

## STUDIA MATHEMATICA 98 (1) (1991)

## Differentiable bundles of subspaces and operators in Banach spaces

b

## FRANK MANTLIK (Dortmund)

Abstract. This paper follows the line of ideas of R. Janz [3], [4] who introduced a notion of continuous and holomorphic bundles of subspaces of a Banach space. His concepts constitute an elegant framework for the study of unbounded operators which depend on a parameter. Motivated by the work of Janz we investigate bundles of closed linear subspaces of a Banach space which are differentiable in a suitable sense. Our construction is based on lifting results for differentiable functions which have been established by the author in [6], [7].

**0. Preliminaries.** Throughout this note the letters E, F, G denote Banach spaces (real or complex). By C(E) we denote the set of all closed linear subspaces of E. For any two subspaces  $M, N \in C(E)$  let

$$\delta(M, N) := \sup \{ \operatorname{dist}(e, N) | e \in M, ||e|| \leq 1 \},$$

$$\Delta(M, N) := \max \{ \delta(M, N), \delta(N, M) \},$$

$$\gamma(M, N) := \inf \{ \operatorname{dist}(e, N) / \operatorname{dist}(e, M \cap N) | e \in M \setminus N \},$$

$$\Gamma(M, N) := \min \{ \gamma(M, N), \gamma(N, M) \}.$$

The reader may consult T. Kato [5], Chap. IV, for the properties of  $\Delta$  and  $\Gamma$ . Especially we shall make use of the fact that there is a metric topology (the gap topology) on C(E) such that for each  $M \in C(E)$  the sets

$$U_{\varepsilon}(M) := \{ N \in \mathcal{C}(E) \mid \Delta(M, N) < \varepsilon \}, \quad \varepsilon > 0,$$

form a neighborhood basis of M. In terms of this topology we shall speak of continuous mappings  $M: X \to C(E)$  when X is a topological space. The significance of  $\Gamma$  stems from the fact that for any  $M, N \in C(E)$  we have  $\Gamma(M, N) > 0$  iff  $M + N \in C(E)$  ([5], § IV.4.1).

0.1. THEOREM (Janz [4]). Let X be a topological space and let  $M, N: X \to C(E)$  be continuous. Assume that  $\Gamma(M(x_0), N(x_0)) > 0$  for some  $x_0 \in X$ . Then the following conditions are equivalent:

<sup>1985</sup> Mathematics Subject Classification: Primary 47A56; Secondary 47A55.

- (i)  $x \mapsto \Gamma(M(x), N(x))$  is bounded away from 0 in a neighborhood of  $x_0$ .
- (ii)  $x \mapsto \overline{M(x) + N(x)}$  is continuous in a neighborhood of  $x_0$ .
- (iii)  $M(x)+N(x) \in C(E)$  in a neighborhood U of  $x_0$  and  $x \mapsto M(x)+N(x)$  is continuous on U.
  - (iv)  $x \mapsto M(x) \cap N(x)$  is continuous in a neighborhood of  $x_0$ .

We denote by C(E, F) the set of all closed linear operators  $A: \text{dom}(A) \to F$  where dom (A) is a linear subspace (not necessarily dense) of E, and by B(E, F) the subset of C(E, F) which consists of all bounded operators  $A: E \to F$ . For any  $A \in C(E, F)$  let

$$\begin{aligned} &\ker\left(A\right) := \left\{e \in \operatorname{dom}\left(A\right) \mid Ae = 0\right\} \subset E, \\ &\operatorname{ran}\left(A\right) := \left\{Ae \mid e \in \operatorname{dom}\left(A\right)\right\} \subset F, \\ &\operatorname{gra}\left(A\right) := \left\{\left(e, Ae\right) \mid e \in \operatorname{dom}\left(A\right)\right\} \subset E \times F, \\ &\Gamma\left(A\right) := \inf\left\{\left|\left|Ae\right|\right| / \operatorname{dist}\left(e, \ker\left(A\right)\right)\right| \mid e \in \operatorname{dom}\left(A\right) \setminus \ker\left(A\right)\right\}. \end{aligned}$$

We have (cf. [5], § IV.5)

$$\Gamma(A) > 0$$
 iff  $\operatorname{ran}(A) \in C(F)$ ,  
 $\Gamma(\operatorname{gra}(A), E \times \{0\}) = \Gamma(A) (1 + \Gamma(A)^2)^{-1/2}$ 

if the norm on  $E \times F$  is defined to be  $||(e, f)|| := (||e||^2 + ||f||^2)^{1/2}$ .

By identifying each operator  $A \in C(E, F)$  with its graph the set C(E, F) can (and will) be viewed as a topological subspace of  $C(E \times F)$ . It is not hard to see that C(E, F) induces on B(E, F) just the usual operator norm topology (cf. [5], § IV.2.4).

- 0.2. THEOREM. Let X be a topological space and let  $A: X \to C(E, F)$  be continuous. Assume that  $\Gamma(A(x_0)) > 0$  for some  $x_0 \in X$ . Then the following conditions are equivalent:
  - (i)  $x \mapsto \Gamma(A(x))$  is bounded away from 0 in a neighborhood of  $x_0$ .
  - (ii)  $x \mapsto \overline{\operatorname{ran}(A(x))}$  is continuous in a neighborhood of  $x_0$ .
- (iii)  $\operatorname{ran}(A(x)) \in C(F)$  in a neighborhood U of  $x_0$  and  $x \mapsto \operatorname{ran}(A(x))$  is continuous on U.
  - (iv)  $x \mapsto \ker(A(x))$  is continuous in a neighborhood of  $x_0$ .

Proof. With M(x) = gra(A(x)),  $N(x) = E \times \{0\}$  the assertion follows from Th. 0.1 since  $M(x) + N(x) = E \times \text{ran}(A(x))$  and  $M(x) \cap N(x) = \text{ker}(A(x)) \times \{0\}$ .

