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On a dual locally uniformly rotund norm on a dual Vasik space
by
MARIAN FPABIAN (Praha)

Alatract, We transfer a renorming method of transfer, due to G. Godefroy, from
weakly compactly generated Banach spaces o Vaddk, i.e., weakly K-countably determined
Banach spaces, Thus we oblain a new construction of a locally uniformly rotund norm
on a Vaddk space. A further cultivation of this method yields the new result that every
dual Vagdk apace admils a dual locally uniformly rotund norm.,

0. Introduction. Let ¥V be a (subspace of a) weakly compactly gen-
crated Banach space. Then, according to Troyanski [10] modulo Amir and
Lindenstrauss [1], V has an equivalent locally wniformly rotund (LUR) norm.
I V is moreover a dual space, then it even admits a dual LUR norm [6].
Howaver, the proof of the lagt Tact is quite different; in fact, starting from
[1], theo a method of transfer due to Godefroy [5] is used.

Let us consider a more general situation when V' is a Vadék space, that
is, V, provided with the weak topology, is countably K-determined; see
below for an exact definition. Then, replacing [1] by a result of Vasék [11],
Troyanski’s theorem [10] also yields.a LUR norm on V. In this paper we show
that @ Vaddk space which is, moreover, dual admits an equivalent dual LUR
norm; thus a question raised in [4] is settled affirmatively. This assertion
really extends the theorem from [6] mentioned above because Mercourakis
las constructed a dual Vagdk space which is not a subspace of a weakly
compactly generated space [8].

Of course, a hopeful candidate for a proof of our result is the method
of transfer, Indeed, it does work bul we have to refine this approach in
accordance with the more complicated structure of the Vadik spaces.

In the paper we consider three stages of complexity: from weakly com-
pactly generated space thraugh Vaddk space to dual Vagik space. In the
second section we reprove the well known facts thal o (dual) weakly com-
pactly generaled Banach space admits ¢ (dual) LUR norm (2, p. 164] (I8,
Corollary 2.2]). We present here the method of transfer but we translate
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0 M. Fabian

the geometrical explanation from [6] to a purely analytical form. By the
way, the method of transfer also shows that both the non-parenthetic and
the parenthetic assertion can be proved at once (which completely avoids
Troyanski’s method here).

The third section shows how to use the method of transfer in LUR
renorming of @ Vaddk space, thus obtaining an alternate approach to that
renorming. The basic material we start from are the investigations of Mer-
courakis [7] (see also [4]). In particular, we use the fact that the dual to
a Vasdk space can be nicely embedded into the so-called C space (a sub-
stitnte of eo(I") if the space is weakly compactly generated). Also the fact
that the topology of the space of irrational numbers has a countable base is
very important here. It enables us to replace a family of 2% norms which we
have to do with by a countable one. A similar idea was used by Mercourakis
in strictly rotund renorming of the Cy space [7].

The fourth section contains finally the new result: We construct ¢ dual
LUR norm on a dual Vasdk space. Here the reasoning from the previous
section is “weak* lower semicontinuously cultivated”.

1. Notation and definitions. Let V be a Banach space. Its dual is
denoted by V* and the second dual by V**. We always assume that Visa
subspace of V**. (v*,v) means the value of v € V™ at v € V. The closed
linear span of a set M in V is denoted by SpM. Let E be a total subset in
V*. The E-topology on V, denoted by w(V, E), is the topology whose base
consists of all sets of the form

{ueV:|{e*u—v)|<¢, v* € F},

where v € V, £ > 0 and F C E is a finite set. In particular, w(V, V*)
is called the weak topology and w(V*, V) the weak™ topology. A norm

| on V is said to be LUR if |lv — vjl| — 0 whenever v,; € V and
2[|v||2 4 2||v;][* — [+ v;]|* — 0. Let N denote the natural numbers with the
discrete topology and consider NN with the product topology. V' is called
a Vaidk space [9), [11] if there exist a subset X' of NN and a multivalued
mapping ¢ from 5’ onto V such that () is a nonempty compact set for
each o € X' and that the set {z € I’ : (o) N C # B} is closed for every
weakly closed subset € in V. The lower semicontinuity of a real-valued
function is abbreviated to ls.c. Recall that an equivalent norm on V is
weakly 1.s.c., and an equivalent norm on V* is dual if and only if it is weak™
ls.c. For & € loo(I") we define supp z = {y € I" : 2(y) # 0}. Il M is a subset
of I' we put xar{t) =1 fort € M and xp(2)=0fort € MM.

