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Every Radon-Nikodym Corson compact space is Eberlein compact
by

L ORIMUELA (Murcia), W. SCHACHERMAYER (Linz)
and M, VALDIVIA (Valencia)

Absteact, We prove the result announced in the title. The Bapach space version of this
topological result reads as follows: A Banach space E whose duad unit ball is a weak* Corson
compact and which is GSG (i.e, there is an Asplund space X and a continuous linear operator from
X into E with dense range) is weakly compactly generated. We also analyze a relevant example of
M. Talagrand and obtain solutions to three problems posed by I. Namioka.

1. Introduction, A compact topological space is called an Eberlein compact if
it is homeomorphic to a weakly compact subset of some Banach space and is
called Radon-Nikodym compact if it is homeomorphic to a weak™ compact
subset of the dual of an Asplund space. By the factorization result of [DFJP]
every Eberlein compact space is homeomorphic to a weakly compact subset of
a reflexive Banach space, therefore an Eberlein compact space is a Radon—
Nikodym compact space. (For definitions and unexplained notation we refer to
the end of the introduction.)

To see that these two notions are different, observe that for a compact
scattered space K the Banach space C(K) is Asplund as the dual C(K)* equals
I'(K) and therefore has RNP. Hence K is a Radon-Nikodym compact space.
For example the ordinal interval [0, @] is a Radon-Nikodym compact but
fails to be Eberlein (by Eberlein's theorem). Using the idea of dentability
L. Namioka gave a topological characterization of Radon-Nikodym compacta
[N] as those compact spaces which admit a lower semicontinuous fragmenting
metric (see below). This gives rise to the notion of fragmented compacta ([JR],
[N] where the lower semicontinuity assumption is dropped and we obtain the
following chain of implications:

Eberlein compact = Radon~Nikodym compact = fragmented compact.

We shall prove in this paper that the second implication above also fails to
be an equivalence.

1980 Mathematics Subject Classification: Primary 46B22.
Key words and phrases: Eberlein compact, Radon-Nikedym compact, Corson compact,
fragmentability, Asplund spaces. '
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Another direction of generalizing the notion of Eberlein compacta was
done in the work of M. Talagrand [T] and S. Gulko [Gu3] which we
summarize (as in [Ne]) by the following chain of implications, which all are
known not to be equivalences (for definitions see below):

Eberlein = Talagrand == Gul'’ko = Corson.

As regards the relationship between these two chains of implications it was
shown m [G], [R] that

Gulko = fragmented space.

This implication summarizes the work done around the problem, posed by
Talagrand, of whether every Gul'’ko compact space has a dense G, metrizable
subset. In [G] this question is positively answered and in [R] the spaces used
by Gruenhage are seen to be fragmented compact spaces. Indeed, every
fragmented compact space has a dense G, subset where the induced topology
coincides with the topology induced by the fragmenting metric.

In [To], an example of a Corson compact space withont dense metrizable
subsets i1s given, so we know that

Corson # fragmented space.

On the other hand, every scattered Corson compact space is an Eberlein
compact space ([A], see also [V])

The following questions related to the concepts above are posed in the
paper [N] of Namioka:

ProBLEM 1. Find a compact Hausdoril space that is fragmented by a metric
but is not Radon-Nikodym compact.

Prosiem 2. Do the implications Talagrand compact = Radon—Nikodym
compact or Gul’ko compact = Radon-Nikodym compact hold true?

ProsreM 3. Find conditions for a Radon-Nikedym compact sbace to be
Eberlein compact,

E. A. Reznichenko [K] has given an example of a Talagrand compact space
which is not Radon-Nikodym compact, thus answering the questions posed in
Problems 1 and 2. We show that Talagrand’s initial example of a Talagrand
compact space which is not Eberlein compact also fails to be Radon-Nikodym
compact, thus also solving these two questions. We then proceed to prove the
main result of this paper which is announced in the title, i.e. a Radon—Nikodym
compact which is also Corson is already Eberlein, This gives in particular
a complete solution to the first two questions and a rather general answer to
Problem 3.

We shall use some embedding results which we summarize as follows: every
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compact Hausdorff space K can be embedded into a cube I¥, where I denotes
the unit interval [—1, +17, and I' is some set of continuous functions on K.
K is an Eberlein compagct if and only if this embedding can be chosen to take

values in ¢o(I") [AL]. By definition K is a Corsen compact if this embedding
can be chosen to take values in the X-product space

Z(I) = {xel”: {yel: x(y) is not zero} is countable}.