0.3. DEFINITION. Let X be a topological space and let  $M, N: X \to C(E)$  resp. A:  $X \to C(E, F)$  be continuous. The pair (M, N) resp. the mapping A are said to be regular  $[at x_0 \in X]$  if one (hence all) of the conditions of Th. 0.1 resp. of Th. 0.2 are satisfied for each  $x_0 \in X$   $[at x_0 \in X]$ .

We pause to give some useful criteria for regularity.

- 0.4. PROPOSITION. Let X be a metric space and A:  $X \to C(E, F)$  a continuous mapping such that ran (A(x)) is closed,  $x \in X$ . Let  $x_0 \in X$ .
- (a) Assume that  $\ker (A(x_0))$  is complemented in  $E[\operatorname{ran}(A(x_0))]$  is complemented in F]. Then A is regular at  $x_0$  iff there exists a closed subspace  $E_0$  in E  $[F_0$  in F] and a neighborhood Y of  $x_0$  such that  $E_0 \oplus \ker (A(x)) = E$   $[F_0 \oplus \operatorname{ran}(A(x))] = F$  for  $x \in Y$ .
- (b) Assume that dim  $\ker(A(x_0)) < \infty$  [codim  $\operatorname{ran}(A(x_0)) < \infty$ ]. Then A is regular at  $x_0$  iff there exists a neighborhood Y of  $x_0$  such that dim  $\ker(A(x))$  [codim  $\operatorname{ran}(A(x))$ ] is constant for  $x \in Y$ .

Proof. According to R. Janz [4] there exist Banach spaces D, G and regular continuous operator functions  $U: X \to B$   $(D, E \times F)$ ,  $V: X \to B$   $(E \times F, G)$  with  $ran(U(x)) \equiv gra(A(x)) \equiv ker(V(x))$ . Put

$$\widetilde{U} : X \to \mathbf{B} (E \times D, E \times F), \qquad \widetilde{U}(x)(a, b) := (a, 0) + U(x) b,$$

$$\widetilde{V} : X \to \mathbf{B} (E \times F, F \times G), \qquad \widetilde{V}(x)(a, b) := (b, V(x)(a, b)).$$

Then  $\operatorname{ran}(\tilde{U}(x)) \equiv E \times \operatorname{ran}(A(x))$  is closed and  $\ker(\tilde{V}(x)) \equiv \ker(A(x)) \times \{0\}$ . Furthermore, from [3], (1.5), it follows that  $\Gamma(\tilde{V}(x)) > 0$  (since  $\Gamma(E \times \{0\}, \operatorname{gra}(A(x))) > 0$ ), i.e.  $\operatorname{ran}(\tilde{V}(x))$  is closed, too. So from Th. 0.2 it follows that A is regular iff  $\tilde{U}$  is regular iff  $\tilde{V}$  is regular. The assertion is now obtained from the corresponding result for bounded-operator functions (cf. [9], § I.2) applied to  $\tilde{U}$ ,  $\tilde{V}$ .

In a similar way the proof of the following result can be reduced to the case of bounded-operator functions ([8], Lemma 1.9).

0.5. PROPOSITION. Let X be a metric space and  $A: X \to C(E, F)$ ,  $B: X \to C(F, G)$  continuous such that  $\operatorname{ran}(A(x)) = \ker(B(x))$ ,  $\operatorname{ran}(B(x)) \in C(G)$  for  $x \in X$ . Then both A and B are regular.

There is a well developed theory which makes it possible to check the conditions of Prop. 0.4 in the case of an operator pencil A(x) = T - xS (cf. [1] and the literature cited there).

Next we wish to define a notion of differentiability for mappings  $M: X \to C(E)$ . For technical reasons we restrict ourselves to the case of a compact cube  $X = I^d$  where I = [0, 1] and  $d \in \mathbb{N}$ . However, by using local coordinates and suitable partitions of unity all our results can analogously be proved for functions defined on a real  $C^{\infty}$ -manifold X with (or without) boundary. For  $m \in \mathbb{N}_0$  let

$$C^m(I^d, E) := \{f: I^d \to E \mid f \text{ is } m \text{ times continuously differentiable}\},$$

$$C^{\infty}(I^d, E) := \bigcap_{m=0}^{\infty} C^m(I^d, E).$$

Let  $\kappa$ :  $[0, \infty) \rightarrow [0, \infty)$  be a continuous function with the properties

 $\kappa(\rho) = 0$  iff  $\rho = 0$ ,  $\kappa$  and  $\rho/\kappa(\rho)$  are nondecreasing.

Such a function will be called a Lipschitz function (for short: Lf). For any  $f \in C^m(I^d, E)$  and  $\varrho > 0$  let

$$\omega_{m}(f; \varrho) := \sum_{|\alpha| = m} \sup \{ ||D^{\alpha} f(x) - D^{\alpha} f(y)|| \mid x, y \in I^{d}, ||x - y|| \le \varrho \},$$

where  $\alpha = (\alpha_1, ..., \alpha_d)$  is a multiindex of nonnegative integers and  $|\alpha| := \sum_{i=1}^{d} |\alpha_i|$ ,  $||x|| := \max_{i=1}^{d} |x_i|$ . The function spaces

$$A^{m,\kappa}(I^d, E) := \{ f \in C^m(I^d, E) \mid ||f||_{m,\kappa} := ||f||_m + \sup_{\varrho > 0} \omega_m(f; \varrho) / \kappa(\varrho) < \infty \}$$

with  $||f||_m := \sum_{|\alpha| \le m} \sup \{||D^{\alpha}f(x)|| \mid x \in I^d\}$ , and

$$\lambda^{m,\varkappa}(I^d, E) := \{ f \in \Lambda^{m,\varkappa}(I^d, E) \mid \lim_{\varrho \to 0} \omega_m(f;\varrho)/\varkappa(\varrho) = 0 \}$$

are complete under the norm  $\|\cdot\|_{m,\varkappa}$  [2]. Note that for any Lf  $\varkappa$  we have  $\lambda^{m+1,\varkappa} \subset \Lambda^{m+1,\varkappa} \subset C^{m+1} \subset \Lambda^{m,\varkappa}$  and  $C^{m+1} \subset \lambda^{m,\varkappa}$  if  $\lim_{\varrho \to 0} \varrho/\varkappa(\varrho) = 0$ .

