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Korovkin theory in normed algebras
by

FERDINAND BECKHOFF (Minster)

Abstract. If A is a normed power-associative complex algebra such that the selfad-
joint part is normally ordered with respect to some order, then the Korovkin closure (see
the introduction for definitions) of TU {#* 01|t € T} contains J*(T") for any subset T' of
A. Thie can be applied to C*-algebras, minimal norm ideals on a Hilbert space, and to
H*-algebras. For bounded H*-algebras and dual C"*-algebras there is even equality. This
answers a question posed in [1].

§1. Introduction. Let us recall some definitions. Let A and A be
normed power-associative complex algebras with a continuous involution +,
and let A, = {z € A | 2" = z} and A, be normally ordered, i.e. A, (resp.
.:41) is an ordered real vector space such that the norm || - || is equivalent to
a monotone norm || « ||, (0 € z £ y implies ||z|[m < ||¥]|m). A continuous
linear map P : A — A which is selfadjoint (i.e. P(A;) C .,:f,) and which
satisfles (Pz)? < P(2?) for all z € A, is called a Jordan-Schwarz map,
since for such a P the Schwarz inequality holds with respect to the Jordan
product: P(z)*o P(z) < P(z* oz) for all z € A. A J*-subalgebra of A is
by definition a *-closed and norm-closed subspace which is also closed with
respect to the Jordan product. The J*-subalgebra of A generated by T C A
is denoted by J*(T).

1.1. THEOREM. Let A and A be normed power-associative complez alge-
bras with a gontinuous involution *, and let Ay and A; be normally ordered.
If§: A — A is a continuous +-homomorphism and {P,)aca an equicontin-
uous net of Jordan—Schwarz maps Py : A— A, then

{z € A| Poz o Sz and Pa(z* 0z) 5 S(z* 0 2)}
is a J*-subalgebra of A.

Here convergence always means convergence in the norm topology. It is
also possible, and other authors do so, to consider weaker topologies, see for
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example [11], [12], [15],...

The proof of Theorem 1.1 is very similar to W. M. Priestley’s proof
in [15]. The use of the identity element in [15] can be replaced by using
the normality of the positive cone. This shows that {z € A | Paz — Su,
Pa(z?) —+ 5(2?) and Po(z* 0 z) — §(z* o)} is 3 J*-subalgebra. Now use
the trick of B. V. Limaye and M. N. N. Namboodiri in {10] to get rid of the
condition Py{z?) — $(2?).

Now let us define the Korovkin closure Kora(T) of a subset T' C A
Kor4(T) is the set of all z € A that satisfy the following condition: If
(P.)ac4 is an equicontinuous net of Jordan-Schwarz maps Py:A—+ Aand
if Pot -t for all t € T, then also P,x — z.

The universal Korovkin closure of T, dex:oted by Kory(T), is defined to
be the set of all z € A which satisfy: If A is a C*-algebra, §: A — A
a continuous *-homomorphism, (Py)aca an equicontinuous net of Jordan-
Schwarz maps P, : A — X, and if Pyt - St forall t € T then also
Pozx - 5w, :

Obviously we have T C Kora(T), and T C Kory(T'), and Kor% (1) C
Kor4(T) if A is a C*-algebra.

By some well-known theorems it is easy to show that the Jordan-Schwarz
maps between C*-algebras are precisely the positive linear maps having
norm less than or equal to 1. So in the special case of a C*-algebra we
obtain the usual definition of a Korovkin closure.

A simple application of Theorem 1.1 gives:

1.2. THEOREM. Let A be a normed and power-associative complex algebra
with a continuous involution such that A, is normally ordered. Then for
T C A we have J*(T) C Kory{TU {t* ot |t €T}). IfAisa C*-algebra,
then J*(T) C Kor%(Tu {i*ot|t € T}).

This will be applied in §2 to

— C*-algebras. The purpose of that section is merely to show that the
known results are covered by Theorems 1.1 and 1.2.

