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Isomorphic classification and lifting theorems for spaces
of differentiable functions with Lipschitz conditions

by

FRANK MANTLIK (Dortmund)

Abstract. If F is a sequentially complete locally convex space, £2 a compact subset of RY and
x a Lipschitz function we consider the sets A™* (@, F), 4"*(£2, F) of m times differentiable functions
R2— F whose derivatives of order m satisfy an O(x)- resp. o{x)-Lipschitz condition. For a broad
class of functions »x we produce explicit isomorphisms A™ (@, F) = I (F) and A™* (£, F) = ¢, (F).
The special construction used enables us to improve lifting theorems which have been established
by W. Kabalto [13]. Furthermore, in the case of Banach spaces we solve vector funetion equations
T(xye{x) = f(x) where all data are A™*- resp. A™*-dependent on the parameier x.

0. Introduction. The general lifting problem may be described as follows. Let
a set & and a linear surjection T: E— F of two locally convex spaces (l.c.s.)
E, F be given. Then we look for function spaces #, (€2, E) and #, (2, F) such
that for any fe %, (Q, F) the equation Te(x) =f(x), xef, has a solution
ee % (@, E). The function e is called a lifting of f. For example we may
consider a topological space @ and ask whether any continuous f: 2—->F
admits a continuous lifting e: @—E.

A systematic approach to such questions has been given by A. Grothen-~
dieck [7], [91, W. Kaballo [12], [13]. W. Kaballo-D. Vogt [14] and others {cf.
the literature cited in [12]-[14]) through the concept of topological tensor
products. Unfortunately this method seems to be suitable only for those
function spaces & which are a priori scalarly defined, ie. which satisfy
F(Q F) = #(Q)¢E (Schwartz e-product). In many applications the lifting
problem is additionally complicated by the fact that the operator T may also
depend on the variable x, and that the range of T(x) may vary, too. In these
cases the tensor product technique is of limited use only since it requires the
lifting of T(x) to an operator function T{(x) which is pointwise right-invertible
(cf. Kaballo [12]). In order to overcome this difficulty a lifting procedure is
needed which takes more heed of the infinitesimal behaviour of Tix).

In [16] the author provided a constructive method for solving vector
function equations of the type S
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20 F. Mantlik

{*) Tixyelx}=f(x), =xe&,

in Banach spaces where all the data depend differentiably (finitely or infinitely
often) on a parameter xe @ < R? and T enjoys a “regularity property”. For
given f we were able to prove the existence of a differentiable solution e of ().
However, in the case d > 2 we had to consider a special fanction space
cm(D&,... @, C™ () instead of C"(I%), I=[0,1]. It is known (cf.
W. Kaballo [13]) that C™ (I F)-functions (m < o, d > 2) in general do not
admit C™(I4, E)liftings, but the loss of smoothness can be made arbitrarily
small. In order to measure the defect, Kaballo [13] employed the spaces A™”"
and A™* of all m times differentiable functions which satisfy an O(x)- resp.
o(x)-Lipschitz condition (see § 3 below). His lifting theorems are based on the
isomorphisms A™* (I) = ¢, (cf. [1], [4]) and A™*(I*,E) = A™*{I) ¢ E. How-
ever, the result for A™*functions was not optimal becauvse it had to be derived
from the A™*-case.

The aim of this paper is the following: For any sequentially complele Les.
F we are going to construct an explicit imbedding C™ (I, F)—> FN from the
space of all m times continuously differentiable F-valued functions into the
space of all F-valued sequences (§2). This imbedding will turn out to induce
simultaneous isomorphisms

(%) Am* (4 Fy= 1, (F) and A™* (I F) = ¢, (F)

for quite general Lipschitz functions , including the standard Hélder functions
x{g) = 0% 0 < 8 < 1(§3). As an application we shall improve lifting theorems
of [137] for the above function classes (§ 4). Results of the type (%) have been
established by many authors (cf. [1]-[5], [19]). The main justification for our
construction {and the ultimate goal of this paper) is contained in §5: In the case
of Banach spaces we are able to solve the vector function equation (),
producing a solation ¢ which is as smooth as fand T

This result may be viewed as a supplement to the author’s paper [16]. It is

used in the article that follows to study bundles of subspaces and closed
.operators in Banach spaces.

1. Preliminaries. All locally convex spaces (Lcs.) E, F under consideration
are assumed to be Hausdorff and sequentially complete. By o (£) we denote the
set of continuous seminorms on E, and by L (£, F) the set of continuous linear
mappings E— F. The letters R, N are reserved for the reals and positive
integers respectively, and Ng:=Nu{0}. If meN, deN and @ = R? is
a compact set satisfying 2 = int  then we define C™ (R, F) to be the set of
functions f: 2—F whose partial derivatives up to order m exist in int Q and
can be extended continuously to the whole of . We shall first restrict ourselves
to the case Q = I, where I = [0, #] is the unit interval. The constants m, d are
assumed to be fixed throughout this paper, and ¢ denotes a positive constant
which depends on m and d only. Let
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M:= {aecNj|la| <m}, S(r):={seR¥r-se{0,..,r}}, reN.

The set S () forms a mesh of (r+1)* uniformly distributed points in I% By ||-||
we denote the maximum norm and by |-| the /;-norm on R’ For multiindices
o = (0, ..., )€ N§ we adopt the standard notations

al=a,l... ol (;) =(;11) @2)

PartiTiON OF UNITY. There is a C®-function ¥: R~+[0, I with the
following properties:

() Y () =1Tor [l <4, d(t) = for iria%
b))y =1—yr(t—1) for 0 <t

(The existence of such a function a,l/ is well known). If reN and se S(#) we put

= Jfaxs ... Bx%e.

o(r, 8 %)= Hl//( (x; —s)).

