icm

STUDIA MATHEMATICA 98 (1) (1991)

Differentiable bundles of subspaces
and operators in Bamach spaces -

by
FRANK MANTLIK (Dortmund)

Abstract. This paper follows the line of ideas of R. Janz [3], [4] who introduced a notion of
continuous and holemorphic bundtes of subspaces of a Banach space. His concepts constitute an
elegant [ramework for the study of unbounded operators which depend on a parameter. Motivated
by the work of Janz we investigate bundies of closed linear subspaces of a Banach space which are
differentiable in a suitable sense. Qur construction is based on lifting results for differentiable
functicns which have been established by the author in [6], [7].

0. Preliminaries. Throughout this note the letters E, F, G denote Banach
spaces (real or complex). By C(E) we denote the set of all clesed linear
subspaces of E. For any two subspaces M,N e C(E) let

8(M, N) :=sup {dist (e, N) |ee M, |le| < 1},

A(M, N) := max {5 (M, N}, §(N, M)},

y (M, N) := inf{dist (e, N)/dist (e, Mr;\N) lee M\N},
I'(M, N) := min {y(M, N), y(N, M)}.

The reader may consult T. Kato [5], Chap. IV, for the properties of 4 and T.
Especially we shall make use of the fact that there is a metric topology (the gap
topology) on C(E) such that for each M eC(E) the sets

U,(M):={NeC(E)|4A(M,N)< ¢}, >0,

il

|

I

form a neighborhood basis of M. In terms of this topclogy we shall speak of
confinuous mappings M: X —+C(E) when X is a topological space. The
significance of I' stems from the fact that for any M,NeC(E) we have
I'(M,N)>0if M+NeC(E) ([5], §IV4.1)

0.1. TaeoREM (Janz [4]). Let X be a topological space and let M, N: X — C(E)
be continuous. Assume that I' (M (x,), N (xo}) > O for some x,€ X. Then the
following conditions are equivalent:
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(i) x++I (M (x), N (x)) is bounded away from 0 in a neighborhood of x,.

(i) x—M (x)+N(x) is continuous in a neighborhood of x,.

(i) M (x)+N(x)eC(E)ina neighborhood U of xo and xr—M (x)+ N (x) is
continuous on U,

(iv) x> M (X)" N (x) is continuous in a neighborhood of xg.

We denote by C(E, F) the set of all closed linear operators A: dom(A)—F
where dom (A) is a linear subspace (not necessarily dense) of E, and by B(E, F)
the subset of C(E, F) which consists of all bounded operators A: E—F. For
any AeC(E, F) let

ker (4):= {eedom (A)| de = 0} =-E,
ran (4):= {Ae|esdom (4)} = F,
gra(A):= {(e, A¢)|eedom (A)} c ExF,
I (4) ;= inf {|| Aell/dist {e, ker (4)) | e dom (A)\ker (4)}.
We have (cf. [5], §IV.5)
(A} >0 iff ran(4)eC(F),
T (gra(A), Ex{0}) = I' (4) (1+T (4)?)"**

if the norm on ExF is defined to be |[(e, f)ll:= (lell®>+1 S5

By identifying each operator A e C(E, F) with its graph the set C {E, F)can
(and will) be viewed as a topological subspace of C (E x F). It is not hard to see
that C (E, F) induces on B (E, F) just the usual operator norm topology (cf. [5].
§IV.2.4).

0.2. THEOREM. Let X be a topological space and let A: X —C({E, F) be
continuous. Assume that I' (A (xg)) > 0 for some xo€ X. Then the following
conditions are equivalent: ‘

@) x—~I (A (x) is bounded away from O in a neighborhood of X,

(i) x+rran (A4 (x)} is continuous in a neighborhood of x,.

(i) ran (4 (x))e C(F) in a neighborhood U of x, and x—ran (A(x)) is
continuous on U.

(iv) xrrker (4 (x)) is continuous in a neighborhood of x,.

