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A characterization of the approximation order
of multivariate spline spaces

by
AMOS RON* (Madison, Wis.)

Abstract. We analyze the approximation order assoclated with a directed set of spaces,
{Su>0, cach of which is spanned by the hZ™-translates of one compactly supported function
@y: R'—C. Under a regularity condition on the scquence {g,},, we show that the optimat
approximation order (in the co-norm) is always realized by quasi-interpolants, hence in a lincar
way. These quasi-interpolants provide the best approximation rates from {54}, to an exponential
space of good approximation order at the origin.

As for the case when cach §, is obtained by scaling S, under the assumption

® T 0 =4 %0,

ags

the results here provide an unconditional characterization of the best approximation order in terms
of the polynomials in §,. The necessity of (%) in this characterization is demonsirated by
a counterexample.

1. Introduction. The determination of the approximation order associated
with spline spaces is one of the major and fundamental goals of spline theory.
In an abstract form, we are given a collection of function spaces {§,}, where h is
a continuous or discrete positive parameter, and look for the largest d for
which

dist(f,S,) = 0%, YJfeF,

where dist is measured by some metric or norm (usually a p- or Sobolev norm)
and F is an admissible function space with respect to dist. Here, we always
assume that all Tunctions are complex-valued and defined on the vector space
R®. We think of h as measuring (in a linear way) the roughness of the mesh
used, hence indsed cxpect to approximate better as h—0. A particular case of
interest, which will be referred to as “the scaling case”, occurs when the refined
spaces S, are dilations of §,, ie.,
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Sh = Oy Sl’
with o, the scaling operator
oy frof (- /h).

In multivariate splines, as well as in finite elements, one prefers ap-
proximant spaces which are spanned by compactly supported functions, since
then there is hope to provide a local scheme for approximation from the

underlying space. In the area of multivariate splines on regular meshes, one also.
assumes that the spaces S, are translation-invariant, or more precisely, each §,

is invariant under hZ’-translates. This leads to the model where each of the
spaces S, is assumed to be spanned by the hZ’-translates of one or finitely
many compactly supported functions. In general, it is desirable to avoid the
assumption that these translates are linearly independent, i.e., form a basis for
S,, since such condition is not met in many cases of practical interest (e.g., the
Zwart element and also most of the cases when more than one compactly
supported function is involved).

The simplest case therefore occurs when we assume both that §, is spanned
by the integer translates of a single compactly supported function ¢ and that S,
is the h-scale of S,, hence is spanned by the h-scale of @. This model was
investigated intensively in the late 60’s—early 70°s by people in the finite
clement area. The following theorem is essentially Theorem 1 of [SF] (at least
for p=2,) and these days is usually referred to as The Strang-Fix
Conditions. In the statement of the theorem we use the notation ¢ , for the
semidiscrete convolution operator '

P, C* =S, qo'*h: ai—> . a(oc)_(p(-——cx),

achZ?

Q*i== Q*g,

and @+, for the semidiscrete operator
o fi= % (fliz) 0¥ 1=

Also, I, stands for the space of polynomials of (total) degree at most k.

(1.1) THEOREM. Let @ be a compactly supported continuous function. Let S, be
the space sparned by the integer translates of ¢ and §,:= ¢,8,. Then for
1< p< o the following conditions are equivalent:

() @(0)# 0, and for |o| < d—1, D*§ vanishes on ZnZ*\(,

(2) For every pelly_q, @« uis a polynomial of the form cu+gq, for some
¢ 0 and q& Il cqpgp.

(3)  For every smooth function f which is in L, together with all its derivatives
up to order d, there exist sequences a,: hZ®— C satisfying -
(3a) lf—ono*all, = OK).
3b) Mlallz, < kB |If],.
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The equivalence of (1) and (2) was refined and extended since then by
several authors (cf. e.g., [DM ] and [B,]; furthermore, [B,] shows that the first
two conditions are equivalent to the apparently weaker one: @ (0} 5 O,
I, = 8,), yet is mainly technical since it deals with a characterization of the
polynomials in 8, in terms of the Fourier transform ¢ and is not related directly
to the approximation order. The implication (1, 2)=+-(3) initiated much work by
many authors aiming at constructing explicit linear maps into S, the so-called
quasi-interpolants, which satisfy the conditions in (3), and which (by now) are
quite well understood (cf. [B,] for an updated survey of quasi-interpelants).
Still, it was probably the saturation-like result of the above theorem that was
s0 spectacular: one cannot achieve approximation order 4 from the dilated
spaces {S,}, unless [7,., = S;! However, one should bear in mind that
condition (3) is assuming a restrictive way for approximation from S, (termed
“controlled”), hence does not characterize the approximation order from’ {8},
for, smooth functions, and gives only a lower bound for that approximation
order. As a matter of fact the desired approximation order from spaces of the
above form is known only in some special cases (such as when ¢ is a box spline,
[BH,]). Replacing the “controlled” notion by another constrained approxima-
tion notion introduced in [BJ] (and referred there to as “local approximation™),
Theorem (1.1) admits a generalization to the case of several compactly
supported functions ([SF], {BJ]), however still leaving open the question of the
unconditional approximation order. Finally, the analysis in [DR] (of the
approximation order for exponential box spline spaces) demonstrated the fact
that good rates of approximation can be obtained from spaces {8}, where each
one of them is spanned as before by the translates of a single function, yet none
of them contains nontrivial pelynomials. (Clearly, such spaces are not obtained
by dilating S,). In view of these latter results, one may interpret the Strang—Fix
Conditions as saying that constructing S, by scaling §, is appropriate only
when §, contains a sufficiently large space of polynomials.