K is a Radon~Nikodym compact space if and only if this embedding can be
done in such a way that the metric d, of uniform convergence on I':

dr(x, ¥) = sup {Ix() —y()|: yel},

x and y in I, fragments K [N]. Note that d, fragments K if, and only if, for
every countable subset 4 of I' the psendometric

d4(x, y) = sup {Ix(z) ~y(y): ve4}

is separable on K, which is parallel to Stegall’s characterization of dual Banach
spaces with the Radon-Nikodym property [S1].

Let us now give an outline of the organization of this paper:

In Section 2 we study in detail Talagrand’s example of a Talagrand
compact space K which fails to be Eberlein. We show that it also fails to be
Radon—Nikodym. Let us point out that the facts proved in Section 2 for the
particular space K will also follow from the general results obtained in the
subsequent . sections (which are logically independent of Section 2). Yet we
recommend the reader to, first follow the arguments in the special case of
Talagrand's example as many of the ideas used in the general case appear
already here. Hence we make a point of giving detailed proofs for this special
case; for example we explicitly define a fragmenting (not lower semicontinuous)
metric on K.

In the subsequent sections we work on the proof of the main result of thls
paper, in its topological and Banach space versions:

THEOREM A. A compact Hau.sdmj‘f space is Eberlein if (and only if) it is
Radon-Nikodym and Corson.

THEOREM B. 4 Banach space E is weakly compactly generated if (and only if)
its dual unit ball is Corson compact and if it is GSG, ie. there is a continuous
linear map T: X -+ E with dense range, defined on an Asplund space X.

In Section 3 we reduce Theorem B to the case where the Banach space X is
nat only GSG but is aiready itself an Asplund space. This will imply that in the
setting of Theorem A. a. compact space which is Radon~Nikodym and Corson
can be weak* embedded into the dual of a Banach space F which is Asplund
and has weak* Corson compact dual unit ball. The technigue of this section is
to apply the factorization method of [DFIP].



160 J, Orihuela et al

In Section 4 we show that a Banach space as above (ie. one which is
Asplund and has weak* Corson compact dual unit ball) is weakly compactly
generated and therefore its dual unit ball is a weak® Eberlein compact. This
will be proved with the help of “long sequences of projections” as developed
in [V].

Finally, in Section 5 we pull the strings together and give the proofs for
Theorems A and B.

Similar, results have been obtained at about the same time by C. Stegail.

We now collect the notions used in this paper:

If (X, 77) is a topological space and 4 is a metric on X, which need not be
related to & in any way, we say that the space (X, 7) is fragmented by d if, for
each nonempty subset 4 of X and for each positive ¢, there exists a & -open
subset U7 of X such that U A is nonvoid and d-diam{(U n 4) € &

A compact Hausdorfl space (X, ) is called fragmented (resp. Radon-
Nikodym) if there is a metric (resp. a Z -ls.c. metric) d on X fragmenting
(X, 7). _

A topological space (X, F) is countably determined (resp. K-analytic) if
there is a metrizable and separable (resp. complete, metrizable and separable)
space P and a set-valued map T from P onto X with compact values and upper
semicontinuous.

A compact topological space is called a Gul'ko (resp. Talagrand) compact if
it is homeomorphic to a weak* compact subset of the dual of a weakly
countably determined (resp. weakly K-analytic) Banach space.

If (X, 7) is a topological space, we denote by C,(X) the space of all real
continuous functions defined on X endowed with the pointwise topology.
A compact topological space K is Gul’ko (resp. Talagrand) if, and only if,
C,(K) is countably determined (resp. K-analytic).

We denote by w,, the first infinite ordinal. For a topological space (X, F)
the density character, dens(X), is the first cardinal A such that there is a dense
subset 4 of (X, &) with cardinality 4. For a set 4, we denote by |4] its cardinal
number.

A projectional resolution of identity on a Banach space E is a “long sequence
of projections” {P,: w, < o < u}, where u is the first ordinal whose cardinality
equals the density character of E, which satisfies:

A |P,]| = 1 for every o.

(i) P,.Py=P,=P;P, if oo<a< <y

(iii) dens(P(E)) < |a} for every o

. I

() UlPrrelB): B<a} | =PE) for every a.
{v) P, is the identity operator on E.

A projectional resolution of identity {P_: w, < o < u} is called a shrinking
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resolution when the adjoint projections {P¥: w, < « < u} form a resolution of
identity for the duval space E*, ‘

2. Talagrand’s example is not 2 Radon—Nikodym compact. Let K be a subset
of the cube I7. We say that K is solid if it satisfies the following condition: If
xeK, yel' and

Y =x() or y() =0 for every y in I,

then ysK.

ProposITION 2.1. Let K be a solid compact subset of I'. The metric
dp(x, y) = sup {Ix(y)—-y()I: yel}, x and y in I,
fragments K if, and only if, K is contained in cy(I).