Acknowledgement. We thank Gilles Godefroy and Jaroslav Tiger for
valuable comments concerning the paper.
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2. The well known case: (dual) weakly compactly generated
Banach space

TerEoREM 1. Let V' be a (dual) weakly compactly generated Banach
space. Then it admils an equivalent (dual) LUR norm.

Proof. By Amir and Lindenstrauss [2, Theorem 2, p. 147] there is a set
I' and a linear bounded one-to-one and weak*-to-weak continuous mapping
81 V* —+ ¢o(I'}. Consider the adjoint mapping §* : (F) — V**,

We claim that §*(I;(I") lies in V and is in fact dense in V. So take any
yin Ii(I"). According to {3, Ch. 5, §3, Theorem 9] we are to show that S*y
is weak™ continuous. Let {v}} be a net in V* weak* converging to v* € V*.
Then

(§"y,v7) = (g, Svr} — (y, §v") = (§7y,v")
since § is weak*-to-weak continuous. Hence S*y belongs to V. Further,
choose any v* € V* and assume that for each y € L{I"), (v*,5*y) = 0, i.e,,

(§v*,y) = 0. This means Sv* = 0 and the injectivity and linearity of §
concludes the proof of the second part of our claim, '

Let |- 1| be an original (an original dual) norm on V and let |- | be
an equivalent dual LUR norm on [(I"). Such a norm exists according to
Troyanski [10], or, simply, we can put |+|* = || - |} + ]| - ||}, (see [6]). Define
| |?1 minf{” '”S*y”z + |y|2/n Y e I](r)}, n = 1)2a"'7
and further '

oa
-1z =3 212
nel
It is elementary to verify that the ||, are convex, positively homogeneous,
and even equivalent norms on V with | |, < || - ||. Therefore ||]- ||| is also

an equivalent norm on V. Later we shall show that it is LUR.

We cJaim that for every v € V and cvery n € N there is y € L(I") so
that

|oln = |l = S™yll* + Jul*/n-

To prove this take v € ¥ and n € N and find a sequence {y,,} C Ii(I") such
that

2
nt

o = 8"yl + lyml/n = [0 |
Then, surely, the sequence {ym} is bounded in Iy (I"), hence relatively weak”
compact. Let y € Iy(I") be its weak* cluster point, so that there is a sub-
sequence {ym,} weak* converging to y. Then S™ym, — 5%y weakly (as
S*(I(I") C V) and the weak and weak™ 1.s.c. of || -|| and | -| respectively
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yield .
vf2 < Jlo - S7yll* + |9l /n
< liminf [lv = S*ym, |I* + 1im£inf |4 |2 /2
T

< lminf (v — §*yme |1 + [y [F/0) = |0l
1

Further, we claim that | .|, and hence also ||| ||| is weak* Ls.c. (that is,
they are both dual norms) §f V is a dual Banach space and || - || is a dual
norm on V. Solet {v,} be a net in V weak™ converging to some v € V. By
the last claim we find y, € I;(I") such that

|'v-r!i = |Jur — S*?J'THZ + |yr|2/n .

Without loss of generality we may and do assume that the limit limy or],
exists and is finite. Then for some 7, {yr : 7 > T} is a bounded net; let
{yr, } be a subnet weak* converging to some y € I1(I"). Then S*yy, — 5™y
in the weak, and, a fortiori, in the weak* topology. So the weak™ ls.c. of
| - || and |- | yields .

o2 < flv = $*9l? + y]*/n < 1imainf llor, — S*y- |I* + 1imainf |yr, |2/ 7

< timinf(||vr, ~ S*yo 1> + |y */0) = lim inf [or, |2 = lim o2,
o

which proves that |- |, is weak* Ls.c. if sois || - ||.
Tt remains to prove that ||]-{}] is a LUR norm. Consider v, vy, ,...1n
V such that