In this paper, we characterize the order of best approximation from spaces of
the form {S, 1= @, S}, with §, spanned by the integer translates of a compac-
tly supported function @. We show that, under the assumption

Y g0,

oG
the approximation order associated with {8,}, is determined by the polyno-
mials in §, exactly in the same way the controlled and local approximation
orders are characterized, thus improving the statement of the Strang-Fix
Conditions above, Qur course, though, does not focus on (and as a matter of
fact is not aimed at) spaces obtained by scalings, but considers the general
setting of an arbitrary directed function space set {S,},, each of which is
spanned by hZ*-translates of a compactly supported function ¢,. The goal is to
provide information about the approximation order of {S,}, and about maps
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that realize this approximation order. In order to make a good use of the
compact support assumption, it is essential to assume that for some k > 0

supp ¢, = [0, Ak)*,  Vh,

since otherwise the translates of ¢, are not uniformly local as h—0.

A major step in the characterization here of the above-mentioned ap-
proximation order is the construction, for a given finite-dimensional space H of
a certain type, of a sequence {Q,}, of uniformly local, uniformly bounded
quasi-interpolants (each maps into the associated S,), that approximates the
elements of H to the same order as best approximations do. In that process
H is required to be a translation-invariant subspace of L., which leads
naturally to exponential spaces H spanned by exponentials of imaginary
frequencies. Using quasi-interpolation arguments, we show that the operators
{0,}, provide approximants of optimal order to ail admissible functions, in
case H approximates well locally (say, at the origin). This gives rise to a scheme
for the determination of the approximation order from {S,},, in which finding
this order is reduced to determining the approximation order obtained by
applying a prescribed set of quasi-interpolants to prescribed (and finitely many)
exponentials. This also proves that the best approximation order can always be
realized in a linear way (i.e., by a quasi-interpolant), and furthermore, that we
can construct quasi-interpolants of optimal order (essentially) without an
a priori (or even a posteriori) knowledge about this approximation order.

In the special case when g, = o}, ¢, the quasi-interpolants constructed are
not scales one of the other (ie., @) # o, Q; o), yet it is shown that the scaled
operators {a 4, Q,}, converge, and the limiting quasi-interpelant Q is then used
to cbtain the above-mentioned improvement of the Strang-Fix Conditions.

In Section 2 we analyze first the relatively simpler case of approximation
order to smooth bounded functions, an analysis which serves as an illustration
of the general case, while being better tight in its statements and error
estimates. The main results together with their proofs are given in Section 3.
Finally, in Section 4 we consider the scaling case under.the singularity
assumption  .ezs ¢ (o) = 0. We prove a theorem which allows us to embed (in
a suitable sense) the case of several ¢’s (as studied in [SF], [DM,], [J] and
[BJ]) in this case of a single singular ¢, and thus to use the counterexample of
[BH,] to show that the polynomials in S do not characterize any more ihe
approximation order, leaving perhaps only little hope for a clear and simple
characterization of the approximation order for this more general setting.

We use standard multivariate notations. So Z% 1= {ae Z": o > 0}, and for
ae T5., (F is the power function xr»x*:= x§' ... x¥ D and F are used for the
differential resp. shift operators, and so p(D) and p (E) are the differential resp.
difference operators obtained by evaluating the polynomial p at D and E; in
particalar, E*: frsf(-4x)
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One concluding remark seems to be in order: the Strang-Fix Conditions, as
well as their proofs, strongly emphasize the Fourier analysis approach
(Poisson’s summation, Parseval formula). Through the years it led to the

-understanding that the Fourier analysis methods are essential to the charac-

terization of approximation orders and related issues, at least for general
uniform spaces. The results here, as well as their proofs, provide an llustration
of the alternative techniques: while the Fourier transform approach focuses
(implicitly) on the similarity between the semidiscrete operator ¢ ' and the
standard convolution operator ¢« for suitable spaces of polynomials or
exponentials (see [BR,] which claborates on this point), the alternative
approach (as originated in [B,], with the results in [CJW] and [CD] serving as
the motivation) associates ¢« with the difference operator
T frr T 0@ f (=0
by A4

In this setting, invariant subspaces of 8, (under differentiation, hZ*-translations,
etc.) play a key role. The above difference operators match the action of ¢ #' for
mote general spaces other than polynomials or exponentials ((B,], [R,]}, hence
are adequate for the analysis here. Moreover, even for piecewisepolynomiais or
piecewise-exponentials this approach is sometimes more direct and .more
efficient than Fourier analysis (cf. e.g., [BAR] and [R,]).