Prool If K is fragmented by d, then every x in K belongs to ¢,(I).
Otherwise, we could find a countable infinite subset 4 of I', an 2> 0 and
a point x in K such that [x(y}} > & for every y in 4. For every subset P of 4 we
define a point x; of K by xu(y) = x(y) if yeP and x,(y) = 0 otherwise. The
subset of K defined by {x,: P < 4} is uncountable and such that d,(x, xg)
> ¢ if P % Q. Therefore, d, is not separable on K and the meiric d does not
fragment K because of Namioka’s theorem [N] mentioned in the introduction.

On the other hand, every weakly compact subset of a Banach space is
fragmented by the norm; if K is contained in ¢, (I} then K is a weakly compact
subset of it and the norm of ¢,(I") induces the metric d. on K. m

There is a class of solid compact spaces which has been used for the
construction of suitable examples. This is the class of spaces that result from an
adequate family of sets.

DeFNITION {[T], [P]). A family € of subsets of a nonempty set T is said to
be adequate if:

(i) Ae® and B = A implies BeQ,;

(ii) if A4 is a subset of T such that every finite subset of A belongs to & then
A belongs to €;

(i) for every point ¢t in T the set {¢} belongs to €.

Given an adequate family €, the set of characteristic functions
K@) = {1, AeC}
is a compact subset of the product space {0, 1}7. We often identify 4 with x,,
and thus consider K as a space of subsets of T equipped with the topology
z inherited from {0, 1}*. '
TALAGRAND’S EXxAMPLE. We shall work with the set 7= NN of sequences of
positive integers together with the adequate families of subsets given by

A, = {{o}: 0e NV} UMD,
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and for every positive integer n,
A, ={4d =NV g,0ed and ¢ #¢ = o, =¢l, and oly41 # Qlos1}
where for each sequence & in NV and each positive integer n,

o}, = (a(1), ..., o(n).

We denote by K the compact set K(2,) and by K, the compact set K(2L,) for
every positive integer 7. We also define ¥ = | J{¥,: n=1, 2, ...} which is also
an adequate family and gives us Talagrand’s example K:

K=K@=|J{K, n=1,2,..}.
Observe that A, WA =, if n#m, and so K,nK, =K, if n#m.

TuEOREM 2.2. The compact space K is a Talagrand compact that admits
a fragmenting metric and is not @ Radon-Nikodym compact space.

We begin with some intuitive arguments which suggest that it is not
possible to find any lower semicontinuous metric fragmenting K.

Identifying (K, t) with a subset of (I(N™), ¢*) consider the metric g, on
K induced by the norm || || of I”(N™) which is nothing but the discrete metric
on K. :

Note that (K, 1) is homeomorphic to the one-point compactification of the
discrete set NN (the point at infinity is the point 0) and therefore the discrete
metric g, on K, fragments K,. (This is easily seen directly; it may also be
deduced more abstractly from the fact that K, < ¢i(NY) and from the
fragmentability of weakly compact sets.) ,

But g, does not fragment K and in fact it does not fragment any K, for
nz 1, as follows from the above proposition.

In our search for a 7-1s.c. metric on K which fragments all of K (this search
will turn out to be unsuceessful) a first step would be to find, for neN, a 7-1.s.c.
metric g, on K which fragments K, v ... K,. This can indeed be done: Define

T, 19 (NN 12 (NY),
T,f(0) = (e()+1) ... G+ D)+ D) f(0),  fel*(NY), geNN.

Then T, is a weak® continuous injective map from I*°(INV) into itself such that
T,(Kou...uK;) < cy(NV). Hence the metric

QH(A’ B) = " Tn(xA)H_Tn(ZB)”on: A: BEK!

is a Ls.c. metric on (K, 7) that fragments K u...UK,,.
But the crux is tl_lat g, does not fragment K, ., for /e N as one deduces from
the above proposition. On the other hand, the metric g,., does fragment

K, +1 too, but the reader should note that g, , induces a strictly coarser metric
than g, on K.
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The obvious thing to do now is to paste the g,’s together in such a way as to
obtain a meiric ¢ which fragments all of K. For example, one may define

4 . .
o(4, B) = o.4,B) i A4 ar.1d B are in K\K,,
1 otherwise.