0.6. Definition. Let the symbol  $\mathcal{F}$  stand for one of the above function spaces and let  $M: I^t \to C(E)$  be given. Then we denote by

$$\mathscr{F}(I^d, M) := \{ e \in \mathscr{F}(I^d, E) \mid e(x) \in M(x), x \in I^d \}$$

the set of all (global)  $\mathscr{F}$ -sections in M. We say that M is an  $\mathscr{F}$ -bundle and write  $M \in \mathscr{F}(I^d, C(E))$  if the following holds:

- (i)  $M: I^d \to \mathbb{C}(E)$  is continuous.
- (ii) For any  $x_0 \in I^d$  and  $\xi_0 \in M(x_0)$  there is  $e \in \mathcal{F}(I^d, M)$  with  $e(x_0) = \xi_0$ .

In particular, Def. 0.6 yields a notion of differentiability for mappings  $T: I^d \to C(E, F)$  by requiring that  $x \mapsto \operatorname{gra} (T(x))$  be of class  $\mathscr{F}(I^d, C(E \times F))$ . We write  $T \in \mathscr{F}(I^d, C(E, F))$  then. In order to avoid ambiguities we shall use the notation  $T \in \mathscr{F}(I^d, B(E, F))$  for operator functions  $T: I^d \to B(E, F)$  which are differentiable with respect to the uniform operator norm (see, however, Cor. 2.2 below).

0.7. LEMMA. Let D be a linear subspace of  $\Lambda^{m,\kappa}(I^d, G)$  endowed with a norm  $\|\cdot\|$  stronger than  $\|\cdot\|_{m,\kappa}$ . For each  $x \in I^d$  let the operator S(x):  $D \to G$  be defined by S(x)g := g(x). Then the mapping  $x \mapsto S(x)$  is of class  $\Lambda^{m,\kappa}(I^d, \mathbf{B}(D, G))$ .

Proof. Obviously  $S(x) \in B(D, G)$ ,  $x \in I^d$ . In the case m = 0 a direct calculation shows that  $||S||_{0,x} \leq 2K$  if  $||\cdot||_{0,x} \leq K ||\cdot||$ . If  $m \geq 1$  an iterated application of Taylor's formula yields  $S \in C^m(I^d, B(D, G))$  and  $(D^\alpha S(x))g = D^\alpha g(x)$  for each  $g \in D$ ,  $x \in I^d$  and  $|\alpha| \leq m$ .

A Lf × will be called admissible (1) if the following two conditions are satisfied:

- (A) There is a > 0 with  $\int_0^s (\varkappa(t)/t) dt \le a \varkappa(s)$ ,  $0 < s \le 1$ ;
- (1) The class of admissible Lf's has been denoted by  $(A_0B_1)Lf$  in the preceding article.

- (B) There is b > 0 with  $\int_{s}^{1} (\varkappa(t)/t^2) dt \le b\varkappa(s)/s$ ,  $0 < s \le 1$ .
- The most important examples of admissible Lf's are the Hölder functions  $u(s) = s^p$  where 0 . The following theorem is quoted from [6] and [7].
- 0.8. Theorem. Let the symbol  $\mathscr{F}$  stand for one of the function spaces  $C^{\infty}$ ,  $\lambda^{m,\times}$ ,  $\Lambda^{m,\times}$  where  $\varkappa$  is an admissible Lf and  $m \in \mathbb{N}_0$ . Let  $T \in \mathscr{F}(I^d, B(E, F))$  be regular. Let  $f \in \mathscr{F}(I^d, F)$  with  $f(x) \in \operatorname{ran}(T(x))$ ,  $x \in I^d$ , and  $x_0 \in I^d$ ,  $\xi_0 \in E$  such that  $T(x_0) \xi_0 = f(x_0)$ . Then there is a function  $e \in \mathscr{F}(I^d, E)$  which satisfies  $e(x_0) = \xi_0$  and T(x) e(x) = f(x),  $x \in I^d$ .

It is one of our aims to generalize part of Theorem 0.8 to the case where the operator function T takes its values in the set of unbounded operators,  $T \in \mathcal{F}(I^d, C(E, F))$ .

- 1. Representation theorems for differentiable bundles. Let F' denote the dual of a Banach space F and  $\iota_F \colon F \to F''$  the canonical imbedding into its second dual. For each subset V of F let  $V^{\circ} := \{ w \in F' \mid |w(v)| \leq 1, v \in V \}$ .
- 1.1. LEMMA. Let  $M \in C(F)$  and  $A \in B(F'', G)$  with  $\ker(A) = M^{\circ \circ}$ . Then the restriction  $A|_F = A \circ \iota_F$  satisfies  $\ker(A|_F) = M$  and  $\Gamma(A|_F) \geqslant \Gamma(A)$ . In particular, if  $\operatorname{ran}(A)$  is closed then also  $\operatorname{ran}(A|_F)$  is closed.