Then ¢ (r, s;-)e C* (R4 [0, 17) and

(¢) @{r,s; x) =1 for llx—s]| < 1/(3r), ¢, 5; x)-O for ||x—sil = 2/(3#).
(d) ZSES(") @(r,s; x) = 1, xel’, where at most 2¢ summands are # 0.
(€ |D*o(r, 5; x)| < !l for xeRY, Jo| < m+1.

For any continuous function f: Q- F and any geo(F) the function
w?(f; )= sup {g (f(x}-f 0
is called the g-modulus of continuity of £ If fe C*(Q, F) and g e o (F) we put

Ifle:= Y sup {g(D°f ()} | xR},  oh(f; )= maxo!(D*f;0), ¢=>0.

xaM o] =m

N x. ye®, Ix—yl<e}, e=0,

The next lemma constitutes the principal tool in our subsequent investi-
gations.

1.1. LeMMaA. Let fe C™(I%, F) and for fixed r N let there be given a set of
functions B (s;-)e C™(I%, F), s € 8{r), such that D* B(s;s) = D*f(s), e M. Then
the function

A= Y @, s; x)B(s; x)
seS(r)
satisfies

(@) deC™(I% F).

(b) D* A (s) = D*f(s) for seS(r), acM.

(c) There is a constant ¢, = c;(m, d) >0 such thai, if geo(F) and

5. [0, 00)— [0, 0o) is a nondecreasing function with wf (B{s; -); ¢) < (g} for
each seS(¥), then

(1Y) oL{d; o) <c,or [P )+l (fir H+e (@), O0<e<r L
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Proof The statements (&) and (b) are evident. For the proof of (c) we
partition the variables & = (£, ..., £)eR? into ¢, and E={(¢,,..., E)eRI™L,
{Check that our considerations remain valid also in the case d = 1!) We write

Sr):={8|seSM}, &, 5 %):= Hgb (x;—s;)) for e 8(r),

A (%)= Y @r. & B((t/r,8;x)

3e8ir)
With the definition ¥, (x,):= ¥ (r (x, —t/r), t =

for tef0, ..., r}.
., 1, we see that

@, 5 %) =¥ (x) @ (r, 5% and A(x)= Z Vi (xy) 4, (x).
=0

If xel’ then (t—1)/r < , 7}, and

A (x) = Aiy ()i, (xg) (A, () — Ay ()},

since ¥, (x;) = L —, (x,). If now £e 1“1 is fixed and (t—1)/r < w,v, %, < t/r
we write x = (x;, %), y =, %), 2= (v, ). A short computation shows

(12) D A()—D"4()
= (1=, ) (D" Ai—{ ()= D" A,y (2)) +1, (2) (D* A4, () — D* 4, (2)

+ E ( )(D“*“’iwt(u)—na"“ ¥, @) DDV ()
1

F1=0

x, < tfr for some te{l,...

o~ L

+ 3 ( )D”“ B, () (DP9 V()= DB R V. (2)),  aeM,
f1=0

where ¥, (x) 1= A,(x)— A4, (x). Our task will be to estimate the right hand side
of (1.2) for Jo} == m. To this end consider the functions B, (s; x):= B (s; x)—f (x),
se8(r). Since D’ B/(s;5) =0, feM, Taylor’s formula yields

q(D? B, (s; x)) < cr'fl"™ o2, (B3 r™ 1)
S e o, (S5 e Y] Ilx—s]) <

Observing that Yz, DP (v, §; %) =0 for F 0, and
qh)—h@) <lu—sl  sup gk (x,)

, (t—DfrSx <y
we get (3 <z means that f#d and §, = o, under the sum)
4(D* Ap, ()= D* A, (2)) |

€27 max q(Z' (;)D&'ﬁ(ﬁ(r,

AT

1, BeM.

forany he C* (I, F)

$; (D B, (s; y)—D* B, (s; 2))

3eS(r)
|1% =5l < 1/r
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+¢(r, § %){D* B(s; y)—D* Bs; z)))

D L i S (L
From this it follows that the g-norm of the first Iine of the right hand side in
{1.2) is bounded by

elu—vlr [19 () ey (7™ ] 29 (Ju—),
Similarly we get for (t—1)/r
(13)  g(D¥? ¥, (x)

< 3 1 (rrevamalon () )-wn(5))
58r) Bsa

et BEm I T ) 40l (Y], 0<B, <

This yields for the terms in the second line of the right hand side of (1.2)
a bound

!Dm jad': 31 wt (u)mel‘"ﬁl ,’hz(.u)l q (D(ﬁ';.&) Vt(y))
< clu—vlr [ T+ f (517D,

For the last line of (1.2) we observe that 8, 4-|¢] < [¢| = m there. Thus we may
use {1.3) to obtain

D52 g, ()] 4 (D2 ¥, (7)— D2 ¥, (2)
< clu—olr [0 Y+ ok (f; )],
Collecting the above inequalities, we subsume that
gD* 4 (M —D"4@) < clu—v|r [P (™ N+ ok (f; ™I+ (lu-2)

for y= (uh X), z= (U: x)s [t_l)/r T"}) and
|} = m. In the case —1)r<u<

(14) g(D*4(y)~D*4(2)
< q(D* 4 () ~D* A (tfr, R)+q{D* 4 (t/r, R)—D* 4(2))
< clu—olr [ (™ D wd (s v~ )]+ 200 (u—1l).

If now d =1 the proof is finished. In the case d > 2 we repeat the above
arguments with respect to each variable x,, ..., x,. For any y, zel’ with
lly—z|| < ' it then follows from (1.4) that

laf = m.

x, < tfr the estimate

0B, <oy, lof=m.