This metric indeed fragments all of K: Let F € K be nonvoid. Either
F < K, in which case F contains a 7-open singleton; or there is a positive
integer n such that F (K \K) # @. In the latter case we can find, for & > 0,
a r-open subset ¥ of K contained in K,\K, such that VnF # @ and
g-diam(V n F) = g,~diam(V n F) <&

However, the problem with the above metric ¢ is that—unlike the metrics
0,—it fails to be t-ls.c. Let us see why: Fix two distinct peints 4 and ¢ in Ko,
both different from 0, and let (4,)%, and (B,)i%, be elements of K \K, such
that A, contains 4, so it starts at y|,, and B, contains ¢, so it starts at o],; 1.e. for
wed,, o, = ul, and for feB,, |, = d|,. Then

t-lim A, = {y}, tlimB, = {o}

and
limQ(A'IT BN) = 1im QII(AR’ ’BH) = 0!

which readily shows that g fails to be 7-lsc. in view of o{{u}, {g}) = 1.

Sumiming up what we have shown so far about Talagrand’s space K: There
is a fragmenting metric on K, namely g, but this metric fails to be v-Ls.c. In the
rest of this section we shall show that no fragmenting metric 4 on K can be
z-ls.c. for reasons which are essentially the same as the argument given for
¢ above. This will prove Theorem 2.2.

So suppose that there is a -L.s.c. fragmenting metric 4 on K and let us work
towards a contradiction:

The metric d induces a topology on K finer than ¢ [JNR]. Thus the identity
from (K,\{0}, d) into (K,\{0}, v) is continuous and the last space has the
discrete topology. So this is an homeomorphism, whence for every o in NN
there is a positive number &, such’ that

d{{e}, x) > 6,>0

for every x in K. In what follows we shall work with the pumbers d, and we
shall see how, in some sense, the discreteness of K, spreads over all of K. We
need some preparatory lemmas:

LiMMA 1. For every o in NN there is a positive integer n, such that it A and
B are clements of K,, m=n, and ae{A\B)u (B\A4), then d(4, B} = é,/2.

Prool It is enough to note that any sequence (4,) in K with 4, in K, has
a cluster point in K. Then arguing by contradiction we get the conclugion from
the lower semicontinuity of the metric ¢ and the definition of the numbers 4,.

§ - Studin Mathemutica 58.2
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Indeed, suppose that the assertion does not hold true, We can find an
increasing sequence of positive integers m; < m, < .., and subsets A4, and B, in
K., such that ced,, ¢¢B,, and

d(An’ B") < 50‘/2
The sequence (4,) converges to {c} in K and (B,) has a cluster point x in K,

different from {¢}. By the lower semicontinuity of d, we know that
d({s}, x} < 3,/2, which contradicts the previous choice of the number &,. w

We shall now work with the product space N™ of discrete spaces N, Note
that if a subset § of NV is not contained in a o-compact subset and
H={H,: n=1,2,...}, then there is a positive integer # such that 9, is not
contained in a ¢-compact subset.

LeMMA 2. There exists a subset X' = NN, which is not contained in
a a-compact subset, and positive integers p and g, such that for any A and B in
K, with m = g and [(A\B)w (B\A)] n 2’ nonvoid

d(4, B) > 1/(2p).
Proof. Consider the identity
NN = {{ceN™: §,>1/n and n, <k}: n,k=1,2,...},
where n_ is given by Lemma 1 above. As NN is not g-compact, there are
posnwe integers p and g such that
Z'={ceNN: §, > 1/p and n_, < q}
i3 not contained in a s-compact subset. =

LemMa 3. Let T be a subset of NN which is not contained in a o-compact
subset and g a fixed positive integer. Then there is a finite sequence (54, ..., 5
with k= g such that

{neN: for some ¢ in I, alysry = (51, ..., 8, B}
is infinite.
Proof Fix g and write
T=){{oeX: o, =(by, ..., b)}: (b, ..., b)eNT].

Since ¥ is not contained in a o~compact subset, there is some (a,, ...,

a)eN*
such that

L= {0eT: o|, =(ay, ..., a)}

is not contained in a g-compact subset. Now suppose that the assertion of the
lernma is false. Then the set

{meN: for some g€, o(g+1) = m}

= {meN: for some ceZ, algrs = (a;,..., @, m)} -
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is finite. Let a,., denote the maximum of this set. So we have
T, c{oeT: ol e g1}

Proceeding by recurrence, suppose we have found integers Gyt -
that

S'ai’ l'——- 1,
.y Qyap SUCh
T, {oeT: ol < a,

For every finite sequence (s, ..

i=1,...,q+n}.

o 8qa) With s, <@, i=1,..., g+n, the set

{meN: lor some 6€T, 6lyupss =(5;, ..., Sgin M)}
is finite, and we denote it by N(s(, ..., S,+,). The set of integers
UANGs1s -0, Squnt 53 ... g+n}

is finite and we can find its maximum, which we denote by Oytn+1- We thus
have

Say, i=1,.

T, c{oeT: ol <a, i=1,...,g+n+1}.