Proof. Apply Lemmas 1.1 and 1.2 of [4]. ■

- 1.2. THEOREM. Let  $M: I^d \to C(F)$  be continuous, let  $m \in \mathbb{N}_0$  and  $\varkappa$  an admissible Lf. Then the following conditions are equivalent:
  - (i)  $M \in \Lambda^{m,\times} (I^d, \mathbb{C}(F)).$
- (ii) There is a Banach space E and a (regular) operator function  $S \in A^{m,\kappa}(I^d, B(E, F))$  such that  $\operatorname{ran}(S(x)) = M(x), x \in I^d$ .
- (iii) There is a Banach space G and a (regular) operator function  $T \in \Lambda^{m, \times} (I^d, B(F, G))$  such that  $\ker (T(x)) = M(x)$  and  $\operatorname{ran} (T(x)) \in C(G)$ ,  $x \in I^d$ .
  - (iv)  $M^{\circ}$ :  $x \mapsto (M(x))^{\circ}$  is of class  $A^{m,x}(I^d, C(F'))$ .

Note that the regularity of the operator functions S, T is a consequence of Theorem 0.2.

Proof. (i)  $\Rightarrow$  (ii). Let  $E := \Lambda^{m,x}(I^d, M)$  be endowed with the norm  $\|\cdot\|_{m,x}$ . Then E is a Banach space and by Lemma 0.7 the operator function  $x \mapsto S(x)$ , S(x)e := e(x) belongs to  $\Lambda^{m,x}(I^d, B(E, F))$ . From the assumption it follows that ran (S(x)) = M(x) for each  $x \in I^d$ .

- (ii)  $\Rightarrow$  (iv). Let  $S \in A^{m, \times}(I^d, B(E, F))$  satisfy (ii) and consider the transpose S'(x):  $F' \to E'$  of S(x). Then  $S' \in A^{m, \times}(I^d, B(F', E'))$  and S' is regular because  $\gamma(S'(x)) = \gamma(S(x))$  [5]. Furthermore,  $\ker(S'(x)) = M^{\circ}(x)$  for  $x \in I^d$ , and thus  $M^{\circ}$ :  $I^d \to C(F')$  is continuous by Th. 0.2. Fix  $x_0 \in I^d$  and  $\xi_0 \in M^{\circ}(x_0)$ . Then from Th. 0.8 follows the existence of a function  $f' \in A^{m, \times}(I^d, F')$  such that  $f'(x_0) = \xi_0$  and  $S'(x) f'(x) \equiv 0$ . Thus  $f' \in A^{m, \times}(I^d, M^{\circ})$  and it follows that  $M^{\circ} \in A^{m, \times}(I^d, C(F'))$ . The same argument shows that (iii)  $\Rightarrow$  (i) holds.
  - (iv) $\Rightarrow$ (iii). By what is already proved above there is a Banach space  $\tilde{G}$  and

a regular operator function  $\widetilde{T} \in A^{m,\kappa}(I^d, B(\widetilde{G}, F'))$  such that  $\operatorname{ran}(\widetilde{T}(x)) = M^{\circ}(x)$ ,  $x \in I^d$ . Put  $T(x) := \widetilde{T}'(x)|_F$ . Then  $T \in A^{m,\kappa}(I^d, B(F, \widetilde{G}'))$  and by Lemma 1.1 we have  $\ker(T(x)) = M(x)$ ,  $\operatorname{ran}(T(x)) \in C(\widetilde{G}')$  for  $x \in I^d$ .

The analogue of Theorem 1.2 for  $C^{\infty}$ -functions reads:

- 1.3. THEOREM. Let  $M: I^d \to C(F)$  be continuous. Then the following conditions are equivalent:
  - (i)  $M \in C^{\infty}(I^d, \mathbb{C}(F))$ .
  - (ii)  $M \in C^m(I^d, C(F))$  for each  $m \in \mathbb{N}_0$ .
- (iii) There is a Banach space E and a (regular) operator function  $S \in C^{\infty}(I^d, B(E, F))$  such that ran(S(x)) = M(x),  $x \in I^d$ .
- (iv) There is a Banach space G and a (regular) operator function  $T \in C^{\infty}(I^d, \mathbf{B}(F, G))$  such that  $\ker(T(x)) = M(x)$  and  $\operatorname{ran}(T(x)) \in C(G)$ ,  $x \in I^d$ .
  - (v)  $M^{\circ} \in C^{\infty}(I^d, \mathbb{C}(F'))$ .

If 1.3(iii) holds then from Theorem 0.8 it follows that the Fréchet space  $C^{\infty}(I^d, M)$  (endowed with the subspace topology of  $C^{\infty}(I^d, F)$ ) is a quotient of the space  $C^{\infty}(I^d, E) \cong (s) \, \hat{\otimes}_{\pi} E$ , where (s) denotes the Fréchet space of all rapidly decreasing sequences. D. Vogt [10] characterized the quotient spaces of  $(s) \, \hat{\otimes}_{\pi} E$  (E a Banach space) by a topological invariant ( $\Omega$ ). The following lemma essentially shows that for any bundle  $M \in \bigcap_{m=0}^{\infty} C^m(I^d, C(F))$  the space  $C^{\infty}(I^d, M)$  has in fact property ( $\Omega$ ). We use the notation  $A^{m,1/2} := A^{m,\times}$  with  $\kappa(\varrho) := \varrho^{1/2}$ .