0€ﬂ1<ﬂtl, lof = m.

< tfr (for some te{l,.
t/r < v < (t-+1)/r we note that

d
Y q{D*4(yy, ..

[} J}i, Zitgg ere Zd)_DdA (yla ceas Vi1 Z;'a ey Zd))
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< ey lly—=allr [0~ D+ 0l (f; 7~ 1 4e, P (ly—zll).

2. Series expansions for differentiable functions. With the aid of Lemma 1.1
we are now going to expand each function f'e C" (I, F) in a series f = 3 i 45,
where the 4} are C®-functions with values in finite-dimensional subspaces F, of
F. Furthermore, the partial sums ) 1., 4, interpolate f and its derivatives up to
order m on a set S(r") < I

2.1. CoNSTRUCTION. Let fe C™ (I, F) and reN. We define

B, 750 Z(xa)zwwa seS0),
asM ’

A(fir;x):= Y o, s;x)B(fir,s1x), xel’
seS(r)

Then B(f,r,s;-)eC* (I, F)and D*B (f, r, 5; s) = D*f(s), v e M. For |} = m,
DB(f,r,s;:) is a constant, ie. wf(B(f,r,5;-);6)=0, geo(F). From
Lemma 1.1 it therefore follows that

(2.1) A{f,r;-)e C* (I, F),
(2.2) D*A(f,r;5)=Df(s} for seS(), zeM,
23) on(dUir ko) <ceralif;r™), geo(F), 0<o<r ™t
We now choose r eN; ; and define a sequence of functions f € C™ (14, F) by
{2.4) fo=f S&)=flx)-
Note that f7(x) = f(x)—¥ %=1 4 (fi—1, % x). From (2.2) we see that

A(fi-, %), nz21. m

(2.5) Daf;,rls(,-n) = 0, xeE M, nzl
and from Taylor's formula
- (2.6) ID°fNE < cr "ol (777", aeM,n> 1

By (2.3), (2.4) we have

2.7) wn(fd <o (fi-s+e o ob (ff-r™, e<r "zl
This yields by induction

(28) @l (70 < 0L (S5 0+ 0 2 (ei + 1V b (fr Rk, o™

Now fix 0 < { < | and choose r& Ny, such that 71 7% > Z ¢, + 1. Then from
(2.8) it follows that

n
f (™M €e Y ok (5 h, nx 1
k=1

Together with (2.6) this implies
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2.9) Y, el pe gt
acM

Since f§ = fe C™ (I, F} we have hmk—'m w4 (f§;r™% =0, and the right hand

side in (2.9) tends to 0 as n—co. From this it is clear that

ZAﬂh;):fmma
k=1

the series converging with respect to each seminorm |-|[4, ge o (F).

Let L(r):= )& ,S(") and K{r):=L{nxM. We can now construct
a lincar imbedding @F: C™(I% F)— F®. To this end note that L(r) is the
disjoint union of the sets L(r, n):= S(F\S{r" ), n = 2, and L (r, 1):= S ().
For fixed reN, r > ¢;+1, and any fe C"(I%, F) we define the sequence
(f)izo = C™(J%, F) through (24). Then the mapping

{2.11) D% Cm (19, F)— FX0, (@F(f))(s,a): prim=ial) pz £ (5
for neNg, seL(n,n+1), aeM,

c Z remigt (Tl mz 1.

(2.10) Fx) =

is clearly linear, Recall that by (2.5) and the definition of A the function
A(fi-1, v*; -) vanishes identically if D*fy-, (s) = 0 for s e L (r, k), € M. There-
fore @% (/) = 0 implies 4 (f{_,, 7;-) = 0, ke N, hence f = 0 by (2.10). So &' is
injective.

3. Classification of differentiable functions with Lipschitz conditions. A con-

tinuous function 2: [0, 00) - [0, co) will be called a Lipschitz function (for
short: Lf} if the following holds:

%(0) =0 iff g =0; x and grg/x(g) are nondecreasing.
Such a function » is always subadditive, ie. x (0, +e,) < %(g,)+x(g,). For
a compact set Q < R? with Q@ = int Q we introduce the function space '

A™* (G, Fy:= { feC™ (@, P)||If g, := I.f Il +sup i (f; 0)/%(0) < o0, ge o (F)}

e>0

and its subspace

(@, F):= {fe A™(Q, F)|lim o, (f; 0)/x (e) = 0, ge o (F)}.

2—0
Note that, if Q is convex, (" (Q, F) = A™*(Q, F) for any Lf x, and even
CrHHQ, F)  A™*(Q, F) if limy- o/% (¢) = 0. Note further that in the defini-
tion of the spaces A™*, A™* only the behaviour of x near 0 is important. If
x satisfies the conditions of a Lf only on an interval [0, s,], we may therefore
replace x(s) by #(s):= (s} for s = 5, thus obtaining an “equivalent” Lf #%.

3.1. DEFITION. A.Lf  belongs to the class (A, BJLf (0 < e < 1,0 < { < 1)if

x(s

(A) There is a >0 with _[ l(t) dt < C0<sgl,
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Lx(t)

s
(B) There is b > 0 with jmdr < b-m

c,0<s$1-

Approximating the integrands by step functions it is easily seen that (A,)<>(A])
and (B,)<(B;), where

(A)) For any (some) r > 1 there is a > 0 with

o
ot <ax(r™), neN,

k=n

(B) For any (some) r > 1 there is b > 0 with

¥or*ma ) <bx(r™), neN.
k=1
Remarks. () The conditions (A,} and (B;) have been introduced by
Z. Ciesielski [2]. The most important example of a function x (A, B)Lf is
% (s) = s* where 0 < o < 1. Further examples are obtained by

%, (5):= s"exp (BlIns"), #(0):=0,
where 0 <a< 1, y<1, feR
(ii) Note that lim,..q % (s)/s* = 0, lim,_o x (s)/s* = co for any x e(A,B,)LL
3.2. LeMMA. For any Lf x the following holds:
(i) x satisfies (Ap) iff » satisfies (A)) for some 0 <e < 1.
(i) » satisfies (B,) iff » satisfies (B) for some O < { < 1.