Finally, we get a sequence {a,) in N™ such that I, is contained in the compact
set {ceX: o) <a, i=1,2,...}, which is a contradiction.

Proof of Theotem 2.2. We apply Lemma 3 to the set 2’ and the positive
integer ¢ given by Lemma 2, There exists a finite sequence (s, ..., 5) with
k = g such that

{neN: for some 0€X’, glys1 = (51, ..., 5, N)}

is an infinite subset of N, which we denote by P

Denote by F the Banach space of all continuous and d-Lipschitz functions
on K, with the norm || [jrip+ || |, Then K, is a weak* compact subset of the
dual F*, and the dual norm also fragments K, according to a theorem of
Ghoussoub and Maurey [GM, Th. VIL1] (see also [JNRD). Now, if 0 N and
e, denotes the canonical projection from {0, 1}" onto the coordinate o, then
the family of functions

& = {(1/2p)e,: oe X},

where p is given by Lemma 2, is a bounded subset of F. Indeed, the only thing
to check is the Lipschitz condition. Take a pair of elements 4 and B in K, and
o a fixed element in Z’. Then we have

le,(A)~e(B) =0 if oe6dnB or o¢AuUB,
leo(A)~e,(B) =1 if ve(d\B)u (B\A).
In each case, from Lemma 2, we have
(1/@p)e, (4)(1/2p) e, (B < d(4, B)
because d(4, B) > 1/(2p) if o €(4\B) L (B\A). Now we arrive at a contradiction:
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Let R be the restriction mapping from [0, 17V into [0, 1]%. We obtain a solid
compact.subset R(K,) of the cube [0, 11% which is fragmented by d., but which
is not contained in ¢,(f%). Indeed, for every g in P there is some g, in 2’ with the
first k+1 coordinates equal to (5;, ..., S;. g), and the set 4 = {6,: g P}
belongs to K, and R(4) is not in ¢,(F). =

Remark. We shall see that the arguments given for Talagrand’s example
above are already essentially applicable to the general case, ie. the impos-
sibility of a Corson compact to be Radon-Nikodym without being already
Eberlein.

Let us indicate briefly why: By its very definition Talagrand’s space is
a subset of Z(N™), whence it is obvious that it is a Corson compact. What we
have done in the above proof —assuming K is a Radon-Nikodym compact - is
the following: We have embedded K (or at least K,) into the dual of a Banach
space F such that K is fragmented by the norm of F* and such that the
coordinate functionals e, on K are in F.

In the general case of a Corson compact K we shall proceed similarly:
Represent K as a subset of X(I') for some set I' and-—assuming K is
a Radon-Nikodym compact space—embed it inte a dual Banach space F*
with the Radon-Nikodym property. But we have to do this in such a way that
the coordinate functionals (¢,: yeT') are contained in F. To do so we apply the
interpolation method of [DFJP] (Section 3 below), together with an embed-
ding result due to R. Pol and 8. Gul'ko [P] (Section 4 below). Next we exploit
the fact that F* has the RNP plus the countability assumption appearing in the
very definition of X(I") to construct a projectional resolution (P,).s of the
identity in F such that the adjoint maps (P¥)..r are a projectional resolution of
the identity for F*. This argument is taken from [V] and will be given in
Section 4 below. :

Finally, we shall see that (P¥)., leads to a weak®-to-weak continuous
injection from F* into ¢,(I), thus showing that ball{F*) (and therefore K) is
Eberlein and the Banach space F is weakly compactly generated.

3. Interpolation spaces for weak* compact subsets. Let E be a Banach space
and D an absolutely convex and weak* compact subset of E*. Denote by || the
seminorm on E dual to D, ie.

x| = sup {{x, y>: yeb},
and by (G, ] {) the Banach space cobtained by completing the equivalence
classes modulo |-| of E; let j be *he canonical map j: E~G. For Il € p< 0
denote by F, the [DFJP]-interpolation space

Fp,={xeG: |xlz, = (X lxf)"" < oo}

n=1
and

F., = {xeG: ||x|p,, = max{|x[,} < oo and lim|x{, = 0}
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where f- |, is the norm on G whose unit ball is given by

ball(G, [ 1,) = 2°j{bali(E, 1 )-+2"ball(G, [-) """,
We shall need the following notion:

DEFINITION. A class & of compact Hausdorff spaces is called a perfect class if

& is stable under taking continuous images, countable products, and closed
subspaces.

