.7). m v 53) : b

Arguing as in the proof of Lemma 4.2 we get an analogous estimate:
LeMMaA 5.2,
(5-8)  |Elen(SacruV S(5)))

Sl d DB sup |41/ (Elal ST W{™ )/,
=0 W SisN
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(b) Est:'ma'tion of random coefficients. By (5.3) the coefficients df,,vj) are
products of dgfl)_._k' investigated in §4(b). Since

(Blér.. &)™ < Elal™.. . Elta]"
in order to estimate Esup;c;cy|d|? it is sufficient to estimate

E(supici<n |d£f1 )...kx |>"). By Proposition 4.4 such integrals are bounded by
a constant ¢ < oo independent of ¢.
Thus by Lemnma 5.2 we obtain

COROLLARY 5.3.
(5.9)  |Elen(Secr)V N < ellflle S Y (E[8} 52 0|
=0 W

where the constant ¢ depends only on n and on the process {2}, the functions
&, !FI(W) are given by (5.6) and (5.7) and the W are of the form (5.2). =
(c) The estirnate for a specific function u

ProrosITION 5.4. Let u € C™(G) with suppu C {|z| > &} for an
gg > 0. Then

(5.10)  [E[on(Saxrw)V(er)ll < ellflleo 3 S (E[#382 [0 ])1/2.
=0 W

Proof. We make ¢ — 0in (5.9) and argue as in the proof of Proposi-
fion 4.6. m

THEOREM 5.5. Let u(z) = |z|™2™(z)h™(z). Then (5.10) holds for u
with m sufficiently large.

Proof. The proof is analogous to that of Theorem 4.7. We consider the
functions

ue(2) = o(|2l/€)u(z)
for which (5.10) holds by Proposition 5.4. Since g, is bounded,
lim,_o E[gn(Ss<rue)V f(27)] = Elon(S:<Tu)V f(27)]. To prove the con-
vergence of the right-hand side of (5.10) for u, — u, observe first that the
#; are bounded for fixed 5 > 0 and converge everywhere when 1, — %. Thus
it is sufficient to show that

Svcr W (u) = 1M ) - 0 in L7
To show this we prove that
Sec ¥ (ue) — ¥ (W) = 0 in LY,
5ol () =¥ ) = 0 in L7,
for all K, ! and W,

(5.11)
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The proof of (5.11) is similar to that of (4.15) in Theorem 4.7. First
we show that for m sufficiently large |!p§{‘f)’ < elz|? for |z| < 1/2. Since
the Wg}r) are bounded, Corollary 1.5 implies that S,STIW}{V‘Y” € LF for all
1 € p < co. By (5.7) the same is true for S,5T|W,(W)(u)|. Next we show
(5.11) using Theorem 1.4. The derivatives of the function g, appearing in
!F}(Vr)(ue) yield an O(¢~"9) factor. Similarly to the proof of Theorem 4.7
this factor disappears if the exponent m in u is sufficiently large. w

(d) The final estimate

TBEOREM 5.6. Letu(x) = |z|™ 2™ (2)h™(x), where m is as in the previous
theorem. Then (5.10) holds with p, replaced by 1.

Proof. By Proposition 4.8, (S,<72)~1 € L? for p 2 1, 50 S,cru > 0
a.e. and the left-hand side of (5.10) converges to |E[V f(zr)]| as n ~ 0.
Now (5.5) implies that |&)| < ¢/Sue L7 (p 21,1 =0,...,n) and

Pi(on) — cotf/ Sithpu as g — 0. Since Syr|#%)] € LP for all p > 1 and

the ") do not depend on 7 we deduce that &? (g,,)Sf<T|W,(W)| is bounded
by an integrable function independent of 5. By the dominated convergence
theorem, the right-hand side of (5.10) is convergent as n — 0. In particular,

we obtain the estimate
- Sterl ™1\ ™
EVF(zr)l < el flleo E 2=t | o
1BV £l < eliflee 3 ;( (S,STHJW)

COROLLARY 5.7. There exists a constant ¢ < oo such that for f € C2°(G)
KEo VIS cllflleo - m

The proof of Theorem 3.1 now follows by Corollaxry 5.7, Lem-
ma 3.2 and Proposition 3.3. = '
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