Proof. The “if” part is easy to see. Let x satisfy {A,) with constant a > 1.
We then put 4:= ¢** and obtain for 0 < s < 1/4

%, (8):= s*|ln slf,

lA.v

mmm”?j j-ﬁm #(As).

Now let 0 < u £ v € 1/4. Choose ne N, such that 4" u
d:=1n2/2a) <1 1t follows that
ww)  x(4uw) x (A" u) _ # (1) % (v)
€5 € ... K K27 APTIP S = g
u’ 2u’ 2"yl 24 v 2 v

/A and 0 <g < &

t
< v < A"y With

This yields for ¢ < s <

—

n(t
t1+

—

2 %
§—g &

©

Ot

% (s) 5
dt < z?jl's_ﬂwldt =
0

Hence x satisfies (A)) for & < . If x satisfies (B,) with constant b > | we put
B:=¢e* and obtain for 0 < s < 1/B

Bsx (Bs) %1 p Bs® 5 (5

*(Bs) < gy Bs !z 2bj32

m\—m)

icm
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A similar calculation as above vields for 8:= 1—In2/2b} < 1

x(u) _ 2x(v) 1
b s, St Lo —
il i O<u<gs <

From this it follows that s satisfies (B) for { > &. =
This result is due to Hilsmann ([11], Lemma 1.5). We have reproduced the
proof here for the convenience of the reader. Now let ¢, = ¢, (m, d) be the

constant in (1.1). Choose reN, r > ¢,;+1 and define the mapping &f:
C™" (1%, F)— FX® through (2.11). For ye F¥" we define the expressions

)= max Y q(¥ea)

seL(r,n+ 1) acM

33. LemMA. Let 0 < <1 and r' ¢ = c,+ 1. Then for any xe(A B,Lf
there is a constant K = K (r, m, d, {, %) > 0 such that for each fe C"(I% F),

ge o (F): .
(@) f(f; @) < () implies 83 (Pz(f) < K {Eilﬁ—n) 3: Z ; (1),

(b) w4 (f; ) = 0 (x (o)), @—0, implies 61(P5 (f)) = 0 (™). n— e,
Proof. Fix geog (F). By assumption we have o (f;r ™% = x(r"%¢, with
t, = 0,t, < #in case (a), and £, -0 in case (b). From (2.9), (2.11) it follows that
0= 8 (PH(f) = max Y g (D ()

sel{r,n+ 1) z=M

gea{F), neN,.

n
e ) r¢(rHe,
k=1

%= max 3 g{D*f(s)) < cllfIfE-

seLir,1) geM

nzxl,

In case (a) we obtain from (Bj) the estimate
A< chpr(r™"), nz=l.
In case (b) we write f:= supZ,¢; and find for 1 <I<n

!
e Y r* T r R re 3 r* T (M,
k=1 k=I+1

1 n
LaFrdm N pE T (R bty Y T (TR
k=1 k=1

< chx (™" {rl :é x ?:?) + t?‘ﬂ}.

o0, agsertion (b) is proved. m
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3.4. LEMMA. For any xe(AyB,) Lf there is a constant K = K{r, m, d, ») > 0
such that for each fe C™(I% F), gea (F):

@) 81(P5 () < nw(r™") implies w (f; ) < K (o) and || S < K.

() 84{P5 () = ok (r™"). n— oo, implies wh(f;0) =o(x(a)), ¢—0.
Proof. Recall that by 2.1 and (2.5)
A(ﬂ—l: " ) Z (P r 8 x) (x ) (S), neN.
seL{r.n) aeM al

For any multiindex feN§, |fj <m+1, and xel’ we compute

(3.1)  q(DFAf_, X)) < cemax Y ey prmeT g (DR (5)

seL(r,n) y<£p aeM
aZy

g gt BB m gy B el g (D g (s))
seLi(rn) acM

= I Dl-m) sg
where 89_; 1= 81_,{®%(f). For | = m it follows that
W (DPA(fi—, i ig)see Y, DT A(fn, 1 NE < g™ 6Ey

|y|=m+1

If x, yel¥ and ||x—y|| < r™" for some n, then by (2.10)

G0 S —DTG) = q(DP T A (fers s x)—DF S A(f-1 7% 1)
k=1 k=1

< Y aDPA(fio, 5 )=DP AR, 2 Y IDP A I
k=1

k=u+1
m+1{zrk n59+25} ]ﬁlmm

sup;=, ¢; this becomes by virtue of (Ap)

With 6f = % (r™"t, t, = 0, and ;=
8 B w1 e | TR * _
QDS (x)~DFf(y)) € c™*la(p™™) Z km‘““j“*“ aty 1Bl = m.

And, using (BY),

(32 wbif; r-")scr“lx(r,—"){rz‘lilrk—”(r—) 52 ﬂ?wr*}

oM u(r”

rx(r™)
<oty (r) <t b t;“(b-i—a)}, 0<l<n.