— minimal norm ideals on a Hilbert space. W. M. Priestley proved
a Korovkin theorem for the trace class on a Hilbert space [15]. Here a
somewhat stronger result is proved not only for the trace class but for all
minimal norm ideals on a Hilbert space.

— H*-algebras. The order will be defined by the left regular represen-
tation. ' '

— bounded H*-algebras. If S(H) is the Hilbert-Schmidt class on the
Hilbert space H, then the orthogonal projection onto a J*-subalgebra is
a Jordan—Schwarz map. This result, that might be interesting in its own
right, is the key for proving J*(T) = Kora(T U {t* o t-|t € T}).
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This theorem also enables us to prove the same equality for dual

C*-algebras in §3; this gives a partial answer to a question raised by F. Al-
tomare in [1].

This paper is a part of the author’s doctoral dissertation. T am indebted
to Prof. G. Maltese for supervision and many useful suggestions.

§2. Applications of the theorems. As already mentioned in the
introduction there is a more common characterization of Jordan—Schwarz
maps between C*-algebras. By a well-known theorem of R. V. Kadison [8]
(also used in [15]), a positive linear map P : A — A with |P|| < 11is a
Jordan-Schwarz map. Conversely, if P is a Jordan—Schwarz map, then P is
obviously positive and therefore continuous (see [18], p. 194). It is a simple
matter to show that the norm of P does not exceed 1. '

The following is a simple reformulation of 1.1 and 1.2:

2.1. THEOREM. Let A, A be C*-algebras. If S : A — A is a *-homo-
morphism and if (Py)aca 15 @ net of positive maps Py : A — A with
[[Pall £1 for all € A, then ‘

{z € A| Paz -» Sz and Py(z* 0 z) - S(z" o z)}
is a J*-subalgebra of A. For all subsets T C A the jollowing inclusions hold:
J(TYCKor4(TU{t*ot]{t e T}H CKorug(TU{t* 0t |t €TY}).

Let (M,q) be a minimal norm ideal on a Hilbert space H (see [17] for
definitions and basic properties). It is well known that (M, q) is a normed
associative complex algebra with an isometric involution, which is the re-
striction of the involution of the operator algebra L(H) on H (isometric with
respect to the norm g !). In order to apply Theorems 1.1 and 1.2 one has to
show that M, is normally ordered, where the order again is the restriction
of the natural order on L(H},. In fact, the norm is monotone. As I could
not find a reference for this, a proof will be given now. So let =,y € M
such that 0 < z < y. Let (M) and (uk)x be the nonincreasing sequences
of eigenvalues of z and y, with multiplicities taken into account. By the
formula for the nth eigenvalue [7] we have Ax < py for all & € N. Define
Vi to be Agup? if s # 0, and 0 otherwise. Then pryg = A, for all k € N.
Let (¢x)xex be an orthonormal base of H such that = =3 ;. x Ak ® @k
(wlo.g. N C K and A\, = 0 for all k € K\ N, and for £ € N, Ay is
the A defined above), and let (1i)rex be an analogous base for y. De-
fine a = 3o, ox vk ® ¢ € L(H), where vy, = 0 for all k€ K\N, and
v = Y iex Pk ® wx- Then v is unitary, |la|| < 1, and obviously z = av*yv,
which finally implies ¢{z) = g{av"yv) < [lav*|lllvlla(y) < 4(¥)-

So the results of §1 are applicable: .
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2.2. THEOREM. Let (M, q) be a minimal norm ideal on a Hilbert space.
IfS: M — M is a continuous -homomorphism and (Pa)uea @n equicon-
tinuous net of Jordan-Schwarz maps Po 1 M — M, then

{z € M| Paz = Sz and Po(s*0) 3 S(z% 0 z)}

is a J*-subalgebra of M. For all subsets T C M the following inclusion
holds: J*(T) C Korp(T U {t* ot |t € T}).

A very important minimal norm ideal is the Hilbert~Schmidt class S(H)
on a Hilbert space H.

An H*-algebrais an involutive complex Banach algebra (A, |||} such that
(A, -]} is a Hilbert space and for all z,y,2 € A we have (zy, z) = {y,2"2),
{yz,7) = (y,2z*), and zA = {0} only for = = 0. Examples of H*-algebras
are S(H) and L*(G), where G is a compact group.