2. Approximation order for continuous functions. In this section we illustrate
the general results by treating first the approximation order for bounded
uniformly continuous functions.

Throughout this section, as well as in the next one, we assume that {¢,}, is
a collection of compactly supported functions which satisfy, for every h, the
following three conditions:

2.1 supp ¢, < [0, 2k)*;

(2.2} > o) =1;
aehds

(2.3) Nlowlls, < €

Here k and ¢ are some constants, which will be vsed in the sequel in the above
meaning without further reference. Note that # (hZsupp @) < &' We also
use the notation

(2.4) dist (f, §):= inf {|l/~gll..: g €S}.
(2.5} Prorvosrrion. For every h,
{2.6) g ah t~ Ul € 2k edist (1, S,).

Proof. Let f be an arbitrary element of §;. Then, for every aeR®,
(2.7) HE ™~ 1l = I/~ i
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Since fe S,, we know from [B,] that @, = f = S enzs ®a (@) E7* f, and hence, by
2.1), (22) and (2.7),
loush S~ Ul = 1| T, @ul) B~ f= Dl

ashZs

< 3 ey @HIE™ =1l < K ellf= i

ashZ*

But this completes the proof, since (2.1), when combined with (2.3), implies that
oy *h (f— Dl < K ellf— 1l m

The above result is now used in the following theorem, which shows that
the operators {@, ¥4}, approximate continuous functions to the same order as
the best approximations from {S,}, do.

(2.8) THEOREM. Assume that (2.1(2.3) hold. Then for every function f and
every h,

2.9) [0y 5 f T Ny < €k (keog (h)+2dist (1, 5,) 11 1]os):

where o, is the modulus of continuity of f (in the co-norm). In particular, if
dist (1,8,) = o (1), then dist (£, §;) = o (1) for every bounded uniformly continuous f,
and if dist (L, S,) = O (h), then dist(f, S,) = O (h) for every fe C* (R} which is
bounded together with its first order derivatives.

Proof, Fix h and x e R®. Since, by (2.1), @, (x—a) = 0 for all o ¢ x— [0, hk),
Proposition (2.5) implies that, with v,(x):= hZ'(x—supp @),

(2.10) | Y @ x—o)—1] < 2k*cdist (1, 5)),
zevh(X) :
and hence
2.11) | 3 f(x) @ (x—®)—f (x)] < 2k° cdist(1, S|/l
aevh(x)

On the other hand, by (2.3),
212) | ¥ f@ex—a)— ¥ fix)@lx—a)

aevnR{x) aevh(x)

< Y If@—f)loyx—al < ekt (h).
asvh(x)
Summing (2.11) and (2.12) we obtain (2.9), which implies the rest of the
theorem. m

~ Theorem (2.8) leads to the following improvement of the case d = 0 {and
p = ) in Theorem (3.1):

(2.13) CorOLLARY. Let ¢ be a bounded compactly supported function
satisfying Y wezs @ (@) = 1. Define @, := oy @, and let S, be the space spanned by
the hZ’-translates of ¢,. Then the following conditions are equivalent:
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(a) dist (£, §,) = O (h), for every fe C* (R®) which is bounded together with its

first order derivatives.

(%) For every function f

”(Ph *;!f—fH.x} < Mm.f (h-)a

where M depends only on diamsupp ¢ and {o|.
€ 15,
(dy @ 1 =1

Proof. {d)=(c). Trivial.

(c)==(b). (2.2) is assumed here and (2.1) and (2.3) are trivially satisfied, and
therefore Theorem (2.8) can be invoked. (b) then follows from the fact that,
since 1€8,, 1&8, for every h, and thus dist (1, S,) = 0.

(b)=>(a). Trivial

(a)=={d). With f = 1, we employ Proposition (2.5) to conclude that {[¢;*j 1
—1||, =0 as A 0. But since ||p, *;, 1 — 1||, is independent of A, it must be 0. »

3. Approximation order for smooth functions. In this section we establish
necessary and sufficient conditions for higher approximation orders (i.e., higher
than O (h)) for smooth functions by the spaces {S,},. Precisely, we look for the
maximal d for which dist (£, §,) = O (k") for every function in the Sobolev space
(3.1} W= {fe C"(R: || fllwa:= HZ 1D il < 00}

a| Sd
Throughout the section we retain assumptions (2.13(2.3).