Proof. With M {x) = gra{4 (x)), N {x} = E x {0} the assertion follows from Th.
0.1 since M (x)+ N (x) = E xran (4 (x)) and M ()" N (x) = ker (4 (x))x{0}. =

0.3. DEFNITION. Let X be a topological space and let M, N: X - C(E) resp.
A: X —>C(E, F) be continuous. The pair (M, N) resp. the mapping A are said
to be regular [at x, € X] if one (hence all) of the conditions of Th. 0.1 resp. of
Th. 0.2 are satisfied for each x,eX [at x,eX].

We pause to give some useful criteria for regularity.
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0.4. PROPOSITION. Let X be a metric space and A: X — C(E, F) a continuous
mapping such that ran(A(x)) is closed, xcX. Let x,e X.

(a) Assume that ker (A (xy)) is complemented in E [ran (A (x,)) is comple-
mented in F]. Then A is regular at x, iff there exisis a closed subspace E, in E
[Fo in F] and a neighborhood Y of x, such .that E,@ker(4(x)) = E
[Fo@ran(A(x)) = F] for xe ¥ ,

(b) Assume that dim ker {4 (x,)) < oo [codim ran (A (x,)) < 0. Then A is
regular at X, iff there exists a neighborhood Y of x, such that dimker (4 (x))
[codim ran {4 (x))] is constant for xe Y. .

Proofl. According to R. Janz [4] there exist Banach spaces D, G and re-
gular continuous operator functions U: X -B(D,ExF), V: X B(ExF, G)
with ran(U (x)) = gra (4 (x}} = ker (V{(x)). Put

7 O(x)(a, b):=(a, 0)+U x)b,

U: X-B(ExD, ExF),
V: X-+B(ExF, FxG), V(x)(a, b):= (b, V{x}(a, b)).

Then ran(U (x)) = Exran(4(x)) is closed and ker (¥(x)) = ker (4 (x)) x {0}.
Furthermore, from [3], (1.5), it follows that I (¥(x)) > O (since I (Ex {0},
gra(4(x)) > 0), ie. ran {¥(x)) is closed, tco. So from Th. 0.2 it follows that A is
regular iff U is regular iff V is regular. The assertion is now obtained from the
corrgspgnding result for bounded-operator functions (cf. [9], §1.2) applied
toU, V.=

In a similar way the proof of the following result can be reduced to the case
of bounded-operator functions ({8], Lemma 1.9).

0.5. Prorosition. Let X be a metric space and A: X ->C(E, F),
B: X —>C(F, G) continuous such that tan (A (x)) = ker (B (x)), ran (B (x}) € C(G)
for xe X. Then both A and B are regular.

There is a well developed theory which makes it possible to check the
conditions of Prop. 0.4 in the case of an operator pencil A {x) = T—xS (cf. [1]
and the literature cited there). '

Next we wish to define a notion of differentiability for mappings

" M: X—=C(E). For technical reasons we restrict ourselves to the case of

a compact cube X = I? where I = [0, 1] and d e N. However, by using local
coordinates and suitable partitions of unity all our results can analogously be
proved for functions defined on a real C*-manifold X with (or without)
boundary. For me N, let

C"(I% Ey:= {f: I">E|f is m times continuously differentiable},
- .
CCo @ Eyi= () O B).
m=0

Let »: [0, oc)— [0, cc) be a"continuous function with the properties
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(@) =0 iff ¢=0, xandg/x (p) are nondecreasing.

Such a function will be called a Lipschitz function (for short: _Lf). For any
feC™(I°, E) and ¢ >0 let
0, (f; = Y sup {ID*f()—D*f Wl > yel’s = < e},
|el=m
where @ = (2, ..., &) is 2 multiindex of nonnegative integers and |of : = S Lot
[ix]|: = maxd-, |x,. The function spaces

Am (14, Ey:= {fe C" (I’ E) | [if s 2= ll.fl1m+sulg Wy (/3 @)/ (@) < oo}
o>

Wlth uf”m 1= Z[a[sm sup {”Duf(x)” |x € Id}: and
| Jmn (14, )= {fe A™< (14, By | lim o, (f; )/ (o) = 0}

g0
are complete under the norm ||« |, [2]. Note that for any Lf » we have
amtla o gm+le o omtl = gm* and ™Y < A Af limg. o 0/ (0) = 0.

