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Ergodic properties of group extensions
of dynamical systems with discrete spectra

by

MIECZYSLAW K. MENTZEN* (Torud)

Abstract. Ergodic gronp extensions of 2 dynamical system: with discrete spectrum
are considered. The elements of the centralizer of such a system are described. The main
result says that each invariant sub-o-algebra is determined by a compact subgroup in the
centralizer of a normal natural factor.

Introduction. In this paper, we shall be concerned with extending the
results of [4] to ergodic isometric extensions of systems with discrete spectra.
We will prove that each such system is a natural factor of an ergodic group
extension and that other theorems of [4] are true in this more general case.

In [4], the structure of invariant sub-o-algebras for ergodic abelian group
extensions of transformations with discrete spectra has been described. The-
orem 3 in [4] says that for any such sub-c-algebra C there exists a compact
subgroup H(C) in the centralizer of a natural factor of the original systemn
such that C consists of exactly those subsets of this natural factor which are
invariant with respect to all elements of H(C). The present paper includes
a generalization of the above result to ergodic nonabelian group extensions
of transformations with discrete spectra.

D. Newton in [5] has proved that each factor map of an ergodic abelian
group extension of a transformation with discrete spectrum which preserves
the base is of the form 5(z,9) = (S, 0.(g)), where § : X X G — G splits into
the product of a map from the base into the group and a continuous group
epimorphism, We will prove that this result is also true in the nonabelian
case. In particular, we will describe all elements in the centralizer of such a
system.,

All results in this paper follow from the specific structure of ergodic
self-joinings of ergodic group extensions of transformations with discrete
spectra. The joinings turn out to be patural, namely, each of them is the

1991 Maihematics Subject Classification: 28D05,
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relatively independent extension of an isomorphism between two normal
natural factors of the original group extension.

L. Definitions and notations. We will use “joinings” as the basic tools
to prove our theorems (see for instance [1]). U T; : (X, Bi, pi) — (Xi, By, pi),
i=1,...,n, are ergodlc automorphisms and A is a Ty x ... X T-invariant
measure on X1 X ...X X, such thatforeach i =1,...,n a.nd each A; € B;

)\(Xlx...xX;ﬁl X A; X Xiyq x...xX,,)zm(A)

then A is called an n-joining of Ty,...,T. The set of all n-joinings of
T1,..., T, will be denoted by J(T1,...,Ts). The subset of J(T1,...,Ty)
consisting of all ergodic measures will be denoted by J*(T4,...,T,). Observe
that if A € J(T1,...,T}) has the ergodic decomposition

=

E(Ty,...,Tn)

mdr(m)

with E(Ty,...,Ty,) being the set of all ergodic measures on 8; ® ... ® By,

then 7(J¢(T1,...,T,)) = 1. Therefore the ergodic components of n-joinings
are n-joinings. In particular, J¢(T1,...,T,) is nonempty since iy X...X i, €
J(T1,...,Ty).

Ty =...=T, =T, then A is called an n-self-joining. If n = 2 we
speak (for short) about joinings (instead of 2-joinings).

Let T : (X,B,p) — (X,B,u) be an ergodic automorphism. By the
centralizer, C(T), of T we mean the set of all § : (X,B,u) — (X, B, u)
commuting with T, i.e. §T = T'S. This set is endowed with the weak
topology given by

Su— 8 iff u(S71(A)AS~L(A)) — 0foreach A€ 5.

For § € C(T), we define the correspondmg (ergodic) graph jeining pg de-
fined on rectangles as

ps(Ax BY=u(An S B).

Let X be a compact metric monothetic group with the family B of Borel
sets and with the normalized Haar measure p. Let T : X — X, T'(z) =
ax for some a € X. Then the dynamical system (X,B,u,T) has discrete
spectrum, i.e. the set of all eigenfunctions of the unitary operator Ur :
L3 X, p) — LY X, ), Up(f) = foT, is linearly dense in L2(X, #4). Assume
that T' is ergodic.