The proofs in the previous section were based on the fact that the sequence
{@y*i}n forms a collection of uniformly bounded local operators which
approximate continuous functions to the same order as the best approxima-
tion. The constant function is a convenient trial function since on the one hand
it spans a translation-invariant space while on the other hand it is admissible,
being bounded and uniformly continuous. In the general case, though, the
operator ¢, %, cannot be expected to approximate well, and will be replaced by
an operator of the form i, x; for a suitable function ¥, € §,. Furthermore, we
avoid here polynomials as trial functions, since in general they are neither
bounded nor uniformly continuous. Seeking for finite-dimensional spaces
H which are translation-invariant on the one hand, and consist of bounded
functions on the other hand, we note that such spaces are necessatily of the
form

(3.2) H = span {¢y}sce,
where ¢,: x+e”*, and the spectrum @ of H satisfies
(3.3) O < iR,

The first result here deals with the extension of Proposition (2.5) to
exponential spaces H of the above form, and is the crux in the analysis to
follow. We use here the notation T; for the difference operator
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(34) LT fe Y e ET
achZs

(3.5) THEOREM. Assume {@,}, satisfy (2.13+2.3). Let H be a finite-dimensional
exponential space satisfying (3.2} and (3.3). Then there exists a sequence {Vihw of
difference operators, supported on WZ® (resp.) and satisfying

(a) V, inverts Tly for all (sufficiently small) h:
(b) {V;}, are uniformly local and uniformly bounded, ie.,

(3.6) supp ¥, @, < [0, hk, ),

for some constants ky, c,.

Vi @ille < €15

The functions \r,:= V, @, then satisfy

(3.7} s % S =S < M dist(f. S,)

for every fe H. The constant M depends only on k, ¢ and g (H):= max {||0l|,:
gge H}.

(3.8) Remark. The representation, hence the extension, of (Tily) ™' as
difference operators in the approach here is merely a convenient choice. Any
uniformty bounded uniformly local extensions will do as well.

Proof Set ® for the spectrum of H. With T, as in (3.4), (2.3) and (2.1) imply
that ’

(3.9) I Tl < ¢k,

when regarding T, say, as an endomorphism of L, (R®). We claim that for
sufficiently small h, the restrictions Ty are equibounded below by some
positive constant. We use it to define the difference operators {V4},, which are
uniformly bounded (at least for small enough h) and invert {T,}, on H (as done
in [DR] in the derivation of the approximation order for exponential box
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splines. The idea, for a polynomial H and k = 1, was originated in [CD]). First,

we examine the action of 7, on the pure exponentials of H: for an exponential
eps Ty (2p) = €4 3 wnioy @ (@) %% (with v, (0):= hZ* [0, hk)’), while

(310) | T 0,@e™™ 2| T 0aldl—| % o4 (1—e™"9)] > 1 —iccbh,
(0] val(0) vi{0}

using (2.1)~(2.3). Here b depends on ¢ (H) and k but is independent of k, which
means that (for sufficiently small h and) for all e,e H

31D T, e = cyp€p, where |c,q = 1/2.
We now define
(3.12) V= (I=[] (= (l/ews) TY/T,

0e®

with I being the identity (the division by T, here is formal, since T, appears as
a factor in the numerator of the right hand of (3.12)). Since, for each &,

Approximation order of spline spaces g1

I—(1/cp) T, annihilates ¢,, the product term in the definition of ¥, annihilates
H, and hence, for every h, (V, T))lz = I, which proves (a).

As for the functions {y,}, in the theorem, with the aid of (3.9) and (3.11), we
see that {V;}, is a bounded set of operators, and since each V, is a linear
combination of {T/}7%", it is a finite difference operator supported on
[0, hr)*~hZ® (where r < k# @), and hence (b} is valid.

To prove (3.7), we now take any fe H and an arbitrary f,€S,. Since
(3.13) s *h f =S Ml < Won 4 SV T fill oo+ 11V Ty =T Mo

it is sufficient to estimate each of the right-hand summands in (3.13).
" As for the first one, we recall that since f,&S, we have, by [B,],
Tifs = @p#ify and hence V, T.f, = ¥, , f;. Therefore

(3.14) I i S = Vi Tufille = I % (F=S)llo < K3 e NS =AMl
For the second term, we use the fact that ¥, inverts T, en H, hence
(3.15) ¥ Tida=Tllo = MG T Uy =l < 1V TG~ M-

Summing (3.14) and (3.15), and in reliance on the boundedness of { ¥, T,},, we
obtain

s b f=Fllon € MUS=fillcos
which implies (3.7), since f, was arbitrary, =

For later use, we examine in the following corellary the above construction
under the scaling assumption,

(3.16) CoroLLARY. Under the assumption ¢, = oy ¢4, all h, we have
Fipy=(I-I~T)*®)T,) o,

where {W,}, are the functions constructed in Theorem (3.5). The convergence is
uniform.

as h—0,

Proof. Using the notations of Theorem (3.5) we have

Tun iy = Ty Vi oy ¢y

Furthermore, the assumption ¢, = 0, ¢, also implies. that ¢y, T, 05 = Ty, and
the claim then follows [rom the fact that the constants ¢, involved in the
definition of ¥, satisfy limy.gcpe = 1, V0& @ ((3.10) bounds this limit from

‘above by 1, and a similar argument provides the converse inequality). m

The proofs of the main results make use of the “local approximation order”
(') notion {as do all quasi-interpolation arguments) As a preparation,

(1Y Unfoctunately, the terminology “local approximation” is used in spline theory in two

different contexts: the “local approximation” mentioped in the introduction in conjuction with
[BJ] is thug a different notion.
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we define now the local approximation order (or the “approximation order at
a point™), and discuss some aspects of the local order which are relevant to the
context here.

