

- [6] -, Existence theory in optimal control, in: Control Theory and Topics in Functional Analysis, Vol. I, International Atomic Energy Agency, 1976, 291-328.
- [7] -, On n-dimensional extensions of Fatou's lemma, J. Appl. Math. Phys. (ZAMP) 38 (1987), 266-272.
- [8] T. Rzeżuchowski, Strong convergence of selections implied by weak, Bull. Austral. Math. Soc. 39 (1989), 201-214.
- [9] A. Visintin, Strong convergence results related to strict convexity, Comm. Partial Differential Equations 9 (1984), 439-466.

DEPARTMENT OF THEORETICAL MATHEMATICS THE WEIZMANN INSTITUTE OF SCIENCE Rehovot 76100, Israel

94

INSTITUTE OF MATHEMATICS WARSAW TECHNICAL UNIVERSITY Pl. Jedności Robotniczej 1, 00-661 Warszawa, Poland

Received January 4, 1990 Revised version February 20, 1990 (2631)

STUDIA MATHEMATICA 98 (1) (1991)

Weak vs. norm compactness in L_1 : the Bocce criterion

by

MARIA GIRARDI (Urbana, Ill.)

Abstract. We present a new simple proof that if a relatively weakly compact subset of L_1 satisfies the Bocce criterion (an oscillation condition), then it is relatively norm compact. The converse of this fact is easy to verify. A direct consequence is that, for a bounded linear operator T from L_1 into a Banach space \mathfrak{X} , T is Dunford-Pettis if and only if the subset $T^*(B(\mathfrak{X}^*))$ of L_1 satisfies the Bocce criterion.

A relatively weakly compact subset of L_1 is relatively norm compact if and only if it satisfies the Bocce criterion (an oscillation condition) [G1]. We shall present a new simple proof that if a relatively weakly compact subset of L_1 satisfies the Bocce criterion, then it is relatively norm compact. The converse is easy to verify.

Recall that a Banach space $\mathfrak X$ has the complete continuity property (CCP) if each bounded linear operator from L_1 into $\mathfrak X$ is Dunford-Pettis (i.e. maps weakly convergent sequences to norm convergent ones). The CCP is a weakening of the Radon-Nikodým property and of strong regularity. Since a bounded linear operator T from L_1 into $\mathfrak X$ is Dunford-Pettis if and only if the subset $T^*(B(\mathfrak X^*))$ of L_1 is relatively norm compact, the above fact gives that T is Dunford-Pettis if and only if $T^*(B(\mathfrak X^*))$ satisfies the Bocce criterion. This oscillation characterization of Dunford-Pettis operators leads to dentability and tree characterizations of the CCP [G2]. Namely, $\mathfrak X$ has the CCP if and only if no bounded separated δ -trees grow in $\mathfrak X$, or equivalently, no bounded δ -Rademacher trees grow in $\mathfrak X$.

Throughout this note, $\mathfrak X$ denotes an arbitrary Banach space. The triple (Ω, Σ, μ) refers to the Lebesgue measure space on [0, 1], Σ^+ to the sets in Σ with positive measure, and L_1 to $L_1(\Omega, \Sigma, \mu)$. All unexplained notation and terminology is as in [DU].

[G1] introduces the following definitions.

DEFINITIONS. For f in L_1 and A in Σ^+ , the Bocce oscillation of f on A is given by

¹⁹⁸⁰ Mathematics Subject Classification: 47B38, 46B20, 28B99.

Bocce-osc $f|_{A} \equiv \frac{1}{\mu(A)} \int_{A} \left| f - \frac{1}{\mu(A)} \int_{A} f d\mu \right| d\mu$.

A subset K of L_1 satisfies the *Bocce criterion* if for each $\varepsilon > 0$ and B in Σ^+ there is a finite collection $\mathscr F$ of subsets of B each with positive measure such that for each f in K there is an A in $\mathscr F$ satisfying Bocce-osc $f|_A < \varepsilon$.

This note's main purpose is to present a new proof to the theorem below. The author is grateful to Michel Talagrand for his helpful discussions concerning this theorem and proof.

Theorem. If a relatively weakly compact subset of L_1 satisfies the Bocce criterion, then it is relatively L_1 -norm compact.

We need the following lemma which we shall verify after the proof of the Theorem.