~ Let G be a compact metric group (not necessarily abelian) equipped with
the normalized Haar measure v = v on the family D of Borel subsets of .
Define B = B ® D. There is a natural right action of G on B commg from
the natural right action of G on X x & given by

(z,h)g = (z,hg).
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Let i =pu X v. Fora “measurable function ¢ : X' — G we define a transfor-
mation T, : (X x G, B, %) — (X x G, B, ji) setting

(1) To(z, 9) = (T(2), ()g) -
Then T, is a measure-preserving invertible transformation. Such a transfor-

mation is called a group eztension, or, indicating the group, a G-extension
of T.

If A is a T-invariant measure on X x G then for g € G we define (T,-
invariant) measures Ag and gA on X x G setting

Ag(Ax By =AMAx Bg™'), gMAxB)=XMAxg'B)

for A € B, B €D. An equivalent definition of Ag and gA is the following:
for each continuous function fon X x G

Jrdxg)= [fogdr, [rdgh)= [gofar,
where fog(z,h) = f(x,hg), g0 f(z,h) = f(z,gh).

If F is a closed subgroup of GG then we can consider the largest sub-o-
algebra Br of B which is F-invariant, i.e. Bp is the largest sub-o-algebra of
B satisfying

A€ Br implies Ag=AforalgeF,.

Tt is clear that By is equal (up to an obvious identification) to the family
of all Borel subsets of X x GfF. Obviously Bp is T,-invariant. Therefore
By is a factor of Tyt (X X G, B,pxv) - (X x G,B,uxv). The map
T, : (X X G/F, i xv) = (X X G/F,p x v) will be denoted by T, 7 and
called a natural factor of T,. The transformation T, » will also be called
an isometric eztension of T. If F' is normal in G, then we call B, or Ty, Fs
a normal natural facior of T,,.

If A € B then we denote by E(A| F) the conditional expectation of the
characteristic function of A with respect to Bs.

II. Results

TneoreM 1. Each ergodic isomeiric extension of an ergodic rotation
on a compact monothetic group is a natural factor of some ergodic group
extension of the rotation,

Let ;, i = 1,2, be compact metric groups equipped with normalized
Haar measures v, ¢ — 1,2. Assume that ¢; : X - Gi, ¢ = 1,2, are
measurable maps such that T, ¢« = 1,2, are ergodlc Assume that A €
Je (Tw:HT'Pz)

TueorEM 2. There exist elosed normal subgroups Iy C Gy, Hy C Ga,
@ condinuous group isomorphism v : G1/H1 — Ga/Ha, an § € C(T) and a
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measurable function f: X — G,/ H, such that
MA X B) = [ E(A| H)(z,9H))
A X ,’H]
x E(B | H)(S(2), f(2)o(gH1)) d{ X v)(z, g Ty)
foral Ac BT, BeB®D,.

TueoreM 3. If Ty, is a facior of Ty, via ¢ map § then there exist
an § € C(T), a measurable map f : X — Gy and a continuous group
epimnorphism v : Gy — G4 such that

5=Ssu, ie Sz,g)=(5z f(z)e(g))-

Assume that T, : (X X G, %) = (X X G, 1) is an ergedic automorphism.

TuaEOREM 4. If § € C(T,) then there ezxist an § € C(T), a measurable
Junction f : X — G and a continuous group epimorphism v : G — @G
satisfying

5(z,9) = Srul2,9) = (5(z), fz)v(9)) -
Let C C B bea T,-invariant sub-g-algebra. For a closed subgroup F of
4, define
F(CY={U € C(Typ): U™ (A) = A for each A € C}.
THEOREM 5. There exists a closed normal subgroup F C G such that
C={AcBr:U"Y(A)= A forallU € F(C)}
and F(C) is a compact subgroup of C(T, F).