0.6. DEFINITION. Let the symbol & stand for one of the above function
spaces and let M: I">C(E) be given. Then we denote by

F(I4, M):= {ee F(I, B} e(x) e M (x), x €I}

the set of all (global} #-sections in M. We say that M is an F-bundle and write
Me #F(I4, C(B)) if the following holds:

(i) M: IY >C(E) is continuous. .

(ii) For any x, eI’ and &, M (x,) there is ee #(I%, M) with e (x,) = <o

In particular, Def 0.6 yields a notion of differentiability for mappings
T: I*—C(E, F) by requiring that x~ gra {T(x)) be of class # (I, C(E x F ). We
write Te %(I%, C (E, F)) then. In order to avoid ambiguities we shall use the
notation Te F(I% B(E, F)) for operator functions T: I°~ B (E, F) which are
differentiable with respect to the uniform operator norm (see, however, Cor. 2.2
below).

0.7. LemMMa. Let D be a linear subspace of A™* (I, G) endowed with a norm
|- 1| stronger than || |lmx- For each x € I? let the operator 8 (x): D— G be defined
by S(x)g:= g(x). Then the mapping x—>8(x) is of class A™*(I*,B(D, G)).

Proof Obviously S(x)eB(D, G), xel’ In the case m =0 a direct
calculation shows that [|Silo, < 2K if || llox < KII*ll. If m > 1 an iterated
application of Taylors formula yields SeC"{I4B(D,G) and (D*S(x)g
= D*g(x) for each geD, xel’ and |a| < m. =

A Lf » will be called admissible (1) if the following two conditions are
satisfied:

(A) There is a >0 with [3(x(t)/f)dt <ax(s), 0<s<

(") The class of admissible Lf's has been denoted by (A¢B,)Lf in the preceding article.
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(B) There is b > 0 with [!{x(0)/t*)dt < bu(s)fs, 0 <s< 1.

The most important examples of admissible Lf’s are the Holder functions
% (s) = s” where 0 < p < 1. The following theorem is quoted from [6] and [7].

0.8. THEOREM. Let the symbol & stand for one of the function spaces C®, A™*,
A™" where x is an admissible Lf and meN. Let Te #(I', B(E, F)) be regular.
Let fe F(I', F) with f{x)eran(T(x)), xel’, and x,el’, {,€E such that
T{xp) €y = f(xq)- Then there is a function e € F(I°, E) which satisfies e (xo) = &,
and T(x)e(x) = f{x), xel®

It is one of our aims to generalize part of Theorem 0.8 to the case where the

operator function T takes its values in the set of unbounded operators,
Te F(I% C(E, F).

1. Representation theorems for differentiable bundles. Let F* denote the dual

of a Banach space F and 1;: F— F” the cancnical imbedding into its second
dual, For each subset V of F let V°:={weF'|lw@)] <1, veV}L

L1, LEMMA. Let M e C(F) and A€ B(F”, G) with ker (4) = M°°. Then the
restriction Aly = Aoty satisfies ker (A[z) = M and I (A|p) = ['(4). In particular,
if ran(A) is closed then also ran(A4|,) is closed.

Proof. Apply Lemmas 1.1 and 1.2 of [4]. =

1.2. THEOREM. Let M: I*~C(F) be continuous, let meN, and x an
admissible Lf. Then the following conditions are equivalent:

B MeA™ (I, C(F)).

(i) There is a Banach space E and a (regular) operator function
SeA™* (1%, B(E, F)) such that ran(S(x)) = M (x), xeI*.

(iiiy There is a Banach space G and a (regular) operator function

Te A™*(I*, B(F, G)) such that ker (T (x}) = M (x) and ran(T(x))e C(G), xeI*.

(iv) M°: x—(M (x}}° is of class A™*(I%, C(F")).