(3.17) DermviTiON. Let H be a subspace of C*(R*), We say that H admits
a local approximation order d at x € R" if for every f which is sufficiently smooth
in a neighborhood, of x, there exists ge H such that

(3.18} (= a) x4 < epalilln,
for sufficiently small y.

Note that in case H is translation-invariant, the local approximation order
of H is independent of x. For an exponential H of the formn (3.2), the results of
[BR,] provide a useful characterization of the local approximalion order.

(3.19) RESULT. Assume H satisfies (3.2). Then the local approximation order
d of H is determined by the largest polynomial space Il . Sfor which the spectrum
of H is total.

We recall that a set @ is total for the function space F if no f'e F\O vanishes
identically on €.

For our purposes, it is also important to have some bounds on the
approximant g in terms of the Sobolev norm 1|1l ¢ This task is accomplished
in the following proposition.

(3.20) PROPOSITION. Let H be a finite-dimensional exponential space of local
approximation order d, which satisfies (3.2) and (3.3). Then, for every f& W and
every x& R®, the local approximant g:= Y s Cye,€H can be chosen such that

(3.21) (f—g) (x+ ) < const. || fllm.all¥ili-
(3.22) max |¢,| < const. | filx.a,
Bel

where const. depends only on H.

Proof The inequality (3.21) follows as a special case of the argument used
in the proof of Theorem 3.1 in [DR]. As for the second claim, in view of Result
(3.19), we may assume without loss that # @ = dim II,..,, since otherwise
H can be replaced by a subspace of it of dimension diml,., and with
spectrum @ which is still total for [T, ;.

Now fix xeR® and fe Wi. The assumption on the local approximation
order property of H can now be combined with the fact that
dim H = dim H,;_, to conclude that the local approximant ge H for fat x is
unique; This means that the seminorm ||gl| ;= max, «q|[D* ¢ (x)| is a norm on H,
hence is equivalent to the norm [[Ygeo ¢ €| : = MmaXyeq ¢y
we obtain (3.22). The fact that the constant there is uniform in x follows easily
from the fact that |e,(x)| = 1 for every 0e@ and xeR’

. Since {lg||" = |I/1I'..
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(3.23) TuroriM. Suppose that {, )y, satisfy (2.1)-(2.3). Let H be a finite-
dimensional exponential space that satisfies (3.2) and (3.3) and is of local
approximation order d. Let [}, be the functions associated with H by Theorem
(3.5). Then, for some constunts My, M, and for every fe W,

(3'24) ”}//ll *;T./Lw‘f”m $-.: “.f”m.(i (M[ hd ”'l"Mz max dist ((’g, Sﬁ)).
epsdl
Proof Let fe WY and xeR% Choose gi= 3 .cnce¢,&H to be as in
Proposition (3.20). Then, by Proposition (3.20) and Theorem (3.5),

0w ) (X)) € const. || f]

v Max dist (e, §,).
; epsdl
Therefore,

01y, 3 L= LV 00 <5 Rl 2 o) OO 1y, G = ) ()
< OIS Dl roguell g+ Ca [ 0,a max dist (g, S),)

epclt
€ || S {M B4 M, max dist (e, S)),
couk
where in the last inequality the fact that g{x) = f(x) has been used. u
Combining Result (3,19} with Theorem (3.23) we conclude the following:

(3.25) CoronLAry, Suppose that [}, satisfy (2.1)42.3). Then the following
conditions are equivalent:

(a) For every fe WS, dist(f,S,) = O ).

(by For any (every) finite @ o iR* which is total for 1T, the functions
(W), constructed in Theorem (3.5) with respect to H:= span {e;loee Satisfy
[, * 2o el == O (BY), for every Qe 6. '

The above corollary gives rise to the following scheme for the deter-
mination of the approximation order from the directed family of spaces {8}

(3.26) Scusmi, Choose
(fv)l e (").3. €.t FRY

such that each @, is total for Wy and define Hy = span {eploce, Then for
d=1,2,... dn;

Step L Cheek your previous storage of approximation orders, if one of these
is d, then siop. d is your approximation order. (Skip this step for d = 1).

Step 2: Construct the guasi-interpolants {yr, «;}y, (with respect to H ).

Step 3: For each 0 ¢ @ \G . (. determine the order of i, i, ¢g==eqll o If 0ne
of these rafes is d, stop. d Is then your approximation order, Otherwise store the
smallest rate oblained heve, inerease d by 1 and yo to step 1. Al this point you
already know that the upproximation ovder is at least d-+ |, and does not exceed
the least of the orders stored. '
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One way to choose the sets {@,}, is
O, = {in: aeZ:, Joi < d—1}.