(*) 2/l + 2l|[oll]* +1[lv + olil* =0 asj—o0.
Fix any n € N. By the second claim we find y, 41, V2, .- € (") such that
ln = o= Syl + 1wl /n, ol = llog ~ S*9l* + lyil*/ny 5=1,2,...
Using convexity, let us estimate '
2{vfs + 2{l; ~ o+ 250},
> 2||v ~ Sy + 20y /n+ 2]|v; — S5 + 20y /0
— v+ vy = 5+ gl = ly+ g /m ‘
> (lfo = 5*yll = llws = §*y;1D* + @l +20m0* ~ [y + *) /-
Then from (*) and from the definition of ||| -||| we get, as j — oo,
llv; = S*ysll = llv— S*y|| and 2(y* +2|y;|* — |y + y;]* - 0.
But |- | is LUR. Hence |y — ;| = 0. Thus _
tim sup |0 — ]| < lm sup(llo — 5°y|1+ [15* ~ 5351 + oy = 5°,1)
i i

=2l|lv - 5%y|| < 2lvln.
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On the other hand, as n -+ oo we have
[v)2 < inf{llv— S*z|® + [21*/n: 2z € (I, 2] < nM4)
<inf{lv - S*#|* 1 2 € 4L(I), |2} < '} 4 212 fn = 0

since S*([1(I")) is dense in V. Therefore ||v — vj|| = 0, which means that
[I|-1]] is a LUR norm. m

3. Still the known case: Vaddk space

Tueorem 2. Let V' be a Vaddk space. Then it admils an equivalent
LUR norm.

Proofl, The main dificulty now is that we have at hand no injective
weak*-Lo-weak continuous mapping from V* into ¢o(I'). Instead we can
construct many, in fact, yncountably many, mappings from V™ into ¢o(I7),
with varying I" and having good properties. Of course, we can associate to
each such mapping a norm on V. But then the problem arises how to add an
uncountable family of norms. Fortunately, the countable determination of
the Vagdk spaces enables us to work ouly with a countable family of norms,
which, in turn, approximate somehow each norm in the uncountable family.
This is caused by the separability of &', that is, by the countability of the
base for the topology on X',

Let us proceed to the proof., We start as in the proof of [4, Theorem 2].
For our V we find X' ¢ NN and a mapping ¢ according to the definition
of Vagdk space. Alse, by Vaddk [11] and after some transfinite induction
argument [4] we can find an ordinal v and a “long sequence” {P, : ¢ € [w,v]}
of linear bounded projections on V' such that P, =0, Po P = Pnin(a,p) if
o, 8 € [w,v], (Pyg1 — Px)V is separable for each « € [w, ), each v € V lies
in SP{(Pug1 = Pa)v : @ € [w,v)}, and V = 5p{{J(Pat1 — Pa)V : @ € [w, 1)},

Put L = [w,~) X N and, almost according to Mercourakis [7], define a
(Banach) space

Ci(E" % L) = {5 € lo( £ X L) taxkxr € co( &' X L)
for every compact K C X'}

endowed with the supremum norm. We can at once observe that co(Z' X L)
is a subspace of Cy (&' x L) and that each element of i (£’ x L) belongs to
the dual Cy(2" x L)*.

LEMMA L. Let K C X' be a compact set and consider a sequence {2y D
2 3 ...D K of open sets in I such that ooy 2m = K. Let z €
Ci(E x L) and & > 0 be given. Then for large m € N

2((Pm\K) x L) C (—¢&,¢).
The proof is easy and can be found in [4].
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For each a € [w, ¥) we choose a sequence {A% : n € N} C (Pay1— Pa)V,
125l € 1/n, such that 5p{hS_ :n € N} = (Pay1 — Po)V. Further, for each
@ € [w,v) and each n € N we find 0 € X' so that A% € p(c%). Then for
v* € V* and (0,a,n) € X’ x L we put

* _ [k fo=o2, aewr), neN,
§v"(9,n) {0 otherwise,

LeMMA 2. 5 is a linear bounded mapping from V* into C1(Z' x L).

The proof is easy‘(se.e the proof of [4, Theorem 2]). Of course, the
properties of ¢ serve here as a crucial information.

LEMMA 3. The set
M={S"y:yel (X' xL),suppy C K X L for some compact K C Z'}
is linear, lies in V and is dense in V.