ITI. Proofs. Assume that A is a T,-ergodic component of T, : (X x
G,B,fi) » (X x G,B,F) where T : (X,B,pn) — (X,B,pu) is an ergodic
rotation, It follows from [2] that there exists a closed subgroup H of G
such that (X x G, E,/\,Tq,) is isomorphic to some H-extension of T. In
other words, (X X G, A,T,) is isomorphic to (X x H,p X vy, Ty) for some
measurable ¢ : X — H. In what follows we will need more information
about 4 so, in fact, we will give a new proof of Th. 2.3 of [2]. To this end,
we recall three lemmata from [4]. Although, in [4], they are formulated for
the abelian case, their proofs work in the nonabelian case as well.

Let H be the stabilizerof Ain G, l.e. H = {g € G: Ag=A}.

Lemma 1 ([4]). (i) H is a closed subgroup of .
(i) If (z,9),(z,h) € H then hH = gH .

Let us decompose A over the factor (X, B, p):
(2) A= [ Acdu(z).
X
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LeMMA 2 ([4]). For py-almosi each z € X there is a g = g; € G such that
Az =8 X gvy,
where &, 1is the Dirac measure on X concentrated at z. w
Define a function 7: X — G/H by

(3) T(:D) =g H.

The map 7 is measyrable because by Lemma 2, (X x G/H,\,T,) is
isomorphic to (X, i, T) and this isomorphism has the form 7 : (X, u,T) —
(X x G/H,\T,), j{z) = (z,7(x}). This forces v to be measurable.

Observe that the T,-invariance of A implies

(4) 7(Tz) = ¢(z)r(z) -

LemMA 3 ([4]). There is a measurable function t : X — G such that the
system (X x G, X, T,) is isomorphic to (X x H,pu X v, Ty), where P(z) =
HTz) e(z)t(z). =

Proof of Theorem 1. Let (X X G,[i,T,) be a G-extension of an
ergodic rotation (X,u,T). Assume that (X x G/F,[i, T, p) is an ergodic
natural factor of (X X G, T, T,p)- Let A be a T\,-ergodic component of ji such
that (X X G/ F, i, T, F) is afactor of (XX G, A, T,;). Such a A exists because
almost all ergodic components of i enjoy this property. Then by Lemma 3,
there exist a closed subgroup H C G and a measurable function 3 : X — H
such that (X x G,A,T,) is isomorphic to (X X H,p X v, Ty). We will
prove that T,  is a natural factor of Ty. More precisely, we will show that
(X x G/F,7i,T, F) is isomorphic to (X x H/H N F,p X ve, Ty, HOF)-

Let Wrng : G/FOH — G be a measurable selector for the natural map
p:G— Q/FnH (see [3]),ie. Wpny satisfies

(5) Wraa(g(FNHWFNH = g(FN H).
Pirst, we prove the following;:
(A) - gFN7(z)£ @ for firae (z,y) € X X G,

Indeed, let A = {(z,g) : gF N 7(x) # 0}. Define /i = (Id xp)(4),
B =U,ex{z} x 7(2), B = (1d xp)(B). Then \(B) = 1= ii(B). Moreover,
B C A, because if (z,9:1F) € B, where 7(z) = g, H, then g-h € gohF n
r(z). Thus fi(A) = 1 and for f-ae. (z,9) € X X G, (z,gF) € A. This
implies that (A) = 1, and (A) is proved.

Let W: X x G/F — X x G be given by

(6) W(z,gF) = (& Wrnu(gF N 7(2))).
By (A), W is well defined. Consider the diagram
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By (A), W is well defined. Consider the diagram
(X x G, A, T,) & (X x G/F, [, T, F)

lJ"l lR
(X x Hyux vy, Ty) Id xr (X x HIFnH,px vy, Ty roy)

where 7 : i — H/FNII is the natural projection while R = (Id xx)J~1W,
Then for any set of the form {z} x h(F N H) C X x IT, the inverse image
(J7'W)1({z} X W(F N H)) C X x G/F consists of a single point, namely,
(z,t(x)aF). Therefore R is a one-to-one map.

Now, we prove that

(B) R'E=puxvy.

To do this we show two other formulas. First, for each = ¢ X and for
any set B C H .