W. Ambrose [2] gives a structure theorem which is used in the sequel
(see also [6], Part I, Ch. 8.5, Prop. 7). An idempotent e € Ae#0
and €2 = ¢) is said to be primitive if there are no idempotents ey, ez in A
such that {e1,e;) = 0 and e = e1 + €3. The following results are taken
from [2].

{I) An H*-algebra is an orthogonal sum of simple H *.algebras, each of
them being a closed two-sided ideal in A.

(IT) A simple H*-algebra is up to a constant multiple e isometrically
*-isomorphic to S(H) for a suitable Hilbert space H; more precisely: There
is a %-isomorphism ¢ : A — S(H) and a constant o > 0 such that ||z|| =
ol|p(z)| for all € A We then write A = (S(H), ). a is the norm of an
arbitrary primitive idempotent in the simple H*-algebra A, so a 2 1.

So H*-algebras are “made up” of Hilbert-Schmidt classes: we have
A2 Y,k (S(Hy), @) This decomposition is unique in the usual sense, so
the ay’s are uniquely determined by A. For later purposes, call .A bounded
iff {af | k € K} is a bounded set.

Since Korovkin theory requires order structures, let us call ¢ € A posi-
tive iff the left regular representation L, : A — A is a positive Hilbert space
operator. Now we have two order structures on S(H), but they turn out to
be the same. Moreover, this order structure respects the above decomposi-
tiom. '

2.3. LEMMA. Let A be an H*-algebra. Then the norm restricted to A,
is monotone, hence normal.

Proof. Let0 <z < yin.Aandlet A =3, Ax be the decomposition

described in (I) and (I). Bz = ¥, e Zkr ¥ = 2 peic Vi Where 2, 4k € Ag,
then for all £ we have 0 < z; < yx. Since Ay & fS(Hk),a;,), we have the
same inequalities for the corresponding elements in S(H}), which again are
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denoted by z; and yx. Then we are in the situation of a minimal norm ideal,

so we may conclude |lz]|* = ¥, x odilzsl} < Tiex &2|lwell} = llulf?, and
we are done.

Hence a theorem similar to those above may be stated. The continuity
of the homomorphism § is automatic by a result of B. Yood [19, Prop. 5.1].

Recall that if A = 3, (S(Hg), o) is the decomposition of the H*-
algebra A then A is said to be bounded iff {a) | k € K} is a bounded set. As
explained earlier, the ay’s are the norms of primitive idempotenis in simple
two-sided ideals of A. Since a selfadjoint idempotent is primitive iff it is
already contained in one of those simple two-sided ideals and is primitive
there, we see that A is bounded iff {|e]| | ¢ € A is a selfadjoint primitive
idempotent} is a bounded set.

S(H) is bounded, because it is simple (another argument: primitive pro-
jections in S(H) are one-dimensional, and so have norm 1). Other examples
of bounded H*-algebras are obtained by

94. Remark. Let G be a compact group. Then the H*-algebra L*(G)
is bounded iff the supremum of dim(r), where © runs through the irreducible
representations of G, is bounded. (Here only unitary representations need
to be considered.)

Proof. By [13], 39A, B, it is simple to show that sup{dim(x) | = irredu-
cible} = sup{|le||? | e primitive}. This clearly proves the claim.

So L2(G) is bounded if G is finite or commutative. By 1. Kaplansky [9],
Cor. to Th. 3, a connected compact group is already abelian if sup{dim(x) |
x irreducible representation} is finite. In order to give an example of a
noncommutative infinite bounded group let S be the torus group and let
P, be the permutation group of order z. Then by [9], Th. 1, LG x P,)is
bounded.

The following theorem is the key step to what will follow.

2.5. THEOREM. Let H be a Hilbert space and B C S(H) a J™-subalgebra.
Then the orthogonal projection onto B is a Jordan-Schwarz map. Moreover,
it maps positive elements to positive elements.