Typical examples of perfect classes are Eberlein [L], Talagrand [T}, Gul’ko
{T), Corson compact spaces (see the survey papers of [Ne] and [P] for
a detailed account of all these examples), fragmented compact spaces ((N],
[R]). the class € considered by Stegall [S3], etc. The fact that the continuous
image of an Eberlein compact is also Eberlein was proved by Benyamini,
Rudin and Wage [BRW], and for Corson compact spaces the result is due to
Gul'ke [Gul], Michael and Rudin {MR]. Let us mention here that it is an
open problem whether a continuous image of 2 Radon-Nikodym compact is
also Radon~Nikodym, _

Our main objective here is to prove the following:

PROPOSITION 3.1. Let E be a Banach space and D an absolutely convex and
weak™ compact subset of E* that belongs to a perfect class & Then the unit ball

of (F,)* as well as the unit ball of (F,)* equipped with the weak* topology belong
to &. : . :

Proof. Define, for 1 < p < oo,

%= 26, 1110 = (£ = (5 %€ G and 21 = (3 x5 < o)

and
Eco = }:co(G: ” ’ "n)

= {£ =(x): x,€G, || =sup{l|x,ll,} < 0 and lim |x,| = 0}.

By definition F, (resp. F,) is isometrically isomorphic to the diagonal of ¥ »
{resp. Z,), i.e. those (x,) € X, such that x, = x, = ... Hence the unit ball of (F Nl
(resp. (F,,)*) is a continuzous image of the unit bali of (£ o) (resp. (Z,,)*) with the
weak* topology, and it therefore will suffice to show that the unit balls of (Z)*
and (Z,))* equipped with their weak* topologies are in the class &,

Note that the identity on G induces a continuous injection from Z, into X,
for 1 < p < oo and into X, of norm 1 and with dense range. Hence the unit
balls of (Z,)* and (Z,,)* are weak* homeomorphic to subsets of the unit ball of
(Z,)* and it therefore will suffice to show that the latter ball is in &.

Finally, observe that the dual unit ball of (G,||,)* may naturafly be
identified with a subset of 2°D and therefore belongs to &. As (ball(X)*,
weak*) is homeomorphic to [ (ball(G, ||- | }*, weak*) we conclude that
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(ball(Z,)*, weak*) is in £, thus {inishing the proof. =

COROLLARY 3.2, Let K be a weak* compact subset of a dual Banach space E*
which is norm fragmented and such that its weak* closed absolutely convex hull
D belongs to a perfect class & of compuct spaces. Then for every 1 < p < o the
spaces F, and F., obtained by the above interpolation are Asplund and their dual
unii balls belong to &.

Proof. The fact that D is norm fragmented if K is so follows from a result
of I. Namioka [N, Th. 2.57, whence a theorem of C. Stegall [$2] applies to yield
that F, as well as F., is an Asplund space (compare also [N]), By Proposition
3.1 above the unit balls of (F )* and (F.)* with-their weak* topologies are also

in &£ m

4. Banach spaces with weak* Corson compact dual unit balls. A topological
space X belongs to the class ' if there is a set I' and a continuous injection of
X into (). Banach spaces with weak* dual in Z have been introduced and
studied by Valdivia [V]. Namely, he proves that any Banach space E with
(E*, o(E*, E)) in £ admits a projectional resolution of identity, and in the case
of E being an Asplund space too, the projectional resolution of identity can be
chosen to be shrinking and the Banach space E is weakly compactly generated,
In [V], the hypothesis was used that (E*, ¢(E*, E)) is in Z while in the present
context the hypothesis that (ball{E*), ¢*) is in Z (ie. is a Corson compact) is
natural. Fortunately the two concepts coincide as will be shown in the

subsequent proposition, which vses arguments of R. Pol and 8. Gul'ko ([P],

[Gu2]).

PROPOSITION 4.1. The weak* dual (E*, o(E*, E)) of a Banach space E is in
the class % if, and only if, the dual ball is @ weak* Corson compact space.
Moreover, in that case there is a set {e,: yel'} © E such that the mapping
T from E* into R" defined by T(f) = ({e,, f))yer is injective, weak*-to-pointwise
continuous, and such that T{E*) < XZ(I").

Proof Let V denote the unit ball of E* endowed with the weak* topology.
Suppose that V is Corson compact. A theorem of R. Pol says that C,(V) is the
continuous image of some closed subset of the product space L(t)¥, where L(z)
is a-union of a discrete space T of cardinality ¢ and a “point at infinity” p whose
neighbourhoods are of the form {p} U(T\C), where C is countable [P]. The
Banach space E with the weak topology is a closed subspace of C,(V) by
Grothendieck’s completeness theorem, Therefore there is a closed subspace
F of L{z)N and a continuous map ¥ from F onto (E, o(E, E*)). If we apply the
results of Gul’ko and Poi at this point [P, Prop. 1.4, p. 23], we find a set " and
a continuous linear injection § from C (F) into Z(I). If we denote by R the map
from C_(E, o(E, E¥)) into C_(F) defined by R(f) = f o, the composition SoR
is injective and continuous from C,(E, a(E, E*)) into Z(I'). The restriction
to..the dual E* gives us a linear, continuous and one-to-one map from
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(E* o(E*, E)) into Z(I'). The linearity of this map means that it is defined
through a set of coordinate functionals {e,; yeI'} = E. u