1.4. Lemma. Let  $M \in \bigcap_{m=0}^{\infty} C^m(I^d, C(F))$ . Then there are constants  $K_m, N_m > 0$   $(m \in \mathbb{N}_0)$  such that for each  $x_0 \in I^d$  and  $r \geqslant 1$  any  $f \in \Lambda^{m,1/2}(I^d, M)$  admits a decomposition  $f = f_1 + f_2$ , where

$$f_1 \in A^{m,1/2}(I^d, M), \quad f_1(x_0) = 0, \quad ||f_1||_m \leqslant r^{-1} ||f||_{m,1/2},$$

$$f_2 \in A^{m+1,1/2}(I^d, M), \quad ||f_2||_{m+1,1/2} \leqslant K_m r^{N_m} ||f||_{m,1/2}.$$

Proof. Fix  $m \in \mathbb{N}_0$ . Since  $M \in \Lambda^{m+1,1/2}(I^d, \mathbb{C}(F))$  there is a Banach space  $E_{m+1}$  and a regular operator function  $S_{m+1} \in \Lambda^{m+1,1/2}(I^d, \mathbb{B}(E_{m+1}, F))$  such that ran  $(S_{m+1}(x)) \equiv M(x)$  (apply Th. 1.2). Now let  $f \in \Lambda^{m,1/2}(I^d, M)$ . By Th. 0.8 and the open mapping theorem (applied to the operator  $\pi \colon \Lambda^{m,1/2}(I^d, E_{m+1}) \to \Lambda^{m,1/2}(I^d, F)$ ,  $(\pi e)(x) := S_{m+1}(x)e(x)$  there is a constant  $\mu_m > 0$  which depends on  $S_{m+1}$  only and a function  $e \in \Lambda^{m,1/2}(I^d, E_{m+1})$  such that

$$S_{m+1}(x) e(x) \equiv f(x), \quad ||e||_{m,1/2} \leq \mu_m ||f||_{m,1/2}.$$

We construct a decomposition  $e = e_1 + e_2$  in the following way: First choose a function  $\psi \in C^{\infty}(\mathbf{R})$  with the properties

$$\psi(t) = 1 \quad \text{for } |t| \le \frac{1}{2}, \quad \psi(t) = 0 \quad \text{for } |t| \ge \frac{2}{3},$$
$$\psi(t) = 1 - \psi(t - 1) \quad \text{for } 0 \le t \le 1.$$

For r = 1, 2, ... let  $\sigma(r) := \{ s \in \mathbb{R}^d | r \cdot s \in \{0, ..., r\}^d \} \subset I^d$  and

$$\Phi\left(e,\,r;\,x\right):=\sum_{s\in\sigma\left(r\right)}\prod_{i=1}^{d}\psi\left(r\left(x_{i}-s_{i}\right)\right)\sum_{|\alpha|\leqslant m}\frac{(x-s)^{\alpha}}{\alpha!}D^{\alpha}\,e\left(s\right).$$

Put

$$e_1(x) := e(x) - \Phi(e, r; x), \quad e_2(x) := \Phi(e, r; x).$$

Then clearly  $e_2 \in C^{\infty}(I^d, E_{m+1})$  and

$$||e_2||_{m+1,1/2} \le c_0 ||e_2||_{m+2} \le c_0 r^{m+2} ||e||_m \le c_0 \mu_m r^{m+2} ||f||_{m,1/2}$$

with a constant  $c_0 > 0$  which depends on m and the choice of  $\psi$  only. From Lemma 1.1 in [7] it follows that

$$D^{\alpha} e_1(s) = 0$$
 for  $s \in \sigma(r)$ ,  $|\alpha| \le m$ ,

$$\omega_m(e_1; \varrho) \leqslant \omega_m(e; \varrho) + c_1 \varrho r \omega_m(e; r^{-1}), \quad 0 \leqslant \varrho \leqslant r^{-1},$$

with a different constant  $c_1$ . This yields by Taylor's formula

$$||e_1||_m \le c_2 \, \omega_m(e_1; r^{-1}) \le c_3 \, \omega_m(e; r^{-1})$$
  
 $\le c_3 \, r^{-1/2} \, ||e||_{m,1/2} \le c_3 \, \mu_m \, r^{-1/2} \, ||f||_{m,1/2}.$ 

Letting  $\tilde{e}_1(x) := e_1(x) - e_1(x_0)$ ,  $\tilde{e}_2(x) := e_2(x) + e_1(x_0)$  and  $f_i(x) := S_{m+1}(x) \tilde{e}_i(x)$  (i = 1, 2) we obtain  $f = f_1 + f_2$  with

$$f_1 \in A^{m,1/2}(I^d, M), \quad f_1(x_0) = 0, \quad ||f_1||_m \le K'_m r^{-1/2} ||f||_{m,1/2},$$

$$f_2 \in A^{m+1,1/2}(I^d, M), \quad ||f_2||_{m+1,1/2} \le K''_m r^{m+2} ||f||_{m,1/2}.$$

From this the assertion follows with  $N_m = 2m + 4$ .

1.5. LEMMA. Let  $M \in \bigcap_{m=0}^{\infty} C^m(I^d, C(F))$ . Then there are constants  $L_m > 0$   $(m \in \mathbb{N}_0)$  such that for any  $x_0 \in I^d$  and  $\xi_0 \in M(x_0)$  there exists a section  $f \in C^{\infty}(I^d, M)$  with

$$f(x_0) = \xi_0, \quad ||f||_m \le L_m ||\xi_0|| \quad \text{for } m \in \mathbb{N}_0.$$

Proof. Fix  $x_0 \in I^d$  and  $\xi_0 \in M(x_0)$  with  $\|\xi_0\| = 1$ . According to Th. 1.2 we may choose a Banach space  $E_0$  and a regular operator function  $S_0 \in \Lambda^{0,1/2}(I^d, B(E_0, F))$  with ran  $(S_0(x)) \equiv M(x)$ . Because of the regularity of  $S_0$  there is a constant  $0 < \tilde{I_0} := 2 \inf \{ \Gamma(S_0(x)) \mid x \in I^d \}^{-1} < \infty$  and  $e_0 \in E_0$  with

$$S_0(x_0) e_0 = \xi_0, \quad ||e_0|| \leqslant \tilde{l}_0.$$

Put  $f_0(x) := S_0(x) e_0$ ,  $x \in I^d$ . We inductively assume to have already constructed a function  $f_m \in A^{m,1/2}(I^d, M)$  such that