Proof. The linearity of M is quite obvious. Take further any y €
- h(&" x L) with suppy C K x L for some compact K C 5. We are to
prove that $*y € V. Let {vX} be any net in V* weak* converging to seme
v* € V*. We shall be done when we show that (§*y,v2) — (S™*y, v*). And
this is true because, by the definition of $*, we have

(S™y, 07} = {y, So7) = D _{y(o, @, n)(SvE)(0, @) : (0,0,m) € B x L)
= Z{y(a,‘f,a,n)(v:,hg) fo € fw,v),n e N}

= (o1, Y {u(o amhs € [, ) m N}
as ¥y € [1(Z' x L) and {[h%) < 1

— <1;~,Z{y(a,f,a,n)h§: te€ [w,r),ne N})

= (4, 5v") = (§*y,07) .
This means that S$*y lies in V and M C V.

It remains to prove that M is dense in V. Assume by contradiction
this is not so. Then, since M is linear, there is 0 # v € V* such that
{v*, §*y) = 0 whenever y € I (2" x L), and suppy is in K x L for some
compact K C L', Thus, in particular, for each € [w,¥) and each n € N

0= (v, 5"X{(rg.am)}) = (X{(m,am)}s S2%)
= S'v*(oﬁ': a:n) = (v*s hg) .

And since 55{hY : @ € [w,¥), n €N} = V by a property of {F,}, we
conclude v* = 0, a contradiction. m

Section 2 suggests that it would be natural to put [ln = inf{J|-—S*y||* +
Wl /n:ye h(E x L)}. However, now it may happen that §* restricted to
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Ii(Z" % L) would not be weak*-to-weak continuous. Indeed, otherwise every
Vasdk space would be weakly compactly generated. This means we must
proceed more carefully. From now on let |- | denote an equivalent dual LUR,
norm on I (&' x L) such that |-[;, <[-]. ForneNand X C &' we put

|1 x = inf{][ =S"91* + |9I*/n:y € 1 (¥ x L), suppy C X x L}.

Note that ¢l - [| <] [nx <[ -] with an appropriate ¢ > 0, so that | - |, x
is an equivalent norm on V,

LEMMA 4, For each v € V, eachn € N, and each compact K C X' there
sy € 13W/{( X' x L), with suppy C K x L, such that

b s = o = $"9l* + Iyl*/n.
Proof. I'ix v, » and K as in the lemma and find y,, in I(Z' x L),
supp thn C K X L, m =1,2,..., such that
I'”’gm,)'{ = 111,{{1(”” - S*ym”2 + |ym[2/'"') .

As {ym} is a bounded sequence in lj(Z' x L), it has a subsequence {yn, }
which converges in w(l((&'x L), eq(&£' x L)) to some y € Iy (Z'x L). Clearly
supp ¥ C K'x L. By the definition of ¢y (£’ x L), we conclude that (ym,, z) —
(y,z) for each @ from Cy(&' x L); that is, ym, — y in w(Cy(E' x L)*,
Ci (2% L)), too. Then 5*yy, — §*y weak, that is, weakly (as §*ym,, S*y
belong to V), Now the weak La.c. of |- | and the weak* Ls.c. of | - | yield

[vld ke < o= S™y||* + Jyl*/n < lim inf [{2 ~ S* Y, ||+ lim inf [ | % /2
Sliminf(Jlo = 8y [|* + g, */0) = [0} &
1
and the lomma is proved. w»

LeMMA 5. Let K be a compact set in X' and consider a sequence 2y O
{3 D ... D K of open sets such that (., 2w = K. Then for each v € V
and cach n € N

[Pt = lim o],

Praoof, Takew € V andn € Nand form = 1,2,...find gy in 1 (E'x L),

SUPP Yo C $2y % L, 80 that
I'vli,ﬂ,,. + .l/m > “"' - 5*ym||2 + Iymlz/m .

lore the sequence {y} is bounded, say |ym| < ¢ for all m. So‘it h'a_&'; a
w(l (X' % L), eo( X x L)) eluster point y € 15(X"x L). Assumne for simplicity
that g,, — y in this topology. Then clearly suppy C K x L. We shall ’show
that Yy, = y in w(Ch (X x L)%, C1(L'x L)), too. So takeany » € C1(Z'x L)
and any £ > 0. By Lemma 1, z((2m\K) X L) C (~¢,&) for large m € N.
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Hence for those m
(¥ — %, 2)| < [{om = v exx xL) + [{¥m = ¥ TX(a0m\K) x L)
< Kym — vy exrexr)| + (vl + |3])e
(as |- |i, €1-]) and thus, recalling that zxgxr € co(E’ X L), we get
lim sup |{¢m — ¥, z)| < 2ce.
m