For the convenience of the reader we shall include here a proof of the fact
that an Asplund space with weak* Corson compact unit dual ball is weakly
compactly generated, which is a corollary of the last proposition and the results
of [V]. Our proof follows the arguments in [V] (compare also [OV]). Let us
also remark here that our Theorem B is more general than this particular
result. Indeed, if we apply Theorem 4.2 to Banach spaces of continuous
functions on a compact set K we only find that every scattered and Corson
compact space is an Eberlein compact ([A], [V]).

THEOREM 4.2. If an Asplund space E has a Corson compact weak* unit dual
bail, thern E is weakly compactly generated,

Proof. Let T be the mapping determined by {e,: yerl'}, defined in the last
proposition. We shall consnder the multivalued map

ot EX2,  @(f)={e,: Ce,, > #0),
which has the following properties: '

(p1): For every [ in E* the set o(f) is countable.

In the dueality (E, E*), for a subset C of E (resp. of E*} we shall denote by ct
the orthogonal of C in E* (resp. in E). With this notation:

(92) For every subset B < E*, o(B)* A Bvos" {0}

Indeed, if f is in the weak* closure of B and f + 0, there is some 7 in I such
that {e,, /) # 0, hence {e,, b) # O for some b in B and ¢, @(B), so f does not
belong to (p(B)J'

We shall say that a pair of Q-linear subspaces A in E and B in E* is
& norming pair when for every x in A and every f in B we have

lxll = sup {i<x, g>(: g eball(E*¥}n B},
NN = sup{[<y, £3]: yeball(E)n A}

Whenever we have a norming pair (4, B) in a Banach space E, the norm
closures A and B are a norming pair too. Observe that if (4, B) is a norming
pair, then for every xe A and ye Bt we have the inequality ||x| < jx+y|,
analogously for every feA* and geB, lg| < |g+f].

(93)  For every norming pair (A, B) in E with @(B) = A there is a norm one
projection P in E with range A and kernel B*.

Indeed, the hypothesis we have together with (¢2) implies that the weak™*
closure of B meets A* only in zero. So A+ B* js dense in the Banach space E.
The above inequalities give wus the projection P. :
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Following Fabian and Godefroy [FGT we shall now consider the multi-
valued map J from E into ball(E*) defined by

= {feball(E*): <x, > = lix|}.

Since E* has RNP, the selection theorem of Jayne and Rogers [JR, Th. 8] gives
a sequence () of norm-to-norm continuous functions from E into E* which
pointwise converges in the norm topelogy to a mapping ¥, that satisfies
{x, Yro(x)> = {|x| for every xeE. We now define the multivalued map .

¥: E-25, () = {0, ¥y (x), -},
which has the following properties:

(¥1)
(2

For every x in E the set {(x) is countable.
For every closed subspace V of E the norm closed linear span of the set
{fly: fep(V)} coincides with V*.

This property has been used in [FG] in order to obtain a projectional
resolution of the identity in the dual of any Asplund space. The proof relies on
the weak* version of James’ compactness theorem [FG, main theorem].

(v3)

For every norming pair (4, B) in E with y/(4) < B there is a norm one
projection Q in E* with range B | and kernel A*.

This follows from (2) since the restriction map from E* onto (4! )* maps
B onto {4 fy*.

We have now assembled all the ingredients to construct a shrinking
resolution of the identity in the Banach space E:

Step 1. Let - be a cardinal number and let A, < E and B, c E* be two
infinite subsets with |Ay} < A and |By| < A. There is a norming pair (A, B) in
E with

Ay cAcE, BocBcE* |44, |BI<i

pB)c A, Y(4)<B.

We proceed by induction: Let peN and suppose that for every integer
m with 0 < m < p, we have subsets

‘A,cE, B,cE* A<\ |Bl<)

We write C,, and D,, for the Q-linear spans of 4,, and B,,, respectively. Define

Byyii= D, U{§(x): xeC,}, Aprgi=C,u{p(f): feD,}UN,,

where N, is a subset of cardinality less than or equal to 4 which nerms every
element of D,. If we take 4={){4,: n=0,1,...} and B=|J{B,
0,1,..}, then (A4, B) is a norming pair with the reqmred properties.

Step 2. For a norming pair (A, B) as above there is a norm one prajectipn
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P in E with range equal to the norm closure of A and with kernel B-. Moreover,
the adjoint projection P* has range equal to the norm closure of B in E*.