$$f_m(x_0) = \xi_0, \quad ||f_m||_{m,1/2} \le l_m$$

with a constant  $l_m \ge 1$  which depends on the given bundle M only. Then by Lemma 1.4 there is a decomposition  $f_m = f_m^1 + f_m^2$  with



$$f_m^1 \in A^{m,1/2}(I^d, M), \quad f_m^1(x_0) = 0, \quad ||f_m^1||_m \le \frac{1}{l_m \cdot 2^m} ||f_m||_{m,1/2} \le 2^{-m},$$

$$f_m^2 \in \Lambda^{m+1,1/2}(I^d, M), \quad ||f_m^2||_{m+1,1/2} \leq K_m (l_m 2^m)^{N_m} ||f_m||_{m,1/2} \leq l_{m+1},$$

where  $K_m$ ,  $N_m$  and thus  $l_{m+1} := \max\{1, K_m(l_m 2^m)^{N_m} l_m\}$  also depend on M and m only. We then put  $f_{m+1} := f_m^2$  and see that

$$f_{m+1} \in A^{m+1,1/2}(I^d, M), \quad f_{m+1}(x_0) = \xi_0,$$

$$||f_{m+1} - f_m||_m \le 2^{-m}, \quad ||f_{m+1}||_{m+1,1/2} \le l_{m+1}.$$

With the definition  $f(x) := \lim_{m \to \infty} f_m(x)$  we now obtain  $f \in C^{\infty}(I^d, M)$ ,  $f(x_0) = \xi_0$  and

$$||f||_m \le ||f_m||_m + \sum_{k=m}^{\infty} ||f_{k+1} - f_k||_k \le l_m + \sum_{k=m}^{\infty} 2^{-k} = :L_m. \blacksquare$$

Proof of Theorem 1.3. (i)  $\Rightarrow$  (ii): trivial. (ii)  $\Rightarrow$  (iii). Let the constants  $L_m$  be as in Lemma 1.5 and put

$$E := \{ f \in C^{\infty} (I^d, M) \mid ||f||_E := \sup_{m=0}^{\infty} (1/L_m) ||f||_m < \infty \}.$$

Then E is a Banach space. For  $x \in I^d$  let S(x):  $E \to F$  be defined through S(x) e := e(x). From Lemma 0.7 follows that  $S \in \bigcap_{m=0}^{\infty} A^{m,1/2}(I^d, B(E, F)) = C^{\infty}(I^d, B(E, F))$ . Furthermore, by the definition of E and Lemma 1.5 we have  $\operatorname{ran}(S(x)) \equiv M(x)$ .

The rest of the proof is analogous to that of Th. 1.2.

The methods employed above yield simple proofs for approximation results such as the following one:

1.6. PROPOSITION. Let  $M \in C^{\infty}$  ( $I^d$ , C(F)). Let  $m \in \mathbb{N}_0$  and  $\kappa$  an admissible Lf. Then for each  $f \in \lambda^{m,\kappa}(I^d, M)$ ,  $\kappa_0 \in I^d$  and  $\varepsilon > 0$  there is  $f_{\varepsilon} \in C^{\infty}(I^d, M)$  such that  $D^{\alpha}f_{\varepsilon}(\kappa_0) = D^{\alpha}f(\kappa_0)$ ,  $|\alpha| \leq m$ , and  $||f_{\varepsilon}-f||_{m,\kappa} \leq \varepsilon$ .

Proof. Choose  $S \in C^{\infty}(I^d, \mathbf{B}(E, F))$  as in 1.3(iii). From condition (B) it follows that  $\lim_{\varrho \to 0} \varrho/\varkappa(\varrho) = 0$ , which implies that  $S \in \lambda^{m,\varkappa}(I^d, \mathbf{B}(E, F))$ . Using our lifting result 0.8 for  $\lambda^{m,\varkappa}$ -functions and the fact that  $C^{\infty}(I^d, E)$  is dense in  $\lambda^{m,\varkappa}(I^d, E)$  (cf. [7], proof of Th. 4.2) the assertion follows easily.

- 2. The sum-intersection property and vector function equations. In this section let  $m \in \mathbb{N}_0$  be fixed and  $\kappa$  an admissible Lf. Let the symbol  $\mathscr{F}$  stand for either  $\Lambda^{m,\kappa}$  or  $C^{\infty}$ .
- 2.1. Theorem. Let  $M_1$ ,  $M_2 \in \mathcal{F}(I^d, C(F))$ . Then the following conditions are equivalent:
  - (i) The pair  $(M_1, M_2)$  is regular (cf. Def. 0.3).
  - (ii)  $M_1 \cap M_2$ :  $x \mapsto M_1(x) \cap M_2(x)$  is of class  $\mathcal{F}(I^d, C(F))$ .

(iii)  $M_1 + M_2$ :  $x \mapsto M_1(x) + M_2(x)$  is of class  $\mathcal{F}(I^d, C(F))$ .

Let one (hence all) of the above conditions be satisfied. Then the mapping

$$+\colon \mathscr{F}(I^d,\,M_1)\times \mathscr{F}(I^d,\,M_2)\to \mathscr{F}(I^d,\,M_1+M_2), \quad (v_1+v_2)(x):=v_1(x)+v_2(x),$$

is surjective. More precisely: Let  $w \in \mathcal{F}(I^d, M_1 + M_2)$ ,  $x_0 \in I^d$ ,  $\xi_1 \in M_1$   $(x_0)$  and  $\xi_2 \in M_2$   $(x_0)$  such that  $\xi_1 + \xi_2 = w$   $(x_0)$ . Then there exist  $v_1 \in \mathcal{F}(I^d, M_1)$ ,  $v_2 \in \mathcal{F}(I^d, M_2)$  such that  $v_1$   $(x_0) = \xi_1$ ,  $v_2$   $(x_0) = \xi_2$  and  $v_1 + v_2 = w$ .