®(r7")
Observing that lim,.. "% (™) = c0 we conclude that
(33) : wh (f; ) S Ky e,

icm
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where (£,):~; depends on (1,)%%,, r, and » only; sup, i, < sup, t,, and £, -0 if
t,—0. Finally, for r """ < o0 <77 we get
o (< ob(fir M<K ™, <K %o, <K rx()i,
from which follow the statements concerning w&(f; ). Now recall that
for k=1, aeM we have D*ff(0)=0 by (2.5), since 0eS (). Thus
DA, 500 =0 by (2.2), and
2 alrf@) =3 g4 (5, 0) <

eeM zeM

™l Lermtly

in view of (3.1). For |a] = m
ID*flls < g(D*fO)+wn(f: ) < ™ p+ Ky rx(l)n, ie.
> ID*fliE < Ky

la] =m
For 0 < k < m—1 observe that of(f; g) <
sively leads to

€O MaX;y=x+ 1 |D*f11§. This recur-

2D flIE < Kn. w

acM
We now introduce the weighted sequence spaces
I (K@), F)i= {y e FRO ||yl := sup 85 0)/% r ") < w0, ge o (M)},

neNp

F)| tim 82(y)/= (r~") = 0, qea'(F)}

nv oo

(K@), F):= {yels (K(

The subspace c§ will be endowed with the topology induced by I%,. In terms of
these spaces we may rephrase Lemmata 3.3 and 3.4 as follows.

3.5. THEOREM. Let O < { < 1, choose r e N such that r* = = ¢, + 1 and let the
imbedding @y C™ (I, F)—»FK”’ be defined through (2. 11) Then for any
e (A B,)Lf the mapping &% induces simultaneous topological isomorphisms
34) ARSI (K() F) and (1 Fy—c5 (K(), F).
Furthermore, {$5) ™1 identifies the subset of finite sequences in F¥" with a linear
subspace of C® (14, F).

Proof From Lemma 3.3 it follows that ®% induces continuous linear
imbeddings A™*—[% and A™*—c%. If fe % (K (), F) we define

(3'5) f(x):= i { z n+1 )Z x S) n(!ul—mlﬁs,m)}’ xel.
=0 seL(r.n+1) aeM '

As is seen from (3.1) for any g e o (F) and ne N, the || - |[4-norm of the function
in braces is bounded by

et 53(F) < et |l (7).
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Since Y2 ox(r " < oo the sum (3.5) converges to f(x) in the topology of
C™ (I%, F). By induction it is easily seen that Y, {...} = fi", where fi e C" (I, F}
is given through (2.4). Thus &% (f) = f, and from Lemma 3.4(a) we obtain
fed™ (I F), ifl%. < K|fl3 I fecs then from part (b) of Lemma 3.4 it
follows that even fe A™*. Thus the atrows in (3.4) are bijections, and the inverse
mappings are continuous. The last assertion is clear from the definition

of &% u

4, Lifting theorems. In this section E, F are two Lcs. and Te L (£, F). Let
ec C"(I% E) and f:= Toee C™(I%, F). If (¢p)it 0, (f)i=y are the corresponding
functions defined in (2.4) for fixed reINyz, then it is clear that ff = Tod,
Hence, by definition of ¢" we have

(4.1) (Toe) = (TP (€)em)sackn

i.e. the functor ¢" commutes with continuous inear mappings. Let : N —-K{r)
be a fixed bijection, and for any n & N let [{n) € N, be the unique number which
satisfies n(m e L(r, I{n)+1)x M. Put

1
e FROL PN %”(y))n:m—_wy,m for ye F*¥9, neN.

Then the mapping ¥%* induces isomorphisms

o
(K, Fys I, (N, F)i= {ze FN{|z]*:=sup q(z,) < o, gea(F)} and
n=1
cS(K@E), F) = co (N, F):={zel (N, F)|lim q(z,) = 0, geo (F)}.
-0
Note that the functor ¥"* also commutes with confinuous linear mappings.
These observations enable us to establish lifting theorems for differentiable
- functions: Let Te L(E, F) be surjective. T is said to have the (I, co)lifting
property if for any y e ¢, (N, F) thereis x el (N, E) such that Tx, = y, for all n.
In an analogous way the (I, [..)- or (¢, co)-lifting property is defined.

(los 1)
4.1. THEOREM Let x ={A,B,)Lf. Then T has the {(lm, co)}mlifting property
(CO! CO) .
A™* (1%, F) Am* (I F)
iff for any fe {J."‘”‘ (4, F)} there is ee {A’“"‘(I", E)} with Toe = f.
Jmax (Id, F) )i.m'"(Id, E)

Proof. This follows immediately from Lemma 32 and Theorem 3.5 by
application of ¥ *o¢" resp. (¥"*c®) * in E and F. n

Remarks. This-theorem sharpens a result of W. Kaballo [13]. f T: E-+F
is a quotient map of two Lcs, then T has the (I, I )lifting property e.g. if

(i) E, F are {DF)-spaces {[8], Th. 9),

(ii) the kernel of T is a quasinormable Fréchet space [17],
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(1) E is a Fréchet space and F is a Fréchet-Montel space.

As 1s well known the operator T enjoys the (¢,, ¢,)-lifting property if E and
F are Frechet spaces. Additional information can be found in [13], 1.22, and
the literature cited there,

For any 0 < 8 < 1 we introduce the function spaces A™%, 2™ correspon-
ding to g (s):= s*

4.2. THEOREM. Suppose that T has the (1, co)-lifting property and that the
kernel N(T) of T is a Fréchet space. Then any fe A™' (%, F) admits a lifting
ee m0<3<1 ams (I, E).

