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Two-weight norm inequalities
for the Hardy—Littlewood maximal function
for one-parameter rectangles

by
OSCAR SALINAS (Santa Fe)

Abstract. We give a Sawyer type characterization of the pairs of weights (v, w) for which the
Hardy-Littlewood maximal function over one-parameter families of rectangles is bounded from
IPv)yto Bw), l<p<<g<€w, p<oo. .

Introduction. In 1975 D. 8. Kuriz {[K]} extended Muckenhoupt’s theorem
on weighted If boundedness of the Hardy-Littlewood maximal function to the
case of one-parameter families of rectangles. In 1982 E. T. Sawyer {[S]) gave
a characterization of the pairs of weights (v, w) for which the Hardy-Littlewood
maximal function over cubes is bounded as an operator from I?(p) to I%(w),
l<p<g< w, p<ow. Some of the main tools in Sawyer’s proof are
Calderon-Zygmund decomposition and the estimate of the Hardy-Littlewood
maximal function by the dyadic maximal function given by Fefferman and
Stein. On the other hand, an extension of the Calderén-Zygmund decom-
position can be applied to cne-weight problems, see for instance [AM];
however, this generalization does not work when the measures considered are
different and do not satisfy a doubling condition or when the space is not of
homogeneous type.

In this note we consider the two-weight problem for one-parameter families
of rectangles. The main points are a generalization of Calderén—Zygmund
decomposition and an extension of the Fefferman-Stein estimate.

In section 1 we give the statement of the result. In § 2 we introduce a family
of rectangles of dyadic type and prove some technical lemmas. In § 3 we show
how Sawyer’s technique can be applied by giving an extension of the
Fefferman-Stein estimate.
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§1. Given i=1,...,n, let ¢ R*—-RT be a nondecreasing function

satisfying

(1.1) lim ¢;(x) =0,
x—=0+

(1.2} fim ¢, (x)

(1.3} there exists a sequence {ry}ez such that 7, < Ppq, 1,0 (k— —0),
ty—> 0 (k—co) and

8 <o r)ene) <1, i=1,..,n keZ,

for some o e(0, 1)

Observe that if for every i =1, ..., n the function ¢, is continuous and
satisfies (1.1} and (1.2), then we can get a sequence {r;};.z such that (1.3) also
holds. In fact, choose r, such that

n

= H Tk)/%("kﬂ)

o, () wi(re+y) <

for every keZ and every i= 1,..., n.
Let 42, be the family of all rectangles of the form

Rx(xa J") = {y Ixi""yil € ti {Pi-(r): i= 1: ey ”}

where t = (t,...,t,), 1 €, <4, xeR" and ¢ = r > 0. In the sequel we shall
refer to R, (x, v) as a rectangle of parabolic type. When t = (1, ..., 1) we shall
say that R (x, ) = R, (x, ¥} is a parabolic rectangle with center x and radius r.
Let &, be the family of all parabolic rectangles with ¢ 2 > 0, #'= | J,»0 R,
and & — Ue>o 2,

Let us define the Hardy-Littlewood maximal functions for the families R,
&, P, and 2, ie.

M,f(x)= sup |R|” 1flf(y|dy, Mf(x) = sup |R|™ 1Ilf(y)l dy,
xeRed, xeRe®

M, f(x)= sup |R|™ 1Ilf Wdy, #f(x)=sup |RI™'[|f(y)ldy.
xeRe®, xeRed R

Clearly M, is equivalent to .#, and M is equivalent to 4.

The main result in this note is the following analogue to Sawyer's
theorem ([S]).

{14) THEOREM. Let 1 <p < g <
Borel measures in R". Then

(1.5) IMS lics@ey < C S Loy
for every fe I (dv) if and only if dv(x) = v(x)dx and

w0, p < 0. Let v and w be two positive
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(1.6) e M Ot 2™ lzaaen <
Jor every ReR.

C ||XRU P’”chav) < oo

As a corollary of Theorem (1.4) we can get a characterization of pairs of
measures for which (1.5) holds in terms of a condition like (1.6) for finite unions
of parabolic rectangles. Let # be the family of finite unions of rectangles with
ﬁxed radius and pairwise disjoint interiors, i.e. R e # iff there exist » > 0 and
{x;}{=1 = R" such that

k

= U R(x,7, Rix,

i=1

NaR{x, =9, i#].

(1.7y Lemma, Let 1 < p < g < 00, p < o0. Let v be a nonnegative measurable
function and let @ be a positive Borel measure in R™. Then (1.6) is equivalent to

(1.8) e M (xg v’ ™"
for every Re A,

Proof. It is clear that (1.6) implies (1.8). Assume (1.8). Let R € & be defined
by the set of inequalities

Mzape < C llxz o' " o < ©

I y;| 5 tPL(Q) 1< §; < 4» 2= 0: xeR".