Note that the regularity of the operator functions S, T is a consequence of
Theorem 0.2. ‘

Proof (i)=(ii). Let E:= A™* (1% M) be endowed with the norm ||- ||,
Then E is a Banach space and by Lemma 0.7 the operator function x+-»$ (x);
S(x)e:=e(x) belongs to A™*(I%, B(E, F)). From the assumption it follows
that ran (S (x)) = M (x) for each xe I’

(ii)=-(iv). Let SeA™* (I, B(E, F)) satisfy (i)} and consider the transpose
S'(x): F'—~E' of §(x). Then §'eA™* (I B(F, E)) and §' is regular because
(8’ (x)) = y (S (x)) [5]. Furthermore, ker (§' (x)} = M° (x) for xeI’, and thus
M®: F—C(F) is continuous by Th. 0.2. Fix x,el? and & e M°{x,). Then
from Th. 0.8 follows the existence of a function f'eA™*(I, F') such that
F ) =¢&, and §'(x)f"(x) =0. Thus f"eA™* (I, M} and it follows that
M®eA™ (14, C(F"). The same argument shows that (fii)=>(i) holds.

(iv)=-{ii1). By what is already proved above there is a Banach space G and



46 F. Mantlik

a regular operator function T'e A™* (Id B (G, F")) such that ran (T{x)) = M° (x),
xel’ Put T(x):= T’ (x)p. Then TEA’”(I" B(F, G") and by Lemma 1.1 we
have ker(T(x)) = M{x), ran(T(x)e C(G") for xe I’ =

The analogue of Theorem 1.2 for C”-functions reads:

1.3. TuroreM. Let M: I8 —C(F) be continuous. Then the following con-
ditions are equivalent:

(i) MeC= (% C(F)

() MeC™ (I C(F) for each meN,.

(ii) There is a Banach space E and a (regular) operator function Se
C=(I%, B(E, F)) such that ran(S (x)) = M (x), x el

(iv) There is a Banach space G and a {regular) operator function Te
C®(I% B(F,G)) such that ker (T(x)) = M (x) and ran{T(x)) e C(G), xel”.

(v) M°e C(I4, C(F).

If 1.3(iif) holds then from Theorem 0.8 it follows that the Fréchet space
C> (I, M) {endowed with the subspace topology of C* (1%, F)}is a quotient of
the space C* (I% E) = (s)&®, E, where (s) denotes the Fréchet space of all
rapidly decreasing sequences. D: Vogt [10] characterized the quotient spaces of
(s)®, E (E a Banach space) by a topological invariant (€2). The following
lemma essentially shows that for any bundle M e "%, C" (I, C(F)) the space
C> (I, M) has in fact property (©). We use the notation A™"?:= A™* with
x(g):=g'*.

1.4. Lemma. Let M (=g C™(I% C(F)). Then there are constants K, N,, > 0
(meNy) such that for each x,el' and r =1 any fe A™V2(I*, M) admits
a decomposition [ = f, +f,, where

f}_ EAm’lfl (Id’ M}s fl (xo) = 09 Hf].”m s r—l “f”m‘l,izs
foedmt U2 (FA), | folle 1,2 € Ko %] Flimy 172

Proof. Fix meN,. Since M e A" V2 (I%, C(F)) there is a Banach space
En., and a regular operator function 8,4 €A™V (I4 B(E, ., F)) such
that ran (S, 4+ (x )) M (x) (apply Th. 1.2). Now let fe A™¥2 (I, M). By Th. 0.8
and the open mapping theorem (applied to the operator m: A™Y2 (I E,+1)

=A™ F), (me)(x):= S,iq(x)e(x)) there is a constant u, > 0 which
depends on S,,+; only and a function e e A™'2 (I, E,..,) such that

Sma1 (X} e {x) = fi{x), i|3||m,1,'z € U, “f“m.lfz'

We construct a decomposition e = e, +e, in the following way: First choose
a function ¥ € C* (R) with the properties

p@)=1 for |t <%, W) =0 for |t| >3,
yO=1—¢@~1) Tor0gtgl

icm
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Forr=1,2,... let a(r):={seR?|r-5e{0,...,r}*} = I and
d X—5§ o
Ple,r;x)= 3 [Jv(x—s) > (—-—)—D“e(s).
seo(r) i=1 le] €m a
Put

e;(x):=e(x)—P(e r; x},
Then clearly e, e C*(I% E,,.,) and

e, (x):= @(e, r; x}.