(C) W ({z} x t(z)B(F N H)) = {z} x H{z}BF .

Indeed, take (z,gF) € W= ({z} x t(z) B(F N H)). Then there are b & B
and 3 € F N H such that W(z,gF) = (a,1(2)bs). By (6), W(z,gF) =
(¢, Wenu(gF 0 g H)) = (m,gf) for some f € F, where g, [ = r(z). Thus
t(z)bs = gf, which implies {{x)bF = gF. Thus (:t:,gF) €{z} xi{z)BF.

On the other hand, if (z,2(z)}bF) € {z} x t(z) BF then

W(z, t(z)bF) = (z, Wran(t(2)bF N g.11)) = (z,t(z)bf)
for some f € F and W(z,(z)bF) = (z,g.h) for some b € H. Thus t(z)bf =
gzh. By the definition of the function ¢ (see [4]), t(z) = gzho for some
ho € H. Therefore f = b'hy'h € FN H,ie t(z)bf € t(z)B(F N H). We
have shown that (z,#(z)bF) € W—1{{z} x t(z)B(Fﬂ H)), which proves (C).

Now, we will show that
(D)  for each g € G there exist f, € F, hy € H such that g = h,f, .

Indeed, because (X x G/F,f, T, r) is a factor of (X x G,A,T,) and
AUzex{z} X g2H) = 1, we have (denoting by P the natural projection

G— GfF

= (00U o x g-t1)) = (| U e xg.15)
f (6 % V)( U {z} x gmHF) du(z) = f ( U ngF) dy(z)

r€X TEX
f v(H Fydu(z) = v(HF).
X
Thus HF = (7, which proves (D).
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Now, we can prove (B). Let A C X, B C H. Using (C), we have
R*I(Ax B(FNH)=a(R™(Ax B(Fn H)))
= [ (6. x»)(W'J(A x B(F 1 1)) du(a)
X

[ (8ex V)(W_IJ( U {a} x B(Fn 1)) du(2)
X aEA
f (65 % V)( | wW-"({a} x @)} B(F H))) du(z)

acA
= f(a x v)( | {a} x () BF) da(x)
agA
= fv(t(a)BF) du(a) = [ W(BF)du(z) = p(A)(BF).
A A
By (D),
v(BF)= [ wn(BFg™)Ydv(g)= [wu(BFJi;'h7")dv(g)

o G
= [vu(BFh; ) dv(g)= [ vu(BF)dv(g)
a G

= vy(BF)=vg((BFYNH) =vu(B(FN H))
bhecause B ¢ IF. Thus
R*E(AX B(FnH))= w(Awa(B(FNH)) = (X v)(Ax B(Fn H)}),

which proves (B).
To finish the proof of Theorem 1 we show that

Ro T%F = T'np,FnH’ oR.
By Lemma 3, it is enough to prove that
()  YTz) e(x)Wran(gF Nr(z))FNH
= t(Tz) " Wpan(p(z)gFnr(Te))FN H .

Obviously #(Te) 'Wran(p(z)eF 0 7(Tz)) € H and H(Tx) Pep(x) -
Wran{gF N7(z)) € H. Moreover, by (4),
HTz) 'Wran(p(z)gFnr(Ts))FOH = t(Te) L o(z)Wran(gFnr(z)) FNH

and (%) is proved.
We have shown that R is an isomorphism and therefore T, r is a natural

factor of Ty. The proof of Theorem is complete. m

To prove Theorem 2 we will need some lemmata.
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. LEL.AMA 4 (4D I'T: (X,B,p) > (X, B, 1) is an ergodic automorphism
with discrete spectrum then C(T) is a group and

JHT,T)={us: S €C(T)}. n

Assume that Gy and G are compact metric groups equipped with the
normalized Haar measures 14 and 1, respectively. Let ¢; : X =+ @ be
a measurable map such that T, is ergodic, i = 1,2. Assume that ‘)\ €
J*(Tp1sTp,)- Denote by 7 themap 7 : X X Gy x X X Gy — X X X,

m{z,9,9,h) = (z,y). Then, by Lemma 4, 7*A = pg for some § € C(T)
Therefore e

A(U{z}xGlx{Sa:}xG‘g)zl.