Observe now that R is contained in a rectangle R, whose ith side length is '

Zsi(Pi(Q)] ) ﬂ
([2 PRI M A

where { -] denotes integer part. {R,,} converges to R as m tends to infinity. Let
us prove that for m large enough we have R, € 4. It suffices to show that if

(Cs: @: (@)@ (1/m)] + 1) g, (1/m) = ¢, ¢, (0)
t, < 4 for every m large enough. But
< ([Si @; () ¢; (1/m)]+ 1) @; (1/m)
®; (@) '
@, (1/m)
@ (@)’

and applying (1.1) and taking m large we see that the last term is less than 4.
Now (1.6) follows from (1.8) in. the following way:

then 1 <

5 o (e} @;(1/m)
fo (Um) @)

1\_ P =

TR TR

< himiof [lxg,, M O, 0" 72 Wrage)

m-+ o

e M (xx v )”Lﬂ(dm)

< lim inf (|, 01 7" NlLe@y = l2e 7" 5 Heo@n-
W=



4 0. Salinas

(1.9) CorOLLARY. Let 1 < p £ g < 0, p < . Let v and w be two positive
Borel measures on R". Then

(1.10) IS sy € C IS lleon
' for every fe I (dv) if and only if dv (x) = v (x) dx and (L.8) is true for every Re 4.
Proof. Follows from Lemma (1.7) and Theorem (1.4). m

Even though (1.8) resembles condition (3.2) in Theorem (3.1) of B. Jawerth
([¥]), where more general geometrical shapes are allowed for ¢ = p, we would
like to point out that Corollary (1.9) is not a particular case of that theorem,
because condition (3.3) in [J] is not required here,

(1.11) Remark. As a corollary of the preof of Theorem (1.4) we shall see in

Section 3 that if
{o:re+ or): i=1,..,n, ke Z}

is a bounded set of integer numbers greater than one, then, with the same
assumptions as in (1.9), inequality (1.10) holds if and only if dv{x} = v (x) dx and
(1.12)
for every Re?.

Observe mow that if @,() = ¥ with p,q;eN, taking r, = 2019

we have @, (res 1)/@; (r) = 2%=1% 8o (1.12) holds for these rational parabolic
rectangles.

(1.13) Remark. If g = p and w = v inequalities (1.6), (1.8) and (1.12) are all
equivalent to Muckenhoupt's 4, type condition for parabolic rectangles:

(o) umom P~ = R

. for every Re®. The proof follows the lines 6f [HKN]. And so our result
contains that of D. S. Kurtz ([K]) in which only continuous ¢,’s are considered.

lxr # (xr Ul_p')”r.w(dm) < Cllxg Ul_p,”LP(dV) < ®©

(1.14) Remark. It is worth pointing out that similar results are valid for
fractional maximal operators, and for maximal operators when the averages

are taken with respect to a Borel measure p satisfying the doubling condition
O0<puR)K Cu(R) < oo for every Re .

Here 2R is the rectangle concentric with R and with side lengths twice those
of R.

§2. Let keZ. We shall construct a family 2, of rectangles in %, which
share with the dyadic cubes of R” the following property:

2.1 if Iiinﬁja& @ then either R, SR, or R, = R,.

icm
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This construction will be carried out in such a way that the maximal function
M, will be bounded in terms of maximal functions over translations of Z,.
The next result is an immediate consequence of (2.1).

(2.2) LeMMA. Let & < D@,. Then there exists a sequence {R;} ¢ F with
pairwise disjoint interiors such that for every Re % there is an i for which
R < R,

Write ¢ = ¢; and €; = [@ (re—j+1)/@ (re-}1, jeN. Let

Sj-1 .
== e = ]_,

SO 290 (rk):v SJ ej ajs I

where

1 f2g—2t <4,

e; @ (-

a; = .
2 if4g—22t
e)<0(rk—‘))

The following elementary properties of the sequence s; will be basic for the
construction of &,.

(2.3) LeMma.
2.4) 5; = 2¢ (rk)/i]:—.[1 ea, J=1,
(2.5) 2 5/0(n-p) < 4,_ ji=0,
26 (o) Taa> o0, 721

Proof. (2.4) follows immediately from the definition of 5;. Let us prove (2.5}
inductively. Clearly (2.5) holds for j = 0. Assume (2.5) for j = m. Now,

8 1

Lid

S+ 1
2.7 = : .
@7 @ (= m+1) €mt1Omt1Q Prmm-1)
If 2 < 5,/(@ns1 @ (r-m-1)) < 4 then G,,, =1 and (2.5) follows from (2.7).
Assume now that 4 < s, /(€m+1 @ (fe-m-1)). Then @, = 2 and by induction
hypothesis we have ‘

sm (P (rk—m) _ Sm ﬁf’ (rk'—m)
2 =
Em+1 Uit @ Temm—1) @ () @ (Fk—m) ma1 Omt1 @ (Th-m—-1)

@ (rk““m) s 4
€nt1 Omt1 @ Tk—m—1)

Inequality (2.6) follows now from (2.4) and (2.5) in the following way:

< 4
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(s~ =) 1

J
i=1

j
& a;=20(r)—¢ (rk—j) H &
=1

= 2000220 () > 20 (00 ) = 911 =

For je Nw{0} and heZ, set
Iy ={xeR: [x~2h+1)s| < s}

Let {I,; jeNU{0}, heZ} be the sequence of intervals in the ith axis
associated to ¢ = ¢, i =1,...,n Let h={(h,, ..., h)eZ" and

n
Ry = [T L)
i=1
Applying (2.5) we see that R, ; belongs to A,.. We now define
(2.8) Dy = {R,;: he Z" and jeNU{0}},

which clearly satisfies (2.1).