Proof. By Th. 1.2 resp. Th. 1.3 there exist Banach spaces  $E_i$ ,  $G_i$  and regular operator functions  $S_i \in \mathcal{F}(I^d, B(E_i, F))$ ,  $T_i \in \mathcal{F}(I^d, B(F, G_i))$  with ran  $(S_i(x))$   $\equiv M_i(x) \equiv \ker(T_i(x))$  (i = 1, 2). Define

$$\begin{split} S \in \mathscr{F} \big( I^d, \ B \ (E_1 \times E_2, \ F) \big), \qquad S \ (x) \ (e_1, \ e_2) := \ S_1 \ (x) \ e_1 + S_2 \ (x) \ e_2, \\ T \in \mathscr{F} \big( I^d, \ B \ (F, \ G_1 \times G_2) \big), \qquad T \ (x) \ f := \ \big( T_1 \ (x) \ f, \ T_2 \ (x) \ f \big). \end{split}$$

Then  $\operatorname{ran}(S(x)) \equiv M_1(x) + M_2(x)$  and  $\operatorname{ker}(T(x)) \equiv M_1(x) \cap M_2(x)$ . Furthermore,  $\operatorname{ran}(T(x))$  is closed iff  $M_1(x) + M_2(x)$  is closed (apply (1.5) of [3]). Thus by Ths. 0.1 and 0.2 condition (i) is equivalent to the regularity of S or to the regularity of T. The equivalence of (i)–(iii) again follows from Th. 0.1 and Th. 1.2 resp. Th. 1.3.

Now assume that  $(M_1, M_2)$  is regular and let  $w, x_0, \xi_1, \xi_2$  be as above. Choose  $\xi_1 \in E_1$ ,  $\xi_2 \in E_2$  with  $S_1(x_0)$   $\xi_1 = \xi_1$ ,  $S_2(x_0)$   $\xi_2 = \xi_2$ . By Th. 0.8 there is a solution  $(\hat{v}_1, \hat{v}_2) \in \mathcal{F}(I^d, E_1 \times E_2)$  of

$$(\hat{v}_1(x_0), \hat{v}_2(x_0)) = (\hat{\xi}_1, \hat{\xi}_2), \quad S(x)(\hat{v}_1(x), \hat{v}_2(x)) \equiv w(x).$$

Put  $v_1(x) := S_1(x) \hat{v}_1(x)$  and  $v_2(x) := S_2(x) \hat{v}_2(x)$ .

- 2.2. COROLLARY. For any mapping  $T: I^d \to B(E, F)$  the following conditions are equivalent:
  - (i)  $x \mapsto T(x) e$  belongs to  $\mathcal{F}(I^d, F)$  for each  $e \in E$ .
  - (ii)  $T \in \mathscr{F}(I^d, B(E, F))$ .
  - (iii)  $T \in \mathscr{F}(I^d, C(E, F))$ .

Proof. Consider the case  $\mathscr{F} = \Lambda^{m,x}$  first.

(i)⇒(ii). Let the space

$$D := \Lambda^{m,\times} \left( I^d, \operatorname{gra} \left( T(\cdot) \right) \right) = \left\{ (e,f) \in \Lambda^{m,\times} \left( I^d, E \times F \right) \mid T(x) e(x) \equiv f(x) \right\}$$

be endowed with the norm  $||e||_{m,\varkappa} + ||f||_{m,\varkappa}$  and define

$$S(x): D \to E \times F$$
,  $S(x)(e, f):=(e(x), f(x))$  for  $x \in I^d$ .

By Lemma 0.7 the operator function  $x \mapsto S(x)$  is of class  $A^{m,x}(I^d, B(D, E \times F))$ . By assumption for each  $\xi \in E$  the function  $g_{\xi}(x) := (\xi, T(x) \xi)$  belongs to D. Thus there is a linear imbedding  $j : E \to D$ ,  $\xi \mapsto g_{\xi}$ , which is bounded by the closed graph theorem. With the canonical projection  $\pi_F : E \times F \to F$  we have  $T(x) = \pi_F \circ S(x) \circ j$ , which shows that in fact  $T \in A^{m,x}(I^d, B(E, F))$ .

 $(ii) \Rightarrow (iii)$ : easy to see.  $(iii) \Rightarrow (i)$ : analogous to the proof of Cor. 10 in [3], using our Th. 2.1.

From what is already proved the case  $\mathscr{F}=C^{\infty}$  follows by observing that  $C^{\infty}=\bigcap_{m=0}^{\infty}A^{m,1/2}$ .

- 2.3. COROLLARY. Let  $M \in \mathcal{F}(I^d, C(F))$ . Assume that  $M(x_0)$  is complemented in F for some  $x_0 \in I^d$ . Then:
- (i) There is a neighborhood Y of  $x_0$  and a projection-valued function  $P \in \mathcal{F}(Y, B(F, F))$  such that ran(P(x)) = M(x) for  $x \in Y$ .
- (ii) There is a neighborhood Y of  $x_0$  and a function  $T \in \mathcal{F}(Y, B(F, F))$  such that T(x) is invertible and T(x)  $M(x_0) = M(x)$  for  $x \in Y$ .

Proof. Analogous to the proof of Cor. 11 in [3].

- 2.4. COROLLARY. Let  $T \in \mathcal{F}(I^d, C(E, F))$ , ran (T(x)) closed for each x. Then the following conditions are equivalent:
  - (i) T is regular.
  - (ii)  $\operatorname{ran}(T(\cdot)) \in \mathscr{F}(I^d, C(F))$ .
  - (iii)  $\ker (T(\cdot)) \in \mathscr{F}(I^d, C(E))$ .