Since S(H) is a Hilbert space, the orthogonal projection P onto B makes
sense. There are two notions of positivity:

(i) positivity induced by L(S(H}), :

(ii) positivity in the sense that positive elements are mapped to positive
elements.

These two notions do not coincide as can be seen by simple examples,
s0 the last claim of the theorem deserves a proof.

P roof. The proof is divided into seven steps:
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1. Pz is selfadjoint whenever = € S{H') is selfadjoint.

2. Let 7 € B be selfadjoint, spec(z)N(0, 00) # B, A the largest eigenvalue
of ¢, and e the orthogonal projection onto the corresponding eigenspace.
Then e € B.

3. Let = € B be selfadjoint, A # 0 an eigenvaluc of z, and e the orthogonal
projection onto the corresponding eigenspace. Then e € B,

4. P(z?) > 0 for all selfadjoint elements & € S(H ).

5. BoB* C B*, where “o” is the Jordan product.

6. (Pz)? < P(z?) for all selfadjoint elements z € S(H).

7. P maps positive elements to positive elements.

Since P is obviously continuous and linear, this will finish the proof.

Step 1. Simple.

Step 2. Let A, Xg,... # 0 be the different eigenvalues of z, say A =
A1 Let (pi)kex be an orthonormal base of H consisting of eigenvalues of
T 1 2pp = pgipk (in this case the eigenvalues are denoted by g, since lere
multiplicities are taken into account). Let ¢ > 0 be given.

Since we have 37, 1 s} < oo, there is a finite subset 7 C K such that
Pkexvubi < &8 and py # 0 for all k € I. Then there is » € N with
{ne | k€ I C {A1,..., A}, and we may assume equality of these sets by
enlarging I (all eigenvalues have finite multiplicities!),

By the Stone-WeierstraB approximation theorem there is a polynomijal p
having the properties p(A1) = 1, p(Ax) = 0forallk = 2,.. ., nand lp(t)] < |
for all #in the closure of the convex hull of spec(z)\ {1} (drawing a picture
of this might be helpful). Then we conclude

Ip(=) —ellz = Y lp@) = eonlP = 30 ln(ur)esl?
keX keI pp#d
(since if px = Aq, then p(ux)ox — epy = i — @y = 0, and if Mi 7 Ap, then
ek = 0)

2 Ip(ua)®  (since p(uy) = 0 for k € T and ||| = 1)
keK\I

< Z le|? < €%.

kERK\I .
This gives ||p(z) ~ ell» < &. But p(z) € B since B is a J*-subalgebra. So by
the closedness of 8 we may conclude e € B.
Step 3. Wlog. A >0, otherwise consider —z. Let A; > Az > .., be

the different positive eigenvalues of z, and let e, be the orthogonal projection
onto the eigenspace of Ag. By induction we show that '

(#¥) If the sequence Xy > Ay > ... does not end with Ak-1, then ¢, € B.
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This is true for k = 1 by Step 2. So assume that () is proved for 1,...,k—1,
and that the sequence does not end with Ax_;. By the induction hypothesis
we have T =z — Efn____ll Amem € B. Since A is the largest eigenvalue of z,
again Step 2 implies e € B and the induction is complete.

But this proves Step 3, since A must be one of the A,

Step 4. Let A 3 0 be an eigenvalue of P(z?) and let usshow A > 0. Let e
be the orthogonal projection onto the eigenspace E) of A. By Step 3 we have
e € B, which implies Pe = e, and therefore A{e,€) = (e, Ae} = (e, P(zz)e.) =
{ee*, P(z%)) = (Pe,z?) = {e,2?) = trace(z?e) = trace({ez)"ex) > 0. Since
{e,e) = trace(e) = dim(E,) > 0, we must have A > 0.

Step 5. Let £ € B and y € BL. For all z € B we compute 2(z 0y, 2) =
(zy,z) + {yz,2) = (y,22% 0 z — 22™) + (yz, 2) = —(y,22*) + (yz,2) = 0,
because 2z* o z € B. This implies z oy € BL.

