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Weak vs. norm compactness in L,: the Bocce criterion
by
MARIA GIRARDI (Urbana, 11L)

Abstract. We present a new simple proof that if a relatively weakly compact subset of Ly
salisfics the Bocce criterion (an oscillation condition), then it is relatively norm compact. The
converse of this fact is easy to verily. A direct censequence is that, for a bounded linear operator
T from L, into a Banach space ¥, T is Dunford-Pettis if and only if the subset T* (B (X*)) of L,
gatisfics the Bocce oriterion.

A relatively weakly compact subset of L, is relatively norm compact if and
only if it satisfies the Bocce criterion (an oscillation condition) [G1]. We shall
present a new simple proof that if a relatively weakly compact subset of L,
satisfies the Bocee criterion, then it is relatively norm compact. The converse is
easy to verify.

Recall that a Banach space X has the complete continuity property (CCP) if
each bounded linear operator from L, into ¥ is Dunford-Pettis (ie. maps
weakly convergent sequences to norm convergent ones). The CCP is a weaken-
ing of the Radon-Nikodym property and of strong regularity. Since a bounded
linear operator T from L, into ¥ is Dunford-Pettis if and only if the subset
T* (B (%*)) of L, is relatively norm compact, the above fact gives that T is
Dunford-Pettis if and only if T* (B (¥*)) satisfies the Bocce criterion. This
oscillation characterization of Dunford-Pettis operators leads to dentability
and tree characterizations of the CCP [G2]. Namely, X has the CCP if and
only if all bounded subsets of X are weak-norm-one dentable. Alse, X has the
CCP if and only if no bounded separated d-trees grow in %, or equivalently, no
bounded S-Rademacher trees grow in X.

Throughout this note, X denotes an arbitrary Banach space. The triple
(©, ¥, ) refers to the Lebesgue measure space on [0, 1], £ to the sets in Z with
positive measure, and L; to L, (2, 2%, @), All unexplained notation and
terminology is as in [DU]

[G1] introduces the following definitions.

DEFNITIONS. For f in L; and 4 in Z%, the Bocce oscillation of f on A is
given by :
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(A) al # (A

A subset K of L, satisfies the Bocce criterion if for each & > 0 and B in X' there
is a finite collection & of subsets of B each with positive measure such that for
each fin K there is an A in & satisfying Bocce-osc f1, <&

This note’s main purpose is to present a new proof to the theorem below.
The author is grateful to Michel Talagrand for his helpful discussions
concermng this theorem and proof.

f__

Bocce-ose f|, =

If u’du

THEOREM, If a relatwely weakly compact subset of L, satisfies the Bocce
criteriom; then it is relatively L;-norm compact.

We need the following lemma which we shall verify after the proof of the
Theorem.

LemMa. If a subset of L, satisfies the Bocce criterion, then so does its
translate by any L,-function.

Proof of Theorem. Assume that the relatively weakly compact subset
K of L, is not relatively norm compact. We shall show that K does not satisfy
the Bocce criterion.

Since K is not relatively norm compact but is relatively weakly compact,
there is a sequence {f,} in a translate K of K satisfying

(1) {£.} has no L,-convergent subsequence,
(2) {/,} converges weakly in L, to 0,
(3) {If,]} converges weakly in L,, say to f
@) [fdu = 4 for some &> 0.
Set B =[f> 3¢]. Condition (4) guarantees that Be Z™.
~ Let # be a finite collection of subsets of B, each with positive measure.
Choose N such that for each 4e &
(5) |ufydn| < en{4) (possible by (2)),
(6) [[.fdu—§, 1/l du| < en(4) (possible by (3)
Then for each A% we have

jlfN] du “ Jn d!«"

Bocce-os¢ fyl, = —— 1 (A) - i(A)

§ fyd 4du/

T (A)

fap—ep(A)
) _enld) I (4)
©i4) p4) 7 uld)
Thus K, and hence also K, does not satisfy the Bocce criterior. m

Proof of Lemma. Let the subset K of L, satisfy the Bocce criterion and
feL,. We need to show that the set K+f = {g+f: geK} satisfies the Bocee

—§—& = 8.
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criterion, Towards this end, fix ¢ > 0 and Be X*. Find By = B with B,e X+
such that f is bounded on B,

Approximate fyg, in L. -norm within s/4 by a simple function J Find
C < B, with CeZ™ such that f is constant on C. Since K satisfies the Bocce
criterion, we can find a finite collection & of subsets corresponding to /2
and C.

Fix g+fe K +f. Find A e # such that Bocce-osc g|, < &2. Note that since
T is constant on A, Bocce-osogl, = Bocoe-osc(g +f)l,. Now,

Bocce-osc (g +)|, < Bocee-osc (g +7), + Bocee-osc (J—1)| 4
< Bocce-056 g4+ 2 [1(/—f) xallee < &

Thus K--f satisfies the Bocee criterion. m
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