It should be emphasized that in practice the above results do not
necessarily require the identification of the approximation order for construc-
ting good quasi-interpolants. Choosing H of local approximation d, we may
use {,}, of Theorem (3.5), knowing that the order of the scheme would be
min {d,d,} where d, is the (presumably unknown) approximation order.

The lfast result of this section provides the following improvement of
Theorem (1.1) (for p = x):

(3.27) THEOREM. Let ¢ be a compactly supported bounded function satisfying
Y aeze @ (2) # 0. Define @,:= oy, ¢, and 5,:= span {E* @,}eenzs. Then the fol-
lowing conditions are eguivalent:

{(a) For every function fe W4
(3.28) dist(f, S,) = O (h%).

(b) Moy < 5,

Proof. The implication (b)=-(a) is well known (and by now standard}. For
the converse, note first that we may assume without loss that ¢ is normalized
to satisfy (2.2). We then choose @ to be a finite subset of iR® which is total for
11, and define H:= span {e;}pee. Then, since H = W4, dist(f, S;) = O (b9
for every fe H and hence Theorem (3.23) (when combined with Result (3.19))

implies that the {i,}, constructed in Theorem (3.5) (with respect to the pre-
sent H) satisfy

iy #5 f~fllo = O (Y,

for every f= W2, Rescaling each , back to the original mesh size we obtain

a sequence of functions {g,:= oy ¥}y < Sy, which, by Corollary (3.16),
converges uniformly to some ge§;.

Now, c_hoose fe W2 which coincides with a homogeneous polynomial p of
degree k in a neighborhood of the origin. Then, for a fixed XxeR® and

sufficiently small h,
W gn *' p—p) () = K [ %0, 0 p) () —p (o)t == (3, i, p— p) ()]

= [y *i =) (hx)] < [y 3 f=F 1L, = O (K.
Thus, in case k < d—1, we obtain
(g ¥ p—p)(x) = lim (g, +' p—p)(x) = 0.
. h—+0
We conclude th:f\‘c g *' p = p for every homogeneous p & I,..,, hence for every
pell,_,, and since ge§,, II;.., < 8, as well. n

4. Sing_ulaﬁity and the case of several compactly supported functions. Qur
primary aim in this section is to obtain results concerning the approximation
order in case ¢:= @, satisfies the singularity condition
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(4.1) Y @@=0,

. LG A
and the refined spaces {S,} are obtained by scaling. The questions we focus on
are whether good approximation rates are possible at all in such a situation
(answer: yes), and whether the approximation order is determined by the
polynomials in § () := §; (¢) in the same way as in the regular case (answer: in
general, 1no). :

Some of the methods employed here are aimed to connect the case of
a single @ to the case of many ¢'s. In doing so, we obtain several results on the
latter case which are of independent interest.

Throughout this section, ¢ is a compacily supported bounded function,
S(p) is the space spanmed by the integer translates of ¢, and the spaces
{8,}4:= {S,(@)}, are obtained by scaling S(¢), ie, 5, = a8 ().

We first show that (4.1) dashes any hope for a positive approximation
order, unless the stronger assumption

4.2) o px'1=0"
is made:

(4.3) PROPOSITION, Assume that (4.1) holds, yet @ ¥ 1 # 0. Then dist (1, 5,)
# O (h). ‘

Proof. Since 1 is translation-invariant, dist (1, E*S,) = dist (1, S,), for every
I and every real translation E* of 5, On the other hand, since ¢ *' 1 # 0, one
can find a translate := E*¢ which satisfies the regularity condition
§eze ¥ (@) # 0. Observing that 5, () = E" S, (¢), we conclude that dist(1, S, (%)
= dist(1, S, () for all h. As for v, this function is regular, hence Corollary

.(2.13) implies that dist(1,5,(y)) # O (k), unless Y+ 1 = const. # 0. Yet,

the latter implies @# 1 = const. # 0, which is impossible, since by (4.1),
(p¥ Dlzs = 0. ®

To this end, we assume therefore that (4.2) holds and mention that already
the authors of [SF] indicated that (4.2) does mot contradict good ap-,
proximation orders (as a matter of fact, [SF] identifies the “bad case” as being
&(0) =0, a condition which is implied by (4.2)). Indeed, let @ be a regular
compactly supported function, and p a linear polynomial, p{1,..., 1) = 0.
Defining W := p(E) @, we see that y is singular, vet S () = $(), hence the
approximation rates from the scales of S () can be arbitrarily high, as the
approximation rates associated with § (p) can.