Proof Let§,:= 1—1/n+1),neN,andlet p, < p, < ... be a fundamental
sequence of seminorms in N (T} Since fe A™%+1(I?, F), by Theorem 4.1 we
obtain liftings e, e A™®+1 (14, E) = i™% (]% E). Define a sequence of functions
e, e A™% (I, E) satisfying Toe, = f in the following way: Let ¢} :=e, and
assume that the functions e, ..., e, are already defined so that d,:= e,.,—¢}
e A™*=(1%, N(T)). Since A™* (I, N (T) = ¢o(N, N(T)) and since the set of
finite sequences is dense in the latter space we get from Th. 3.5 a function
doeC™ (I N(T)) such that ||d,—d,|Zrs, <27 Then we define
€hy1:= 8,41 —dy. By construction we have

lehss—ellfny, <27" hence lleps i —ellRt, <27% for n 2k,

because of |- |55, < || 15ns.,. Invoking the sequential completeness of
A™S= (1%, E) (consequence of 3.5) we conclude that e (x):= lim,- , €, (x} belongs
to (V% A™*{I% E), and Toe=f m

Note that if % is a Lf satisfying (B,) then by Lemma 32 there is 0 < § < 1
and K >0 with %(s) = Ks%, 0<s< 1. It follows that the solution e in
Theoremn 4.2 is of class A™* (I, E) also. G. M. Henkin [10] proved that in
general there is no lifting ee A™* (%, E), %(s) = s[lns|, even in the case of
Banach spaces E, F, when d = 2.

Now let 2 = R? be a conipact set with 2 = int Q. In order to carry over
our results to functions defined on 2 we employ a theorem of G. Glaeser ([6],
Ch. 1, 12-14).

4.3, TreoreM. Ler xe Lf and Q « R? a compact cube containing Q. Then
there exists a linear operator A: C™{Q, F)— C™{Q, F) which takes A™*(Q, F)
continuously into A™*(Q, F) such that fl, =f for each feC™{(Q,F). If
lim,.qs/x(s) =0 then also A (A™*(Q, F)) < i™*(Q, F).

(Glaeser essentially stated this result for Banach spaces F and concave x,
but there are no serious difficulties in proving our version of Theorem 4.3 with
his methods.) Now the problem of lifting 2 function, say fe A™* (Q, F), reduces
to finding a lifting of fe A™* (Q, F). Another consequence of Theorem 4.3 is the
following. Note that the operator ~ identifies A™*(Q, F) with a complemented
subspace of A™*(Q, F). On the other hand, since int(2 # £F there exists
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a compact cube Q' = Q. Again by 4.3, A™ (@, F) may be identified with
a complemented subspace of A™*(Q, F). If xe (A,B,)Lf then both A™*(Q, F)
and A™* (', F) are isomorphic to 1, (N, F). Thus Pelczynski's decomposition
method (cf. [18], Prop. 4) yields that A™" (%, F)=1,(N, F). The same
considerations apply to show that A™* (€, F) = ¢o (N, F). In fact, a closer
inspection of the above arguments will show the following.

4.4, Tueorem. Let xe (A B,Lf Then there is a linear imbedding
C™(Q, F)—~ FN which induces simultaneous topological isomorphisms A™” (€2, F)
=1 (N, F) and 2™ (Q, F)—c, (N, F).

5. Vector function equations in Banach spaces. In this section E, F are fixed
Banach spaces. The space L (E, F} will be equipped with the uniform operator
norm. If AL (E, F) then

N(d):={ecEj{de=0}, R(4):={A4e|lecE} and
y (A):= inf {[|dell/dist (e, N (4)) | e € E\N (4)}.

¥(A4) is called the minimum modulus of A. If Q is a topological space and
T: £ — L (E, F) an operator function then T is said to be regular (see [16] for
a discussion of this notion) if every point x, & 2 has a neighbourhood U in
Q such that

y (T, U):=inf{y (T (x))| xe U} > 0.
In the sequel let xe({AB,)LL

5.1. THEOREM. Let the symbol & stand for one of the function spaces A™,
Am Let Te F(1°, L(E, F)) be regular and fe F (I, F) such that f (x) e R(T(x)),
xel? Let £ I and M a subset of M such that e M, B <  imply fe M. Then
there is a solution e cF(I°, E) of the equation T(x}e(x) = f{x). If D*f(£) = O for
oe M, then we may also achieve that D*e(f) =0, ne M.

5.2. COROLLARY. Let the symbol & stand for one of the function spaces A™,
Am*_ Suppose there are given Banach spaces E,, E,—q,..., Eo (p 2 2) and
operator functions Tye F(I°, L(E;4, E)),j =0, ..., p—1, such that the sequence

Ty~ T T,
Ep__f’_l(x) Ep—1_>~-- 1(x)>EI1 ofx) EO

is exact for each x € I'. In the case p = 2 we additionally assume that R (T, (x)) is
closed, xe I, Then the induced sequence

Fe, )=l g1 B, ) - B e, B B #(, B

given by ([T e;1)(x):= T;(x)e;s  (x) is also exact.

The proof of 5.2 is analogous to that of Theorem 6.1 in [16]. Our construc-
tive proof of Theorem 3.1 is based on Lemma 1.1, Theorem 3.5 and the following
lemma which is a consequence of Cor. 2.7 in [16]. Notations are adopted from
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the preceding sections with obvious simplifications such  as

o (f;@):=c"(f; o) lIflly:=lfIli, where g is the norm of E resp. F resp.
L(E, F). ‘

5.3. LeMMA. Let Te C™(I°, L(E, F)) be regular and fe C™(I% F) such that
Fx)eR(T(x), xeI® Let

F(T)i= (LHITRF L+ I (T I, k=0, ... m.