zE€X
We define a measure A on X x Gy X Gy setting
(7) MAXBXCy=MAx BxSAxC).
Then (X x G1 X X X G2,,T,, x T,,) is isomorphic to (X x Gy x
Gz,ALT%XW,,g). In what follows, we will consider Ty, %05 and the mea-

sure X on X x (J; X Ga. Let H C G x Gy be the stabilizer of X H =
{(91,92)€ Gy x Gy : Alg1,92) = A}. By (2) and Lemma 2,

A= f 8z X (g2, 920y dp(z),
x

where (g1, ¢2)H = 7(z).
Let

H={gne& g, e2) € H}, Hy={gpeq, 1(61,92)GH},

where ¢; denotes the unit element of the group Gy, 1 = 1,2.
Let e Gl X GZ e G:'y Wf(gl1g2) = gi, i= 112

LEMMA 5. m(H) =Gy, m(H) = Q.
Proof. We will prove that TIVH = 19, Indeed, let A C Gy. Then
n(A) = MX xAx X x Gy)
=MXXAXG2)= [ (2, T)va(A X Go)dp(z)
X
= 5! va(9; A X G2) du(z) = f tiva(g;tA) du(z).
_ x :
Define M = {z : n{vn(g;14) < 11(A)}. Assume that (M) > 0. Then
#M)n(A) =AM x Ax G) = [ rfuu(g7*A) du(z) < p(M) - 1 (A),
M
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a contradiction. In the same way we prove that u({z : ={vu(g;'4) >
11{A)}) = 0. Therefore for p-a.e. & € X wehave rjvy(g;" A) = v1(A). This
is equivalent to (g.m7vw)(A) = v1(A), but this is the same as rfvy(A4) =
(4 71)(4) = 1 (A). /

Therefore vy = v, and this implies that my H = G1. The proof of the
equality mo H = G, ia similar. m

The following lemma is an immediate consequence of Lemma 5.
LeMMA 6. The subgroup Hy (Hz) is normal in Gy (G2). =

LemMa 7. (a) If (g1,0) € H, (91,52) € H, then G7 g2 € Ho.

(5) If (91.92) € H, (G1,92) € H, then g7 g1 € H1.

(c) (n,92) € H iff 1 H1 X g2 H, C H.

Proof. (a) Assume that {g1,02),(61,62) € H. Then (075 ) e H
and H 3 (675,97 )(91,92) = (€1, 'g2). Therefore 77'g2 € Ha.

The proof of (b) is similar.

(c) Assume that (g1,92) € H. Take by € Hy, b2 € H,. Then (hy,e2) €
H, (er,hs) € H and (hy,hg) = (h1,e2)(e1,h2) € H. Therefore H 3
(91, 92)(h1, Ba) = (g1P1, 92ha). Thus g1H1 X o Ho C H. m

We define a map v: Gy /H; — G/ H; by
v(g1 H1) = mp{{g1 1 X G2) N H).

LEMMA 8. The map v is a continuous group isomorphism.

Proof. By Lemma 7, v is well defined. The continuity of » is evident.
Obviously v is bijective. We will prove that v is a group homomorphism.

Since Hy x Hy C H, 'L?(H'l) = H,. Take gHy,7H; € Gl/H1. Set
w(gH\TH)) = §Ha, v(gH1) = g1 Hy, v(gH1) = §y Hz. Then ggHy X §H2 C
H. Moreover, gHy x g1Hy C H,gH1 x71 H2 C H, which implies g H15H X
g1 Hogy Hy € H. Thus 4§ Hy = gHa, Le. v(gH1gH1) = v(g H)v(TH1)-

As an immediate consequence of Lemmas 7 and 8 we have

LeMMA 9. H =) eq91 X v(gH). m
Our next aim is to define an isomorphism S of Ty, b, and Ty Hp- Tt
will have the form

5= S_f]uZX X G]/Hl - X x Gz/Hg,
Sf.ﬂ(m&ng) = (stf(m)v(gﬂ‘l)):

where § € C(T) and f : X — G/ H; is a measurable map.
We will need the following ,

LeMMA 10. If (Ra, ko) € H then hyv(h{' Hi) = Ha.