Therefore {ym,z) — (¥, %) since ¢ > 0 was arbitrary. This means that
ym — ¥ in w(Cy (T x L)*, C1(X' x L)). Hence $*yy, — 5*y weakly and

thus, using the Ls.c. of || - || and |- | with respect to appropriate topologies,
we conclude that

11:]?11]( < |l - S*yil? + |v]?/n _<_]imminf lo — 8" yml* + lin}ninf [ym |2 /n
<Timinf(jufl . +1/m) < I sup ol g, < [ol2 x.
m e m wim ’

Let now {U,,} be a countable base for the topology in X which is more-
over closed under finite unions and finite intersections. We define

fe )
W-NE=s Y 27 ™ fw. -
r,m=1
Since the | - |,v,, are equivalent norms on V and | - |np,, <+ ||, the norm

11-1|] is also equivalent. We shall prove that |||-||| is LUR and thus we shall
complete the proof of our theorem. So consider » and a sequence {v;} in V
such that

(+) 2l + 2/lws1P° + {lle + 21 =0 as j— oo.

We are to show that |jv —v;]| — 0. Fix ¢ > 0. From Lemma 3 we know that
there are a compact set K C X' and 9o in Iy (L' x L), with supp yo C K x [,
such that ||v — §*y|| < e. Fix n € N so large that |yo|?/n < ¢*. Then

o3 x < [lv = $*y0ll* + yol*/n < &* + &¥ = 2¢* .
By Lemma 4 we find y € I;(E' x L), with suppy C K x L, so that
lolh 5 = lv— 5™y + ly*/n.
Let {m;} C N be a sequence such that Uy, D Uny O ... D K and
MNiey Um, = K this is possible since K is compact and {Uy} is a base for

the topology on X', which is closed under finiie unions and intersections.
By Lemma 5, we find 7 so that

2
ol k < [ol%,0r,, + /75

in what follows we shall denote this m; by m. Further, for j = 1,2, ... find
y; € L(Z' % L}, with suppy; C U x L, such that

(vl + &/ > oy — S5 + |yl /n.

LUR norms on Vaidk space 7

(Here we cannot use Lemma 4 but this does not matter.) Frow convexity
and (*) we have

{*%) 2ol + Wiy, = v+ oslhy, >0 asj—oo.
Take jo so large that
2\vi 1, + lvil2 o, ~ v+ vjlhp,, <&/n  whenever j > jo.
Then putting together the above relations, we get for j > jo
3¢/ > 2ol g, +e/n) + 2l g, — I+ vk,
> 2|l x + 2vslhw, = 0+ vl e,
> 2lj = Syl + 2fy[*/n + 2v; — 53|12 + 2lys /n — 26/
— o+ v~ 5w+ v — v+ v/

> (20y)® + 2byil® ~ |y + i)/ n - 2e/n;

hence
20yl? + 2y — ly +y;* <5e  forj>jo.
Set
§(A) = sup{ly—z| : 2jy[* + 22" — ly+ 2* < A, z€ L(Z' x L)}, A>0.
Then for § > jo we get
o= o3l < llo = S3ll + 15*Cw = w)ll + vy = 8731
< [olnxc + 11S7(16(5€) + (lvl3 v, +e/m)'/?
And remembering that (+%) implies
|vflnm = [Vl S [0ln,x a8 5~ 00,

we obtain

timsup Jlv — vl < [vlnxc + [1S*16(5) + (|2l & + €)'/?

i

< 26 + [|8)|6(5e) + (2* + e)/2.

Now, since |- | is LUR, §(A) ~ 0 as A | 0. Therelore, letting £ > 0 go to 0
we get ||v—v;]| — 0. w

4. Finally the new case: dual Vaiak space

TueoreM 3. Let V be a Vaddk space which is morcover dual. Then it
admits an cquivalent dual LUR norm.

Proof. Let || -] be a dual equivalent norm on V. We shall use the
notation of the last section. We can see mo reason why the norm ||| - }J|
constructed there should be dual, Therefore we refine that construction.
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LemMA 6. Let n € N end a compact set K C X' be given. Then the
norm | | x is weak* Ls.c., that is, dual.