Step 6. If z € S(H) is selfadjoint, there are y € B and z € B* with
# =y + z; z and y are selfadjoint, because B and B+ are #-closed. Then

P(z?) = P(y* + 22 + 2y 0 2) = P(¥*) + P(2%)
> P(y*) (by Steps 5 and 4)
= yz = (.P:t':)2 .

So (Pz)? < P(2?) for all selfadjoint elements z € S(H).
Step 7. If z € S(H) is positive, the spectral theorem tells us

n
mznﬁ_l};okz_:l)\k(i’k®¢k7

where the A:’s are nonnegative, and (@g)kex i5. an orthonormal base of
H. Define y, = 7, VAewx ® @k Then 12 - « and therefore P(z) =
lim oo P(y2) > 0. This completes the proof.

This result can be generalized to bounded H~-algebras.

2.6. THEOREM. Let A be a bounded H*-algebra and B C.A a J*-subalge-
bra. Then there is a Jordan-Schwarz map P : A — A with the following
properties:

(1) P?=P )
(i) B= {x € A| Pz =z}, .
(iii) P maps positive elements to positive elements.

Proof. We know A = EkeK(S(Hk),akA) and by hypothesis o :=
sup{ay | k € K} is finite. Consider the embedding

$: A= S (S(Hi) o) A Y s(H) % s(z Hk) :

keK keR keK
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It is easy to see that 3 is isometric. Since ||z|| < afl¢(2)|l, this embedding
is topological. So #(B) C S(Lecx He) is closed and therefore is a J*-
subalgebra of S(3;cx Hx). By Theorem 2.5 the orthogonal projection
P: S(C ke Hie) — #(B) is a Jordan~Schwa.rz~ma.p which sends positive
elements to positive elements. Then P = &1 o Po® : A — A does the job.

2.7. TEEOREM. Let A be a bounded H *-algebm. and T C A, Then
J*(T)y=Kors(TU{t"ot|teT}).

Proof. The inclusion “C” clearly holds. Conversely, let & ¢ J*(T"). By
Theorem 2.5 there is a Jordan—-Schwarz map P : A — A with Py = y iff
y € J*(T). Consider the constant net (P,)q where P, = P for all &. Then
Pyy » yforall y e TU{t* ot |t € T}, but Paxr — x is not true. This
implies z ¢ Kor (TU{t*ot|te T}).

It is an open problem whether Theorem 2.7 holds without the bound-
edness condition. In general it can be shown that the Korovkin closure of
any set is of the form {z € A | Poz — z} for one fixed net (Pa)aca of
Jordan—Schwarz maps, and that precisely those sets can oceur as Korovkin
closures [3]. In the above theorem it seems to be remarkable that we can
arrange this by means of a constant net.

§3. Dual (C*-algebras. There are many equivalent descriptions of
dual C*-algebras. We will use the following one: A dual C*-algebra is a
C*-algebra A which is isomorphic to a direct sum of the ideals of compact
operators on Hilbert spaces H;, i.e. A 2 33, ;C(H;). The main result is

3.1. THEOREM. Let A be a dual C*-algebra and T a subset of A. Then
J*(T) = Kora(TU{t* ot |t €T} =Kory(TU {t otjt e T}).

Let A be a direct sum of C*-algebras C(H;), as indicated above. Note

that § := ;. S(H;) is a subalgebra of A4, where the sum means Hilbert
space sum.

3.2. LEMMA. Let B be a J* -subalgebﬁ of A. Then BNS is dense in B
with respect {0 the norm topology on A.

Proof. For agiven z in B and positive £ we must produce an ., € SNB
such that ||z —z.|| < ¢; wl.o.g. z is selfadjoint. Since A is the direct sum of
the C(H;), there is a finite set I, C I so that ag = sup{||z;|| {i e I\L} <&,
where z = Zief z;.

Define z.; =0forall i€ I\I,. Foric I, let z; = EjeJ; A iii ® i
be the spectral representation of z;. Let Tei=, jed,, MyiPi,i ® i 5, where
Jie = {7 € Ji | |Aij| 2 €}. This defines ., which is obviously in §. To see
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that z. is in B, observe that
o 1= max{max{|A| | |\| <&, X € spec(x;), i € L}, ) < €.