< ¢ lleallmrz < co ™ * el < ¢ e ¥ Ptz NS w22

with a constant ¢, > 0 which depends on m and the choice of ¢ only. From
Lemma 1.1 in [7] it follows that

Dfe (5=0
@, le;;0) <
with a different constant ¢,. This yields by Taylor’s formula

[leallm+ 1. 12 =

forsea(r), lol <m

W, (e; 0)+c, ora, (e;r™h), 0<o<rt,

lleyllm < €y @, (517" < ey, (e;r7 1)

€ C3 1 2 lellm1iz € 3 NS Mgtz
Letting &, (x):= e, (x)—e, (xo), &, (x):= e, (x)+e, (xp) and f;{x) 1= S,y 1 (x) & (x)
(=1, 2) we obtain f=f,+f, with
b e A™? (Ids M), £filx)=0, |fill.< K;n"w”l”fnm,uz»
Iz e AmT L2 (11 M), ol 102 < Ko7 mh2 U N1 42 -
From thls the assertion follows with N, = 2m+4 n

1.5. LEMMA. Let M e (\r=o C™(I° C(F)). Then there are constants L, >0
(meNg) such that for any x,e I” and Eqe M (x,) there exists a section
fe C= (I, M) with

flxo) = &gy NIfllw < Ly liEoll for me N,

Proof. Fix x,&I% and &, e M (x,) with |||l = 1. According to Th. 1.2 we
may choose a Banach space E, and a regular operator function S;e
A% (19 B (Eq, F)) with ran (8 (x)) = M (x). Because of the regularity of S,
there is a constant 0 < [;:= 2inf {I' (S, (x))| xe [?} ! < o0 and e, e E, with

So(xp)eo =&y, lleoll < Tcr
Put f, (x}:= S, (x) eo, x € Y. We inductively assume to have already construc-
ted a function f e A™2 (I, M) such that

fm (xo) = fcn ”mem,l/l € lm

with a constant [, > 1 which depends on the given bundle M only. Then by
Lemma 1.4 there is a decomposition f, = fi +f= with
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1
l 2"7
e A L2 M), il 1,2 S Ko U 27V [ fnll1j2 < bt

where K,,, N,, and thus /. ; := max {1, K,, (1,,2")""1,} also depend on M and
m only. We then put f,,,,:=f7 and see that

fm'!'l EAM+1'”2(IJ1 M)) j.:ﬂ+1 (‘x()) = f():

I fmst =Sl 277 N tllmt 1,172 € Dprn

With the definition f(x):=lim,..f,(x) we now obtain feC¥ ([, M),
flxg) =&, and

fn} EAm'llz (Ids M): fnz (xo) = O: ”fnﬂlm < ”fm”m,lfz < 2—m,
..

=] o
||f”m 5_{ “fm”m_[_ Z ||ﬁc+1 "_fk”k g lm+ Z 2-"[( ::Lm' a
k=m k=m
Proof of Theorem 1.3. (i)=>(ii): trivial. (ii)=-(iii). Let the constants L be
as in Lemma 1.5 and put

E:= {feC*(I’, M){|Ifllp:= sup (YL S e < 0}
Then E is a Banach space. For xel let S(x): E~+F be defined through
S(x}e:=e(x). From Lemma 0.7 follows that Se (.o A™Y2(I, B(E, F))
= C* (I, B(E, F)). Furthermore, by the definition of £ and Lemma 1.5 we
have ran (S (x)) = M (x).
The rest of the proof is analogous to that of Th. 1.2, u

The methods employed above yield simple proofs for approximation results
such as the following one:

' 1.6. PROPOSITION. Let M € C= (I, C(F)). Let me Ny, and x an admissible L.
Then for each fe I™* (I, M), xo e I* and ¢ > 0 there is f,& C* (I, M) such that
Dufa‘? (xO) = Daf(xﬂ)s |D£| g m, and ”fa_—f“m,x '-<- &.