Proof. Let {v,} C V be a net weak* converging to some v € V. By
Lemma 4 we find y, € (X' x L), supp y» C K X L, such that

I'U‘rlwzx,K = |Joy - S*y1‘”2 + |y,|2/n .
Without Toss of generality we may and do assume that lim, [v,|, x exists
_and is finite. Then the |y,| are also bounded for large = and so {y,} has a
w(li(E' x L), eo( X' x L)) cluster point y € 11{ X' x L), with suppy C K x L.
For simplicity, assume y, — y in this topology. Then clearly y, — v in
w(C (&' x L)*, C1{2" x L)), too. Hence S*y, — 5*y weakly, and, a fortiori,
weakly*. Thus the weak* Ls.c. of || - || and |- | yields

o5 s < llo— 5% + |9/ < lim inf [lo, — 5™y, || + lim inf [y |*/n
< Timjnf oy = 59| + o [* /1) = lim o, % - m
Forn € N and X C X' let || - ||n,x e the weak* lower semicontinuous
regularization of | |, x, that is,
ol x = “lfléx%mmf{luh'x ruev+W}, wveV,
where W is the filter of convex weak™ neighbourhoods of 0 in V.

LeMMA 7. For each n € N and each X C X', ||+ ||n,x @ an equivalent
dual norm on V.

Proof. The verification that || - ||4,x is positively homogeneous and
subadditive is elementary. Moreover, || - [ls,x < |- |nx and |- |[|n,x = ¢|| ||
with an appropriate constant ¢ > 0 since |- |,, x is an equivalent norm and
il - ]| is weak* Ls.c. Therefore || - |l,,x is an equivalent norm. We now show
that || [|n,x is weak* Ls.c. So fix any v € V and £ > 0. From the definition
of ||v||n,x there is a convex W € W such that

inf{|uln x:u€v+W}>||vllnx —¢.
Choose any z € v + $W. Then
zlln,x > inf{|juln,x s € 24+ IW} > inf {Julnx i u € v+ W} > |Jo|lnx —¢.
This means that || - ||, x is weak* Ls.c., that is, it is a dual norm. w

LemmA 8. Under the assumptions of Lemma 5 for every v € V and every
neEN

[vln,x = lim |{2|n,q,, -
m
Proof. Fix v and . Let W be any fixed convex weak™ neighbourhood
of 0in V. Foreach m = 1,2,... we find v,, € v + W such that

el + 1/m > [onls o,
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and further, using the definition of | - |, o,., we find y, in L(Z' x L),
SUPP ¥m C 2 X L, satisfying
[0l 3, + 1/ > lfom = 574l +luml* /.
As |v)ln,0, < |9ln,0m < vln,k, we can show exactly as in the proof of
Lemma 5 that a subsequence of {y, }, say, for simplicity, the whole sequence,
converges to some yw € (X' x L), suppyw C K x L, with respect to
w(h(F' x L), co( L' x L)) as well as to w(Cy (X' x L)*, C1(Z" x L)). Also
the sequence {2, } is bounded in V', s0 it has a weak" cluster point vy € V.
Let {vp, } be a subnet weak” converging to vw. Then
owld x < llvw = S*ywl® + lyw|*/n
< lim inf ||om, — 5*¥m, || +1imTinf [9m, [*/n
T

< Yim inf (l|vm, — ", I + lym, [*/2)
< ‘.lJ'.manf(”vH?mnmr +1/m;)

T 2 . b4 " |y

= Timn oll2 g, < lim [o]2, g, = [0l -

Recall now that v, € v+ W, 80 vy € v+ W 4 W. If W runs through the
whole family of convex weak* neighbourhoods of 0, we find that vy — v
weak*. But |- |n,x I8 weak* l.s.c. according to Lemma 6. Therefore

[v]2 k< H‘}‘T,l low |35 < ]iﬂr,fl 0|22, Slolfax. =

Next let {U,,} be the countable base in X’ from Section 3. We define

©0

=3 27 - i p., -

nm=1
This is clearly an equivalent dual norm on V. We now show it is LUR.
Assume, as usual, that