Define the continuous function f : R — R to be zero on [~a, a}, f(A) = A on
the complement of {~¢, €] and linear elsewhere. Then using spectral calculus
we see that z, = f(z) and so z, € B, since f{0) = 0, and B is a J*-algebra.
It is also easy to verify the required norm estimate. This proves the lemma.

Now let £ be the set of all E' = (B;);er where E; is a finite-dimensional
subspace of H; and E; = 0 for all but finitely many indices. With the
obvious order £ becomes a directed set which will serve as an index set. Let
gg, be the orthogonal projection onto £; aud ¢z = 3 ;. qr,. Then it is not
difficult to see that (¢g)ece is an (unbounded) approximate unit for S.

Now consider B8NS, which is obviously a J*-subalgebra of §. By Theorem
2.5 the orthogonal projection P : &§ — BN & is a positive Jordan—Schwarg
map. For E € £ define Pg : A — A by Pg(z) = P(qgzqe). So Pg iz a
positive, hence continuous Lnear map. We even have ||Pgi| < 1 since for
any selfadjoint # we have (qpazqp)® = qerqprer < qezlqp and therefore
(Pgz)® = (P(qpwgr))® < P((gpzqr)’) < Plgps’qp) = Pe(z?), which
implies || Pg|| < 1 as mentioned in §2.

3.3. LEMMA. In this situation we have B = {z € A| Pga 2 z}.

Proof. if # € SNB then Pr = z and therefore Ppz — =, since (qp)p s
an approximate unit for S. Therefore SN B is contained in {z € A | Ppz —
z}, and so is B by Lemma 3.2.

If conversely Ppa — z we see that z is contained in the norm closure of
{Pgz | E € £} C $§ N B, and so = must be in B.

From this we have at once Kora(8) = B and this is now proved for all
J*-subalgebras of A. This clearly finishes the proof of the theorem.

3.4. Remark. Instead of Jordan—Schwarz maps one may also consider
Schwarz maps (see [16]). Then all the theorems remain true if
“J*.subalgebra generated by 77 is replaced by “norm-closed #-subalgebra
generated by 1.
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Holder continuity
of proper holomorphic mappings*

by

FRANCOIS BERTELOOT {Villeneuve d’Ascq)

Abstract. We prove the Holder continuity for proper holomorphic mappings onto
certain piecewise smooth psendoconvex domains with “good” plurisubharmonic peak func-
tions at each point of their boundarics, We directly obtain a quite precise estimate for
the expenent from an attraction property for analytic disks. Moreover, this way does not
require any consideration of infinitesimal metric,

1. Introduction. The theorem of Carathéodory states that every
biholomorphic map £ : Dy — D; between bounded and simply connected
domains in C extends to an homeomorphism F : Dy — Dy if both domains
satisfy the Schoniflies condition at each point of their boundaries (see [9],
p. 209).

For domains in C" (n > 1) the known generalizations require more pre-
cise assumptions. The basic result is due to Henkin [8]: if Dy is bounded, de-
fined by a plurisubharinonic function and if Dy is bounded with C? strongly
pseudoconvex boundary, then every proper holomorphic map F': Dy — Dy
extends to a I&lder continuous map F : Dy — Dy with exponent 1/2. (See
also [10] and [13]; [12] for piecewise smooth strongly pseudoconvex bound-
ary; {5} for a local version of this theorem.)

This was generalized by Dedford-Fornmss and Diederich~Fornzss to
the case where )y is bounded pseudoconvex with C? bhoundary and 2y
is bounded pseudoconvex with real-analytic boundary; they proved that ev-
ery proper holomorphic map F': Dy — Dy extends Lo a lidlder continuous
wap F : Py — Dy for some exponent £ € [0, 1] (see [2], [4])-

This paper is mainly motivated by the following observalion: a proper
holomorphic map is easily seen to be Holder continuous if the image domain
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