Then for any £eI’ there are vectors (¢9.em < E such that

(3 lledll < el () Y. IDPF(EN, aeM,
. B
(b) DO = Y (;) DPTEE", aeM.
fi<a )

54. ConsTRUCTION. Let the assumptions be as in Theorem 5.1 and choose
re Ny, Below we shall impose conditions (I), (I}, (II[) on ». For the sake
of simplicity let £eS(r'). We inductively define sequences of functions
A, e A™ (I, E) and C,eA™ (I F) such that C,(x)eR(T(x)), xeF, as
follows. Set C,:= fand assume that C,, ..., C,_, are already defined, n > 1.
According to Lemma 3.3, for each seL(r, n) choose (€9, < E with-

{a) llesl < el (T) 3 ID* Cay ()], 2 M,
f=a
(b} D*Cpei(s) = ¥ (;)m T(s)e: ?, aeM.
psz

For s¢S(r"y and xeI? put

if seL(r, n), _
B, (s; x):= T(x) 4,(s; x),
0 if seS(@™ Y,

@ A4,6):= T o0ms x40, Bi=Y 00%s B, 0,

5a8(rn) seS(r)
(©) C,(x}i= Cypo 1 (¥)—B,(x). m

Proof of Theorem 5.1. We are going to show that, if r is properly
chosen, ¢ (x) := Y =, 4, (x) satisfies the conclusions of the theorem. Note that
(5.1) D*B,(s) = D*B,(s;s) =D"C,_,(5) and

D*C.(s)=0 for neN, seS{"), xeM.

(Induction on n, using 54(b}-e).) Our first task is to estimate w, (B,; g):
If se§(r"~ ') then B,(s; x) = 0. If seL{r, n) the reader may use the identity

3 — Studla Mathematica 58.1
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D*B,(s; X)—D*B,(s: ) = ) (;) {0 T(x)—D*" " T (] D" 4, (s; x)

f<a
+ D% F T(y) [DF A, (s; )—D" A, (53 Y1}

to verify that

@, (B, (53 ); 0) < ¢ {maxar( (D" T; )+ | T} Z eIt

BeM
With the notation

1(0):= I (T) {max w (DF T; @)+ [T |}

f=M

we obtain from 5.4(a)
0 (B, (5 *); 0) < €t (@ NCom ]l
On applying Lemma 1.1(c) this gives us in view of (5.1)
(52) (B, o)
< cgr” 1t ICo-1llm+ 0 (Crm1; 77 H T (@I Crtllms
From-the second line of (5.1) and Taylor's formula we get
(5.3) [ID* Co-illo < e~ Ml =m gy (C,_y; 7' ™™, hence
ICotll < €0 (Crmrs 7177 <

With a constant ¢, = ¢, (m, d) > 0 formulae 5.4(e), {5.2) and (5.3} yield for
nz2 e<r’ '

54  ,(C, o
€ @ (Cre1; O [0 T(F ™47 (@)] @ (Camgs 11400 0" @, (Cam 13777
L 0p(Cr-1; O+ [or ™ T +or" +71(@)] 0n(Cym g5 777

neN, 5&685@".

gsrt.

rw {Cpmry¥™, nz 2.

In order to solve this recursion formula we need a certain a priori estimate.
By assumption 7 (g} < K, x (¢), where K > 0 deperids on T only. From (5.4) it
follows that

0, (C; 0) € 0, (Cymq; @)+, (&.3)"
% (r7")
Akgr LD oy LD kb o (Cper o
T %(Q) r " () TT%(I‘ ) wm( w15 F )

Since gwg/ﬁc (0} is nondecreasing and lim,,.,, % (*~") = 0 we get with ¢;:= 2¢,

0u(Cai @) € @0, (Comrs @0y~ ”(Q {1+2KTm r N, (C

n=1s ?‘_")
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% (0) -

x(r—n) Dy (Cn"l; r—n), e sr’,

for n sufficiently large, say n 2 N
55 @, (G o)

€0, (Co-1; Q)+ ¢y

= 2. By induction we obtain

d o (Carr™®
<0nCyi Dbyl 3 (ertp el
k=N+1 % (r™)

Now recall that Cy = f—) -, B,, where f, B e A™* (I, F). It follows that
CyeA™*(I%, F), ie. o, (Cy; 0) < Kx(g). Note that by Lemma 3.2 we have
xe{A,BJLf for some 0 <e<{ <1

Choose r so large that
@ 2 2 eyt 1.
Then from (5.5) it follows that

nzN,o<r ™

P S Ku(r ™ e, K™ Yy, rRe2

k=N+1

(5.6) o, (C

<K, ™?%x(@F™, n=z=N,

since Y 5% 1 772 < co. Here K, > 0 depends on T, f, r, m, d, x and &. We go
back to the first inequality of formula (5.4) which, in view of (5.6), now reads

0, (Cpi 0) € @, (Com13 QK [ () +T (@122 (777
+e,0r" 0, (Cu-y;777), nz=N,os

By assumption we have t {g} < % (g) b (g), wherc hp: {0, 1]—[0, oo} is a non-
decreasing function, and llmg_.o hp(o)=0if Te Z"”‘(I" L (E, F)). Note also
that, since s satisfies (B,),

1-27¢
x(u) ()jt“"? T$’

O<u<grv<t
Thus, for n =N and g =uv=r"",

&
ork(rT) =o' " x (Q)m w7

- b (b
1-&yn nts nzf2 elz
< @' 7t x(g)l__z_gr =3 2_§r

% (0),

if 1 = /2, which we may assume without loss of generality. This vields for
esr”
O (Cpi 0) € 0,,(Cam 13 Q)+ K [0 5 (r ") By (r ™)+ 3¢ (@) B @1 7™ 2 (" 77)

+e, 0 0 (Coyi ™™
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€ 0n(Comi3 Q)+ K, (@) 7 07 ™) +p @] 7 92 ()
) or" wm(cn-—l; r
£ CUm'{Cn__I; o+ K, % (o) hy (o) pln =008 5 (13

with h, (g) = @"* h (1) +hy (¢). K, now depends on b, { also. By induction we
obtain

ey e w, (Com g P,

n

Z r(k—l)e%(rl—h)

k=N+1

0, (C,; 0) € @, (Cy; 9)+-K* (@) hy (@)

+e,0 Z (co+ )" @, (Cy; 775

k=N+1

+(:2K ¢ 2 (ca+ 1Y rF 2 (r™Mh, (r7H) Z Pl g (pl oy,

k=N+2 i=N+1

After increasing K, again, because of ) 2y q " u(r!”