In general, not every cornpactly supported singular spline is obtained by
differencing a regular one (the results in the sequel will prove this indirectly).
However, in the univariate case, every compactly supported function that
satisfies (4.2) is obtained by differencing another function, This leads to the
following

(4.4) ProposITION. For a univariate ¢, Theorem (3.27) holds even without the
assumption Y ez ¢ () # 0.
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Proof There is nothing to prove unless (4.1) holds. Moreover, if (4.2) does
not hold, then Proposition (4.3) shows that both (a) and (b) of Theorem (3.27)
are false for every positive d. We can therefore assume that (4.2) is valid. Now,
choose k such that supp ¢ < [0,k). Tnvoking Proposition 3.2 of [R;], we
conclude that o = (E—1)y for some function  supported in [0, k—1). Since
S{@) = § (), we may replace @ by i for determining the approximation order,
If  satisfies ¥ # 1 = 0, the process can be repeated. After at most k—1 steps,
we obtain a function 7 with S{2) = S (¢), which necessarily satisfies 7' 1 # 0,
hence we are reduced to the former case. =

We are aiming now at proving the following

(4.5) CLaM. There exists a singular compactly supported function ¢ for which
the implication (b)=>(a) of Theorem (3.27) is invalid.

" By the results so far, such ¢ cannot be univariate, and must satisfy (4.2). We
will not construct this ¢ explicitly. Instead we draw here a link between our
setting and the more involved case of several compactly supported functions,
and make use of (negative) results known in the latter case.

The setting is as follows: &:= {¢,;}7=, is a set of compactly supported
functions. S (®) is the space spanned by their integer translates. An exponential
space, here is a space H which satisfies
(4.6) Hec Y e,

e
for some finite ® < C° The minimal possible @ in (4.6) is the spectrum of H. An
exponential is an element of an exponential space. For a compactly supported
¢, we define H{p) as the space of all expomnentials in S§(p). H (p) is of
importance in multivariate splines, since its local approximation properties
may lead to lower bounds on the approximation order aitained by appropriate
refined versions of S (¢) ({DR], [BR,]). Here, we always assume that H (¢) is
D-invariant, ie., closed under differentiations; this implies that H (¢) can be
decomposed into
(4.7) H(p) = @ ey Ppy.

00
where P, , are finite-dimensional D-invariant polynomial spaces. Our result is
as follows:

(4.8) Turorem. Let @ be as above and assume that H(ip )} is D-invariant for
j=1,..., n. Then, for s > 1, there exists a compuctly supporied & § (®) that
satisfies

4.9) Hip)cHW), j=1,..,n

First, we show how the above theorem is connected to Claim (4.5), In the
above terminology, a polynomial space is a special case of an exponential
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space. For a polynomial space, [B;] proves that S{@)nII is always
D-invariant, and so Theorem (4.8) shows in. particular that there exists
a compactlly supported W €S (¢) which satisfies

(4.10) S{epnl = S{¥),

Now, the example given in [BH,] provides an instance of a set & = {¢,, @,}
of two bivariate box splines such that IT, = S(®), yet the corresponding
approximation order from {o; 8 (#)}, is only 3 (and not 4 as might have been
expected). By Theorem (4.8), there exists Y &S (P) satislying

I, = S(y),

while the approximation order from S, (1) is at most 3, since S () is a subspace
of S{d).

In the rest of this section we prove Theorem (4.8), and discuss other
problems initiated by the theorem and related to the case of several ¢’s. The
discussion of approximation orders for {§,}, ends therefore at this point. Note
that we were unable to comment on the validity of the implication (a}=>(b) in
Thecrem (3.27) in the case (4.2) is assumed.

We turn now to the proof of Theorem (4.8). This proof is based on the
following result from [BR,]:

i=1,..,n.

(4.11) REsULT. Let ¢, P, P < I1, be a D-invariant subspace of (@), ¢ being
compactly supported. Then there exists o finite-dimensional D-invariant Q < IT
such that e,Q is mapped by @' onto ey P.

The theorem now follows by a repeated application of the following
lemma:

(4.12) LeMMaA. Let ¢y, @, he two compaétly supported functions defined on R*
where s > 1. Let H,, H, be two D-invariant exponential spaces. If

(4.13) H;=S(p), Jj=1,2,
then there exists a compactly supported WeS ({@,, @,}) such that
(4.14) Hy= S0, Jj=1,2.

Proof. Set @, for the spectrum of each H,. Since each H,is D-invariant, it
is a direct sum of spaces of the form ¢, P,, where 0 € @; aud P, is a D-invariant
polynomial space. Flence, by Result (4.11), there exist finite-dimensional
exponential spaces F; with spectrum @, j=1, 2, such that

oyv Fy= H, |
Define v':=(1,0,~..,0), v*:=(0,1,0,...,0. Let T, j=1,2, be two non-
trivial finite difference operators such that, for j = 1, 2,

(@) T, is supported on v/Z;
0) T, F,=T,F, =0,
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Each T; is a finite difference operator, and therefore for sufficiently high k,

T, (e 0*’) # 0, for all e @, L @,, which implies that T, U, is 1-1 on ¢, IT for
each fe @, @,, where

U;: S0 f,

Now, let V; be a finite difference operator which inverts (T; U))|y, from the left,

and define G,:= V,U, F,. Note that T; commutes with V,, V; and U,, hence
T,6,=V,U,T,F, =0, TG =TVUF =V, UF =F,
and similarly T, G, = 0, T, G, = F,. Define

2
v=3 Te
f=1

j=1,2.