28 M. K. Mentzen

Proof. By assumption and Lemma 7, by Hy X hy Hy < H. Therefore
v(hyHy) = hy H or, which is the same, hyv(hy Hy) = Hy. w

Proof of Theorem 2. Let a: (Gy X G2)/H — G3/H; be given by
ol(g1,9)H) = ggv(gl_l H1). By Lemma 10, « is well defined. Let f(z) =
a(r(z)), where 7 satisfies (4) for p = 1 X g0 5.

Put § = Sy, It is clear that 57 () = g X vz and § is ( X 14 )-a.e.
one-to-one. The only fact we have to proveis that S0 Ty, 11, = Ty 11, 0 5.
Take (z,gH1) € X x G1/H,. By (4), applied to ¢ = ¢1 X ¢ 0 5, we
have 7(Tz) = (¢1(2), 2{ §))r(x) and therefore
SrvoTo iz, gH) = Sp (T2, o1(x)gH1) = (ST=, f(Tz)v(ei(2)g H1))
= ($T, f(Tz)v(er(2) H1)v(g H1))
= (ST=,a(+(T2))o(ip (&) (g )
= (5Ta,a((1(2), £a(S)r(@))u(i (2} Yo(g ).
Set 7(2) = (g1, 92)H. Then
SrvoTe iz, gH)
= (8T, o(p1(2), p2(52))(g1, g2) H )v(ip1(z) Hi)o(g 1))
= (ST, a{(px(2)g1, pa(S2)g2) B (r () Yol g )
= (5Tz, w2 Sz)gov(g7  er(2) ™ Hi)v(ier (2) HaYo(g IT1))
= (8T, @2 Sz)g2v(g7" H1)v(g 1))
= (STz, pa( Sa)a(r(z))o(g H))
= (8T, po(Sz) f(z)v(g 1)) -
On the other hand, '
T‘Pn,Hn o S;,v(a:,gH]) = T‘P2,H2 (SI, f(z)v(gfh))
= (T2, pa(S2)f(aYo(gH1)
= (8Tz,e2(Sz) f(z)w(gH1))
= S['u L] T%,HI(m,ng) .
Therefore Sy, is an isomorphism.
By (7),
A= 6 x (g, g2)em du(z),
X

where (g3, 92)H = v(z) and Sy (2,9  H) = (Sz, g2 H,). From Lemma 9,

H;'fl,H;X = f 6-’ X ((g:." gi)yl)ﬂ d"”(z) ¥
X

where I, g, * X X Gy X Gy — X x G1/Hy x G/ H, is the natural factor

icm
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map and ((gl, g2)11 ). is the graph measure of v on Gy/Hy X G2/ Ha, i.e.
({92, 92))w(AH1 x BHy) = m((g;) " AHL N o™ ((92) ' BH2))-
By this and Lemma 2,

MAx By = |
XXG]/H]

E(A| Hi)(z,9H1)

XE(B | H2)(5 7z, 9 H1)) d(p X 1 )(z, 9 H1)
for measurable A C X X G1, B C X X G;, which finishes the proof of
Theorem 2. m

Proof of Theorem 3. Assume that Ty, : (X X Gi,p X 1) — (X X
Gi, jt X 1) is an ergodic automorphism, ¢ = 1,2. Let §: X X G1 = X X G
be a factor map. Define a measure Aon X X G; X X X G by

MAx B) = (uxn)XAnT (B))

for measurable A C X X G, B C X x G3. In other words, A = (g X 11)3.
Then A € J¢(Ty,,Ty,) and by Theorem 2, there are normal subgroups
Hy C Gy, Hy C Gy, an § € C(T), a measurable map f: X — Gy/H; and
a continuous group isomorphism w : G1/Hy — Gaf H, such that

MAxBy= [ E(A|H)z,gH)

XxCh/H]
X E(B | H2)8§ vz, gH1) d(ie X 1)z, gH1) .