Let us now prove a technical lemma related to translations of @, which will
be useful for the proof of Theorem (1.4).

Let R, be a parabolic rectangle with radius r < r, and center at x & R", Pick
J 2 1 such that re_; <7 < 7 ;4. Now let #,, be the family of rectangles
Re%, with ith side length 2s} , such that there exists te7T, =
[Ti<1[—50; (), 5¢;(r)] for which Ry = t+R. Finally, we set

Qpoi = {1€T: IReFpy: Ry < 1+R}.
(29) LemMMA. There exists a constant C depending only on n such that
(2.10) o Qpoul = CIT.

Proof The construction of @, and the fact that every n-dimensional
translation can be expressed as an iteration of 1-dimensional translations allow
us to consider only the case n = 1. Clearly there is an R € @, of length 25, such
that RNRy # @. On the other hand, R can be written as the union of
[[{z1 ¢, a; intervals belonging to %y, Let I be one of these intervals, Tho
measure of the set of those ©'s for which R, < z+17 is 2(sj—1— @ {r). Let
Qpox be the set of translations of all of these intervals I; then Qpor & Qngn.
Since the sets of translations corresponding to two different intervals I are
disjoint, applying (2.6), we get the desired result in the following way:

ji—-1
1Qroul 2 1Qroul = 2(51—1—fP (ry H € a;
i=1
. i

Z 21— re-g-0) [T e 2 200,) = $|T). »
i=1
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§3. Let ke Z and let &, be the family of rectangles defined in (2.8). Define

wf(xy= sup [RI7'[|f(y+)ldy.

x—teReD)

Because of (2.1), the method introduced by E. Sawyer ([S]) in order to
obtain the boundedness of the maximal function taken over dyadic cubes 9f R"
with bounded sides can be extended to the present geometrical situation.

(3.1)LemMa. Let l < pg g€ oo, p<co.Letvbea nom}egative measurable
function and w a positive Borel measure in R". Then there exists C > 0 such that
Jor each TeR”

(3.2) 1M, fllLowe < C 1/ NLrwas)
is equivalent to _
(3.3) 2z (M3, (g 2 7" W|eswer € Clltr '™ " llzrwan < o0,
for every Red,. |
Proof Follows from Lemma (2.2) applying Sawyer’s technique. =
The following lemma provides the desired estimate of .#,, in terms of M3,

(3.4) LEMMA. There exists a constant C depending only on n and « such t_har
(3.5) M (< CITI™ | M, f(x)dr -
T

for every xeR" and every fe L, (R).

Proof. Let xe R" and R, € # such that x € Ry, the radius of Ry is < r, and
M () < 2R [ SO dy.
Rg

Letj == 1 be such that re_; <7 < Fe—;4+; and take R e Fp,;. Then there exists
a te T, such that

IRE
‘ﬁrkf(x) S ZTI{—QI .@kf(x}:

which, from (2.5) and (L.3), is bounded by

n

shey @i‘(rk*f"’ 1)Mbkf(x) < 2(%)"_ . S ().

i1 @ (Te—j41) @ (ri-7)

Finally, integrating with respect to 7€ 2, and using inequality (2.10) we
get (3.5). = .
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Proof of Theorem (1.4). The “only if” part is similar to that of Sawyer.
For the converse, applying (3.5), Minkowski's inequality and (3.2) we get

4 v fllLeway < CIT™! | iM e, fllioge 4 < C S | p e

Tr

Letting k— oo gives [# f Loy € C |If linwaxy- Now (1.5) follows from the
equivalence of M and .4, =

Proof of Remark (1L.11). If F = {0, (rps )/, (r): i=1,...,n, keZ) is
a bounded set of integers greater than one, then we can construct 2, using the
sequence {si}%, defined by

{

: . 8}

So = @, (r shey = ! PR

o= 0:lera) a §9i(rk—j+2)/(!’s(rk—j+1) -
The following analogues of (2.4)-(2.6) are valid:

. {r :
24y = 3 AR = 0 (r-jra),  P=1, s My
@i ltimmt2)/0; Pk +1)

m=1

(2.5 2< S0, (- < K, +1, where K, = maxF,

(2.6 (5}“*‘?0;‘(7’1:—1)) ]jl @i {Pe—mr2)/@; (rk—;m+1) = (1-K5Y) @ ("ae+ 1),

where K, = min F.
Inequalities (2.10) and (3.5) hold with T = [Tt=1 [~ 50, (Frr 1), Sopi(ree )],
Remark (1.11) now follows from the fact that @, « 2,
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