Proof. Choose SeC”(I% B(E, F)) as in 13(ii). From condition (B) it
follows that lim,_, ¢/x (¢) = 0, which implies that S e A"™* (I, B (E, F)). Using
our lifting result 0.8 for A™*-functions and the fact that C* (J%, E) is dense in
A™* (1%, E) {cf. [7], proof of Th. 42) the assertion follows casily. m

2. The sum-intersection property and vector function equations. In this

section Jet m € N, be fixed and x an admissible L. Let the symbol & stand for
either A™* or C®.

21, THEOREM. Let M, M, & F(I% C(F)). Then the following conditions are
equivalent: ' '

() The pair (My, M,) is regular (cf. Def. 0.3).
() MynMy: XM, (x) M, (x) is of class #(I% C(F)).

icm
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(iii) My +M,: x—>M, (X}+M, (x) is of class F(I, C(F)).
Let one (hence all) of the above conditions be satisfied. Then the mapping
+: FUSM)XF (I, M)—F (1% M +M,), (v, +0,){x):= vy (x)}+0, (%),
is surjective. More precisely: Let we (I, M+ M.), x,eI%, £, e M, (x,) and
E,eM, (xg) such that &, +&, = w(xe). Then there exist v, eF(I% M,),
v, € F(IY M) such that v, (xg) = &, vy(xg) = &, and v, +v, = w.

Proof By Th. 1.2 resp. Th. 1.3 there exist Banach spaces E;, G; and regular
operator functions S;e (I B(E, F)), T,e#(I*, B(F, G)) with ran(S,(x))
= M, (x) = ker (T;(x)) (i = 1, 2). Define

SeF(I°, B(E,XE,, F)), S(x)(e;, e;):= 5, (x}e; +85,(x}e,,
Te 'g‘:(Id: B(F,G,xGy), Tx)f:= (T1 LT (x)f)
Then ran (S (x)) = M, (x)+ M, (x) and ker(T(x)) = M, (x)nM, (x). Further-
more, ran (T{x)) is closed iff M, (x)+ M, (x) is closed (apply (1.5) of [3]). Thus
by Ths. 0.1 and 0.2 condition (i) is equivalent to the regularity of S or to the
regularity of T The equivalence of (i)-(iii) again fellows from Th. 0.1 and Th.
1.2 resp. Th. 1.3.

Now assume that (M, M,) is regular and let w, x,, &,, &, be as abovs:.
Choose fl ek, &, e E, with S, (xg) 51 =&, 8, (%) 52 = &,. By Th. 0.8 theré is
a solution (3, d,)e F(I4, E xE,) of

(’31 (xo), B2 (X)) = (’En Ez): S (x) (ﬁ1 (x), &, (x) = w(x).
Put v, (x):= 8, (x)#, (x) and v,{x):= S, (x) 6, (x). =
2.2. CorOLLARY. For any mapping T: I°— B (E, F) the following conditions
are equivalent:

(i) x=>T(x)e belongs to F(I° F) for each ecE.
(i) TeF(I% B(E, F)).
(i) Te #(IY, C(E, F).

Proof. Consider the case & = A™* first.
{i)=-(ii). Let the space
D= A (I, gra(T(-))) = {(e, e A™ (I, Ex F)| T(x)e(x) = f (x)}
be endowed with the norm |le|lm.+ ] flim» and define
S(x):D—-ExF, S{x}e )= (e(x},f(x)

By Lemma (.7 the operator function x—8 (x) is of class A™* (I, B(D, Ex F)).
By assumption for each &< E the function g, (x):= {&, T{(x)¢) belongs to D.
Thus there is a linear imbedding j: E— D, f—>g,, which is bounded by the
closed graph theorem. With the canonical projection 7z: Ex F—F we have
T(x) = npoS(x)oj, which shows that in fact Te A™*(I%, B(E, F)).

for x eI

4 — Studia Mathematica 98,1
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(i)=(iii): easy to see. (iil)=(i): analogous to the proof of Cor. 10 in {37,
using our Th. 2.1,

From what is already proved the case .