Since A = (u X 1)z, H2 = {ea}.

Let p: Gy —+ G1/ Hq be the natural projection. Put v =wop. Then for
measurable A C X x G1, BC X X (32

MAXB)= [ E(A]|H)(1dxp)(z,9)- X8 © 51,.(2,9) d(pt x 1)
XXGy

f E(A| Hi)(1d xp)(z,9) © Xs;{(a)(zag) d{p X 11 )(=,9)
XxGh

[ E(A] H)(dxp)z, 9)d(n X 1)z, 9)
S71(B)

[ E(A| Hi)(=,9)d(sx »)(=,9)
S7u(B) .

= [ xal@.g)d(pxn)s,9)= (s x n)(ANS7B))
S7(B) '

i

]

where xp denotes the characteristic function of B. Since A and B are
arbitrary, § = Sy ®
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Proof of Theorem 4. Thisis a simple consequence of Theorem 3,
where G =G =G and gy =pr = . m

Let T, ¢ (X X G,B,Ji) = (X x G, B, i) be an ergodic group extension
of a transformation with discrete spectrum T : (X, B, u) — (X, B, p), where
i = p X vg and B is the corresponding product o-algebra.

Let C C B be a T-invariant sub-c-algebra. Then C gives rise to a sell-
joining i x¢ p of T, by

(fixe M(Ax B)= [ E(X |C)®)-E(B|C)(z)diz),
e

where X is the quotient space corresponding to C.
Define A = Ji X¢ fi. To prove Theorem 5 we will need some lemmata.

Lemma 11 ([1, 6]). Let A be a Borel subset of X X G. Then
Ael iff MAXAUAXA)=0.u

The measure X is not necessarily ergodic. Let

(8) A= f m dy(m)
I (T, Ty)

be its ergodic decomposition, where 1 is a probability measure on J*(T, Typ).
Let
(9) E={meJ*(T,,Ty): m(Ax A°U A®Xx A) = 0 for each A € C}.
Lemma 11 and (8) yield

LEMMA 12. 4(E)=1. =

Let m € J*(T,,T,). By Theorem 2,

m= [ E(|H)e,gH) E(| H2)(S1(z, g H1)) dji(=, 9 H1),
XXG]/H]

where § € C(T"), v: G/Hy — G/ H; is a continuous group isomorphism for
some closed normal subgroups Hy and Hy of G, and f: X — G/Hy is &
measurable function. The following three lemmata have the same proofs as
the corresponding lemmata in [4].

LeMMA 13. m € E iff C C By,n, and for each A€C, S71(A) = A.

Denote by F' the largest closed normal subgroup of G such that C C By
(F is taken as tlle closed subgroup generated by all normal subgroups Fg
such that C C Bpp). In other words, B is the smallest normal natural
factor of T, such that C is a factor of T, 7. We will consider this factor as
a group extension of T for which C is a factor. In particular, let Ep denote
the set given by (9) for T, r.
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Put F(C) ={5 € C(T,r): 5 '(A) = A for each A €C}.
LEMMA 14. If § € F(C) then § is invertible. m

LEMMA 15. For each m ¢ Ep there exists an invertible § € C(T,,F)
such that m = ()3, i.e. m is the graph measure of 5. m

Proof of Theorem 3. Let C be a factor of an ergodic group exten-
sion Ty, : (X X G, B, i) - (X x G, B, f) of a system with discrete spectrum
T. Let F be the largest (closed) normal subgroup of G such that C is a factor
of T, p. By Lemmata 12-15 the measure X ¢ on (X X G/F) X (X x G/ F)
has the ergodic decomposition which consists of graph measures of the form
()z where 575 are invertible elements of the centralizer of T\, r. Therefore
by Theorem 1.8.2 in [1], Theorem 5 holds. =
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