Then, by the above,
Yr'Gy= ¥ (T G+ ¥ (T, 6) = ¢ ¥ Fy = Hy,
and similarly y *' G, = H,. »

(4.15) COROLLARY. Assume s > 1. Then every finite-dimensional D-invariant
exponential space is H (¢) for some compactly supported . :

_Prolof: From [R,; Thm. 1.1] we know that every finite-dimensicnal
D-invariant exponential subspace of e, II (with 8eC*) is H (p) for some
compactly supported ¢. Theorem (4.8) then completes the proof, since every

finite-dimensional D-invariant exponential space is the sum of D-invariant
spaces of the form e, P — e, I1. m

The fact that the univariate case was not covered here is essential and is not
related to the technique used {cf. Proposition 4.6 in [R,], which shows that not
every univariate D-invariant exponential space is H (p) for some ¢). For
completeness, we record the following result, which under some “regularity”
assumption (where regularity is now in the sense of [R,1} enables us to obtain
more, and in particular to include the univariate case.

(4.16) THEO@M. Let & = {qol,.,.,(pn} be a collection of n compactly
supported functions. For j=1,...,n, let H; be a D-invariant exponential
subspace of S (@) with spectrum @; such that, for j + k,

@.17) - (0,—0) N2 iLF =0,

Then there exisis a compactly supported e S(®) with the properties
(@) H, < S, Vj; |
(b) y*'eg #£0, in case 0@, and @,+ ¢y # 0.

Proof. Asin the previous proof; we first apply Result (4.11) to find ex-
ponential spaces {F}; with corresponding spectra {@,}; such that ¢+’ F, = H,,
j=1,..., n. The assumption (4.17) then implies ((BARJ, (BR,]) the existence
of difference operators {T}}, supported on Z° such that
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4.18) T,F,=0 forj#k, T isl-1on ) ell.
0e8;
Defining ¢ = 3, T, ;, we obtain
(4.19) 'k*’Fk=;§0j*IT}(Fk):n(‘pk*ka):ﬂch"

Since H, is D-invariant, hence translation-invariant, T, H, < H,. Yet, T is 1-1
on Yg.¢ I, hence is also 1-1 on its subspace H,. We conclude that
T.H, = H,, and (a) follows.

For (b), we first note that whenever j # k, T, H, = ¢, « (T;F,) = 0, by
(4.18), and hence if e,e H; for some j, then, as in (4.19), ¥ "¢, = T;(p; #' @)
Since T; is injective on H,;, Ty = ceg for some nonzero ¢, so that

Y'e,=clp;+e), ¢50,

and (b) follows. m

Corollary 2.1 of [R,] shows that the above theorem is sharp in following
sense: whenever ey, ege S() and 0—9&2miZN\0, Y+ ¢, = ) #" ey = 0.
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A note on Olech’s Lemma

by

7VI ARTSTRIN* (Rehovot) and TADEUSZ RZEZUCHOWSKI (Warszawa)

Abstract. A variant of Olech’s Lemma in multifunctions integration is presented; it covers
conditions for weak implies strong L,-convergence.

We provide a version of the Olech Lemma concerning convergence to
extreme points in set-valued integration. Terminology and notations are
recalled after the result is stated. We then compare our observation with the
original Olech Lemma. After the proof is presented, we show how the new
version covers, and somewhat generalizes, some results in the compensated com-
pactness theory, of how weak convergence in L, may imply strong convergence.

The main result is as follows.

ProrosITION. Let {(Q, s, v} be a measure space with v an atomless, positive
c-additive measure. Let F () be a measurable R" set-valued map with closed
salues. Let e be an extreme point of [F(wydv. If f(*) k=12 ..., is
a uniformly integrable sequence of selections of F (+), and | f; (@) dv converges to e,
then the £, (- ) form a Cauchy sequence in L, (Q,R". In particular, there exists
a unique selection e () of F () such that | e (w)dv = e, and the 1. (+) converge to
e(+) in the L, (Q,R") norm. ‘

The terminology we use is standard, a good source is Castaing and Valadier
[4]. For completeness we recall that | F(w)dv is defined as the set
{[flw)dv: f(-) s integrable, and f (w)& F (w) for v-almost every w}. The set
§ F () dv is convex, since v is atomless (see e.g. [4, Section IV.4]). A point ¢ is
an extreme point of the convex set C if e = }a+4b with g and b in C implies
¢ =a = b. An extreme point of C may not be an extreme point of clC, the
closure of C, and this may be the case in the proposition, as | F (@) dv may not .
be a closed set, '

The Olech Lemma is an extremely useful tool in the theory of existence and
robustness of solutions to optimal control and variational problems; it was -
verified in Olech [5], see also Olech [6]. In the original version of the lemma,
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