Let one (hence all) of the above conditions be satisfied. Let  $f \in \mathcal{F}(I^d, \operatorname{ran}(T(\cdot)))$ ,  $x_0 \in I^d$  and  $\xi_0 \in \operatorname{dom}(T(x_0))$  with  $T(x_0)\xi_0 = f(x_0)$ . Then there exists a function  $e \in \mathcal{F}(I^d, E)$  such that  $e(x_0) = \xi_0$  and  $e(x) \in \operatorname{dom}(T(x))$ , T(x)e(x) = f(x) for  $x \in I^d$ .

Proof. Consider  $M_1(x) = \operatorname{gra}(T(x))$ ,  $M_2(x) = E \times \{0\}$  in  $E \times F$  and  $w = (0, f) \in \mathscr{F}(I^d, M_1 + M_2)$ . Then  $M_1(x) + M_2(x) = E \times \operatorname{ran}(T(x))$  and  $M_1(x) \cap M_2(x) = \ker(T(x)) \times \{0\}$ . The assertion follows by application of Th. 2.1.

The most frequent situation where this result can be applied is the following one:

2.5. PROPOSITION. Let D be a linear subspace of E and  $T: I^d \to C(E, F)$  such that dom(T(x)) = D,  $x \in I^d$ . Assume that for each  $e \in D$  the function  $x \mapsto T(x) e$  belongs to  $\mathcal{F}(I^d, F)$ . Then  $T \in \mathcal{F}(I^d, C(E, F))$ .

Proof. We only have to show the continuity of the mapping  $x \mapsto \operatorname{gra}(T(x))$ . To this end we consider the norms

$$||e||_x := ||e|| + ||T(x)e||$$
 for  $x \in I^d$ ,  
 $||e||_x := ||e|| + \sup \{||T(x)e|| | |x \in I^d\}$ 

on D. Fix  $x \in I^d$  and let  $D_x := (D, \|\cdot\|_x)$ ,  $D_x := (D, \|\cdot\|_x)$ . Then  $D_x$  is a Banach space and by Cor. 2.2 we have  $T \in \mathcal{F}(I^d, B(D_x, F))$ . Thus there is  $c_x > 0$  with  $\|\cdot\|_x \le \|\cdot\|_x \le c_x \|\cdot\|_x$ . Since  $T: I^d \to B(D_x, F)$  is continuous there exists a neighborhood Y of X such that

$$||T(x)-T(y)||_{\mathbf{B}(D_v,F)} \le 1/(2c_x)$$
 for  $y \in Y$ .

This implies

$$||e||_* \le c_x ||e||_x \le c_x (||e||_y + ||(T(y) - T(x))e||) \le c_x ||e||_y + \frac{1}{2} ||e||_x,$$

i.e.  $||e||_* \leq 2c_x ||e||_y$  for  $y \in Y$  and  $e \in D$ .

For  $y_1, y_2 \in Y$  we obtain

$$\delta\left(\operatorname{gra}\left(T(y_{1})\right), \operatorname{gra}\left(T(y_{2})\right)\right)$$

$$\leq \sup\left\{\left\|\left(T(y_{1}) - T(y_{2})\right)e\right\| \mid e \in D, \|e\| + \|T(y_{1})e\| \leq 1\right\}$$

$$\leq \sup\left\{\left\|\left(T(y_{1}) - T(y_{2})\right)e\right\| \mid e \in D, \|e\|_{\infty} \leq 2c_{*}\right\}$$

if the norm on  $E \times F$  is defined to be ||e|| + ||f||. It follows that

$$\lim_{y\to x} \Delta\left(\operatorname{gra}\left(T(y)\right), \, \operatorname{gra}\left(T(x)\right)\right) \leqslant 2c_x \lim_{y\to x} \|T(y) - T(x)\|_{\mathbb{B}(D_x,F)} = 0. \quad \blacksquare$$

Remark. If  $R \in C(E \times F)$  is a closed relation then the definitions

dom 
$$(R)$$
:=  $\{e \in E \mid \text{there is } f \in F \text{ with } (e, f) \in R\}$ ,  
ran  $(R)$ :=  $\{f \in F \mid \text{there is } e \in E \text{ with } (e, f) \in R\}$ ,  
 $\ker(R)$ :=  $\{e \in E \mid (e, 0) \in R\}$ ,  
 $\operatorname{gra}(R)$ :=  $R$ 

are natural. With a slight abuse of notation we may write "Re = f" iff  $(e, f) \in R$ . Then Cor. 2.4 is easily seen to hold also in the more general situation where the operator function T is replaced by a relation mapping  $R \in \mathcal{F}(I^d, C(E \times F))$ .

## References

- H. Bart and D. C. Lay, The stability radius of a bundle of closed linear operators, Studia Math. 66 (1980), 307-320.
- [2] P. Furlan, Isomorphie- und Faktorisationssätze für Räume verallgemeinert Lipschitzstetiger Funktionen, Dissertation, Dortmund 1984.
- [3] R. Janz, Holomorphic families of subspaces of a Banach space, Oper. Theory: Adv. Appl. 28 (1988), 155-167.
- [4] -, Perturbation of Banach spaces, to appear.
- [5]. T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin 1966,
- [6] F. Mantlik, Linear equations depending differentiably on a parameter, Integral Equations Operator Theory 13 (1990), 231-250.
- [7] -, Isomorphic classification and lifting theorems for spaces of differentiable functions with Lipschitz conditions, this issue, 19-39.
- [8] Z. Slodkowski, Operators with closed ranges in spaces of analytic vector-valued functions, J. Funct. Anal. 69 (1986), 155-177.
- [9] G. Ph. A. Thijsse, Decomposition theorems for finite-meromorphic operator functions, thesis, Amsterdam 1978.
- [10] D. Vogt, On two classes of (F)-spaces, Arch. Math. (Basel) 45 (1985), 255-266.

FACHBEREICH MATHEMATIK, UNIVERSITÄT DORTMUND Postfach 50 05 00, D-4600 Dortmund 50, Fed. Rep. of Germany