(57 @n(Cri @) < 0, (Cyi )+ K, (e} by (0)

) < o0, this yields

00 Y (Gt T, (Cyr7h)

k=N+1
+K,0 Y e+ )RR 7R, n=N,o<r"
k=N+2

" Now fix the constant ¢, = ¢,{m, d) > 0 in (5.7) and choose
{In r2 (e, +1)HA0,
@, (Cy; 1)/ (2). From {5.7) it follows that

Let b, (Q)= SUPo<:gp
< x{F Mk, r"M+K 2™ h (r™")

Oy (Cp3 777

n

+c; 3 r"‘""’gx(r"‘)kz(r*").+K* b3 r“""’gx(r_"]hl(r“"),-‘ nzN.
k=N+1 k=N+2 -
Condition (By) yields (cf. the proof of Lemma 3.3)
(5.8) @y (Cos 17 S %7 Hm}, n 2N,

where the function H: Ny y—[0, 00) is bounded, and limy,..., H(n) = 0 if
Cy, Te A™". Note that Cy & A™ (resp. ™) if f, Te A™ (resp. 2"*)! H depends
on all the data T, £ r, m, d, », &, {. Combining now 5.4(a), (5.3} and (5.8) we obtain

(59) Neilt < el (T) ¥ =m 5 (v =) H (), =N, seL(r, n+1), acM.
Recall that K (1) = U LenxM (dlSjOlnt unmn) and put

= r”(m lal} eg

B for neN,, seL{r,n+1), xeM.
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Then (5.9) says that ée % (K (), E), and even éec} (K (), E) if £, Te ™. Let
¢, = c, (m, d) be the constant in {1.1) and let r satisfy

(11T} iz e 41
in addition to (I), (II). Then by Theorem 3.5 the function
e:= (PR 1 (&)

belongs to A™* (4, B), and ee A™*(I%, E} if f, Te A™*. By 5.4(c), (d) we have

) = 3 A,

the series converging in the topology of C™(I¢, E) (cf. the proof of Th. 3.5).
Suppose now that €S (r}) = L{r, 1) and D*f (&) = 0 for e M. By 5.4(a) we
then have ¢f = 0, xe M. Note that D" A, (§) = ef and D*A4,({) =0forn =2
(since £eS("™Y). Thus, D*e(¢) = D4, (£) = 0. It remains to show that
T(x}e(x) = f(x). But this follows from the identity -

%) ¥ 460 == Y, Bi6) = G,

and the estimate {cf. (5.3), (5.8))
ICull < € 0, (Cpis ™) < c () Hm) -0,

Remarks. (i) Theorem 5.1 has first been proved in [15] for m = 0. The
proof is considerably less complicated in this special case.

(i) In Theorem 5.1 it is possible to prescribe initial values of e and its
derivatives at the point & namely: Let M be a subset of M such that xe M,
B < o imply BeM. Let there be given a set (p%).ar = E with

A—CO. m

DfE =Y (;)Dﬁ T e ?, aeM.

fsa

Consider the function .
Fe:i=f)~T(x) 3 (x;-!:f) P, =xell

weM

Then f'meets the requirements of Theorem 5.1 and D* F(& =0 for ae M. Thus,
there is a solution &e A™*(I% E) {€e i™*(I% E)) of T(x)é&(x) = fx) with
D*é(8) = 0, we M. Now the function
)= &(x +Z(x é) . xel?,
aeM ! '
satisfies T(x) e(x) = f(x) and D*e () = p% « e M. This observation is essential
in deriving a lifting theorem for C®-functions from 5.1 (see [15], §5).
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(iii) Let €2 be a compact C*-manifold with {or withouot) boundary. Then by
means of local coordinates we may define the function spaces A™*(Q, F),
A™* (€, F). It should be clear that the main results of this article (4.4, 5.1, 5.2)
remain valid in this more general sitnation. For example, the analogue of
Theorem 4.4 can be obtained by imbedding @ into R", n sufficiently large, and
considering a C®-retraction x: U — @, where U is a compact neighbourhood of
£24,082 in R". Then A™* (2, F} becomes a complemented subspace of A™* (U, F),
hence of [ (N, F) by Th. 44. (The imbedding C™(Q, F)—C"(U, F) is just
Sfirfon) Our considerations at the end of §4 show that also A™*(2, F)
contains a complemented subspace isomorphic to I, (N, F), and that the same
is true if A is replaced by A, [, by ¢, Thus Pelczyfiski’s decomposition method
{18] applies.

(iv) P. Furlan ([5], 6.10) pointed out that the isomorphisms A ($?, R}
& ¢q, AM*(S%, R) =1, and our lifting theorem 4.1 do not hold for any Lf
% which does not belong to (A,B,)L{ (when lim,.qx/x(x) = 0). Thus, the
results of this paper cannot be generalized to weight functions » in a larger
class than (A,B,)Lf!
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