(*) 2010lll” + 2lllwll* = [[lo+ osl[[* ~ 0 a5 5 — oo

Fix any £ > 0. In the same way as in the last section we find a compact set
K ¢ X' and n € N such that

|3 5 < 2.
We also find y € ) (X' x L), suppy C K x L, so that
o3 x = lo = S*y|* +1y*/n.
Further, using Lemma 8, we find m € N so that
|'”’i,K < |_|”||3;,U,,. +e/n.
From convexity and () we find jo so that
(+4)  2|]v|3 0, +20v5l[2 0, — o+ villh . <e/n  whenever j > jo.
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Fix for a moment any convex weak* neighbourhood W of 0 in V' and
any 7 € {jo+1,40+2,...}. From the definition of ||- ||n,r,, we find a convex
weak* neighbourhood W; C W of 0 such that

inf{|uf}y, cu€v+v+W;t> vty —¢/n.
Further, there is v} € v; + W; (C v; + W) such that
lvslih o, + €/ > o) R0, -
Then 'u+'u}’v € v vj + W; and so
o+ o Lo, > o+ vllh 0, —€/n.
Also, we find y¥ € 1i(Z' x L), suppy}¥ C Un X L, o that
03" %0, +€/m > 0] — 5*5F |2 4+ ) /.
Then, taking into account the above relations, we can estimate
8e/n > 2|l v, +e/n) + 205 2 v, + 26/0) = [0 + w5113 17,, — /)
> 2ol i + 200} A0, +e/n) = |0+ 0l L,
> 2|v = S + 21y /n+ 2ol — 57y P + 2y P /n
=l + o = S+ O ~ |y + ) 1P /m
> @yl + 251~ ly+ v ) /n.
Thus, using the symbol §(A) from Section 3 we get
v - 5,71 < 6(8¢).

We can also estimate
0} = 5 411 < [0, +6/n < lvillh v, + 2677
And, as (**) yields that
(loillngn ~{lollnw.)? <e/n <&,
we geb
[0} — 54 1* < (|ollnon + V&) + 2¢/n
< (|9ln,w + vE)* + 26 < (Joln,ie + 2) + 2¢.

Now, since |v?, j < 2¢%, we conclude that

o — 23 < llo— S*9ll + 1™y — v Y + o ~ 54 %))

< 2¢ + ||5*]16(8e) + [(22 + V&) + 2] = ale)

for all § > jo and all convex weak* neighbourhoods W of 0.

Finally, we recall that v} € v; + W. It follows that »¥ — v; weak* as
W runs over all convex weak* neighbourhoods of 0. And, since ||-|| is weak*
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l.s.c., we deduce that for j > 7

L w
Jo — vl < l%nel%f lv — v || < efe).

Here () — 0 as ¢ | 0. Therefore ||v —v;|| — 0. &

References

1} D Awirand J. Lindenstrauss, The siruclure of weakly compact sets in Banach
apaces, Ann. of Math, 88 (1968), 35-486.

[2) J. Diestel, Geometry of Banach Spaces, Selected Topics, Lecture Notes in Math.
485, Springer, Berlin 1975,

(3] N. Duuford and J. T. Schwartz, Linear Operators I, Interscience Publ,, New
York 1958,

[4] M. Fabian and 5. Troyanski, 4 Banach space admits g locally uniformly rotund
norm if its dual is a Voddk space, Lsrael J. Math. 69 (1990), 214-224.

(5] G.Godefroy, Bristence de normes trés lisses sur certains espaces de Banach, Bull.
Sci. Math. (2) 106 (1982), 63-68.

[6] G.CGodefroy, 8 Troyvanski,J. Whitfield, and V. Zizler, Smoothness in weakly
compnctly generated Banach spaces, J, Funct. Anal. 52 (1983), 344-352.

(71 S. Mercourakis, On weakly countably determined Banach spaces, Trans. Amer.
Math. Soc. 300 (1987), 307-327.

(8] —, A dual weakly K-analytic Banach space is not necessarily a subspace of a weakly
compactly generated Banach space, a manuscript,

(9] M. Talagrand, Espaces de Banach faiblement K-analytiques, Ann, of Math. 110
(1979), 407438,

[10] 8. Troyanski, On locally uniformly conver and differentiuble norms in certain
nonseparable Banach spaces, Studia Math. 37 (1971}, 173-180.

[11] L. Vagik, On one generalization of weakly compactly generated Banachk spaces,
ibid. 70 (1981), 11-19.

SIBELIOVA 45, 162 00 PRAHA 6
CZECHOSLOVAKIA

Recetved November 20, 1990 (2745}