ﬂoo_ Am 1/2 .

2.3. COROLLARY. Let M e # (I, C(F)). Assume that M (x,) is complemented
in F for some x,el’. Then:

(i} There is a neighborhood Y of x, and a projection-valued function
Pe #(Y, B(F, F)) such that ran (P(x)) = M (x) for xe Y.

(i) There is a neighborhood Y of x, and a function Te #(Y, B(F, F)) such
that T(x) is invertible and T{x} M (x,) = M (x) for xe ¥,

= C% follows by observing that

Proof. Analogous to the proof of Cor. 11 in [3]. m

2.4, COROLLARY. Let Te F (I, C(E, F)), ran(T'(x)) closed for each x. Then
the following conditions are equivalent:

(i) T is regular.
(i) ran (T(- ) e &# (I, C(F).
(i) ker (T'(-)) e & (I4, C (E)).
Let one (hence all) of the above conditions be satisfied. Let fe #(I°, ran (T(-))),
xqe I and £y edom (T(xo)) with T(xe) &y = f(xy). Then there exists a Junction
eea: (I, E) such that e(xo) = &, and ¢(x)edom (T(x)}, T{x)e(x) = f(x) for
xel®

Proof. Consider M, (x} = gra(T(x)}, M,(x}=Ex{0} in ExF and
w=(0,f)eF (I, M;+M,). Then M, (x)+M,(x)=Exran (T({x)) and
M, (x)n M, (x) = ker (T(x)) x {0}. The assertion follows by application of Th.
21w

"The most frequent situation where this result can be applied is the following
one:

2.5. PROPOSITION. Let D be a linear subspace of E and T: I*~C(E, F) such
that dom (T(x)) = D, x e I*. Assume that for each ec D the Junction x—T{x)e
belongs to F(I*, F). Then Te (I, C(E. F)).

Proof We only have to show the continuity of the mapping x+gra (T (x)).
To this end we consider the norms

llellx:= llell +[|T(x) el
liell.: = llell +sup {IT(x) ]| | x & I}

on D. Fix xe I’ and let D, := (D, ||-||,), D, := (D, || - Il,)- Then D, is a Banach
space and by Cor. 2.2 we have Te #(I°, B( . F)). Thus there is ¢, > 0 with
Il < lly < el -l Since T: I*>B(D,, ) is continuous there exists
a nelghborhood Y of x such that

1T(x)— T(.V)“B(D P&

for xe I,

< 1/(2¢,) for yev.
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This implies

llell, < . llefl, < . (llell, + (T () —T0) ey <

Le. {lell, < 2¢.llell, for ye ¥ and eeD.
For y,, y,€ Y we obtain

3(gra (T(yy), gra (T(y,))
< sup {[(T)—TW)ell|eeD, llell+1T(y, el < 1}

< sup {[(T)~T)ell{eeD, (el < 2¢.}

if the norm on Ex F is defined to be |lef| +|lf]. It follows that
llmd(gra(T(y) a(T() < 2¢, lim || T (y)—

y=x

Rcmark. If ReC(ExF) is a closed relation then the definitions

C llell, +3 llell,..

T (3)|pp, = 0. m

dom (R):= {ec E |there is fe F with (e, f)eR},
ran(R):= {feF|there is ec E with (e, f)eR},
ker (R):= {ec E{(e, 0)e R},

gra(R):= R

are natural. With a slight abuse of notation we may write “Re = ™ iff (e, /) e R.
Then Cor. 2.4 is easily seen to hold also in the more general situation where the
operator function T is replaced by a relation mapping R e #(I¢, C(E x F)).
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