LEMMA. If a subset of L_1 satisfies the Bocce criterion, then so does its translate by any L_1 -function.

Proof of Theorem. Assume that the relatively weakly compact subset K of L_1 is not relatively norm compact. We shall show that K does not satisfy the Bocce criterion.

Since K is not relatively norm compact but is relatively weakly compact, there is a sequence $\{f_n\}$ in a translate \widetilde{K} of K satisfying

- (1) $\{f_n\}$ has no L_1 -convergent subsequence,
- (2) $\{f_n\}$ converges weakly in L_1 to 0,
- (3) $\{|f_n|\}$ converges weakly in L_1 , say to f,
- (4) $\int f d\mu \geqslant 4\varepsilon$ for some $\varepsilon > 0$.

Set $B = [f \geqslant 3\varepsilon]$. Condition (4) guarantees that $B \in \Sigma^+$.

Let \mathscr{F} be a finite collection of subsets of B, each with positive measure. Choose N such that for each $A \in \mathscr{F}$

- (5) $\left| \int_A f_N d\mu \right| < \varepsilon \mu (A)$ (possible by (2)),
- (6) $\left| \int_A f d\mu \int_A |f_N| d\mu \right| < \varepsilon \mu(A)$ (possible by (3)).

Then for each $A \in \mathcal{F}$ we have

Bocce-osc
$$f_{N|A} \equiv \frac{1}{\mu(A)} \int_{A} \left| f_{N} - \frac{1}{\mu(A)} \int_{A} f_{N} d\mu \right| d\mu \geqslant \frac{\int_{A} |f_{N}| d\mu}{\mu(A)} - \frac{\left| \int_{A} f_{N} d\mu \right|}{\mu(A)}$$
$$\geqslant \frac{\int_{A} f d\mu - \varepsilon \mu(A)}{\mu(A)} \frac{\varepsilon \mu(A)}{\mu(A)} \geqslant \frac{3\varepsilon \mu(A)}{\mu(A)} - \varepsilon - \varepsilon = \varepsilon.$$

Thus \tilde{K} , and hence also K, does not satisfy the Bocce criterion.

Proof of Lemma. Let the subset K of L_1 satisfy the Bocce criterion and $f \in L_1$. We need to show that the set $K + f \equiv \{g + f: g \in K\}$ satisfies the Bocce

criterion. Towards this end, fix $\varepsilon > 0$ and $B \in \Sigma^+$. Find $B_0 \subset B$ with $B_0 \in \Sigma^+$ such that f is bounded on B_0 .

Approximate $f\chi_{B_0}$ in L_{∞} -norm within $\varepsilon/4$ by a simple function \widetilde{f} . Find $C \subset B_0$ with $C \in \Sigma^+$ such that \widetilde{f} is constant on C. Since K satisfies the Bocce criterion, we can find a finite collection \mathscr{F} of subsets corresponding to $\varepsilon/2$ and C.

Fix $g+f \in K+f$. Find $A \in \mathcal{F}$ such that Bocce-osc $g|_A < \varepsilon/2$. Note that since f is constant on A, Bocce-osc $g|_A = \text{Bocce-osc } (g+f)|_A$. Now,

Bocce-osc
$$(g+f)|_A \le \text{Bocce-osc } (g+\tilde{f})|_A + \text{Bocce-osc } (\tilde{f}-f)|_A$$

 $\le \text{Bocce-osc } g|_A + 2 ||(\tilde{f}-f)\chi_A||_{L_{\infty}} < \varepsilon.$

Thus K+f satisfies the Bocce criterion.

References

- [DU] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.L., 1977.
- [GGMS] N. Ghoussoub, G. Godefroy, B. Maurey, and W. Schachermayer, Some topological and geometrical structures in Banach spaces, Mem. Amer. Math. Soc. 378 (1987).
- [G1] M. Girardi, Compactness in L₁, Dunford-Pettis operators, geometry of Banach spaces, Proc. Amer. Math. Soc., to appear.
- [G2] -, Dentability, trees, and Dunford-Pettis operators on L₁, Pacific J. Math., to appear.
- [T] M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 307 (1984).

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ILLINOIS 1409 W. Green St., Urbana, Illinois 61801, U.S.A.

Received April 19, 1990

(2678)