That follows from properties (¢3) and (¥3) above.

We shall say that the projection P is based on the norming pair (A B) to
summarize the above situation.

Step 3. If {x,: < u} is a dense subset of E, where u is the first ordinal
number with |i| = dens(E), then there is a projectional resolution of identity
{P,: wo € &< u}in E where every P, is based on a norming pair (A,, B,) such
that

A < o, |B,| < [ad,

A,J « A,
U{Aﬁ' Wo S

{xp: B<a}= A, for every wefwy, ul,
and By,cB, if op<f<a<y,
B<o} and B,=|]{By: w,<f<ua}

Jor every limit ordinal o > w,

and the adjoint projections {P}: w, < «
identity in the dual space E*.

< p} are g projectional resolution of the

Let 4, be equal to {x,: a <w,} and B, be equal to ¥(4,). Step 1 gives us
a norming pair (Ay,, B, of countable Q-linear spaces and step 2 a norm’ one
projection P, from E onto the norm closure of 4,,, with adjoint P¥, from E*
onto the norm closure of B,,,. We shall proceed by transfinite induction to
comstruct the other projections, Take @, <& < pu and assume that for

'@y < B <a we have defined the projection P, based on the norming pair

(A4, Bg), with the corresponding properties. If o = y+1, we take A, equal to
4, v {x,} and B, equal to y(4,)u B,. Another application of step 1.produces .
a norming pair {(4,, B,) of Q-linear subspaces of cardinality less than or equal
to |«, and step 2 gives us a norm one projection P, from E onto the norm
closure of 4, with adjoint P¥ from E* onto the norm closure of B,. If a is
a limit ordinal, we take

=U{4y oo <B<a}, B,=U{By 0, <p<a}.

(4,. B, is a norming pair of Q-linear subspaces of cardinality at most |«| with
@(B,) < A, and y(4,) = B,. Therefore, step 2 produces a norm one projection
P, from E onto the norm closure of 4, with adjoint P¥ from E* onto the norm
closure of B,. Finally, P, is the identity operator and we have finished the
construction.

This shrmkmg resolution implies that E is weakly compactly generated as
we are going to show in the next steps that follow the well known argument of
(AL]

Step4. There is a set I and a continuous linear injection T ﬁ-am E* into cU(I)
which is one-to-one -and weak*-to-weak continuous. :
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Again we shall proceed by transfinite induction on the density character of
the Banach space E: If E is separable there is nothing to prove. Suppose the
result is true for every space with density character strictly less than the density
character of E. Let {P,: w, < o <} be the shrinking resolution of identity
constructed above. For every «, P,(E) is an Asplund space with weak* Corson
compact unit dual ball and dens(P,(E)) < l«| < dens(E} = |ul|. By the induction
hypothesis there is a weak*-to-weak linear injection T, from P}(E¥*) into ¢, (1)
for some set I, with | T, < 1. If I denotes the disjoint union of the family of
sets {I,,, Lo+ 1: @y € a < u}, we define the operator T from E* into [*(I) by

(THG):= Too(PE)G)
(TN0):= 3Tear(PL 2 —POUNOY il 7elury.

The fact that T(E*) < ¢,(I) follows from the fact that {P¥: w, < o < ) is
a resolution of the identity in E*. Indeed, given £ > 0 and f in E* the set
{a: wy << pand |(P¥..—PH(f)] > ¢} is finite because for every limit
ordinal 8 we have || [-lim {P}(f): a < f} = P}(f). )

Step 5. (ball(E*), weak*) is affinely homeomorphic to a weakly compact
subset of c,{I) and E is weakly compactly generated.

if yely,

_Indeed, the above mapping T is weak*-to-weak continuous. The conclusion
now follows from a result of Lindenstrauss [L, Th. 3.3]. m

5. Radon-Nikodym and Corson compact spaces. Now, we are ready to prove
Theorem A stated in the introduction:

Proof of Theorem A. Suppose K is Radon-Nikodym and Corson
compact. By definition K is homeomorphic to a weak* compact subset of the
dual E* of a Banach space such that the dual norm fragments K. It is known
that every regular Borel probability measure on K has separable support (see
for instance [S], or [JNR]), and that for a Corson compact space K with. this
property the unit ball of C(K)* is a Corson compact space [AMN; Th. 3.5].
Therefore the weak™ closed absolutely convex hull D of K is a Corson compact,
since it is the continuous image of the weak* unit ball of C(K)*. We can now
apply Corollary 3.2 to the perfect class of Corson compact spaces and find an
Asplund space F with weak* Corson compact dual unit ball such that K is
homeomorphic to a weak* compact subset of the dval F*. Theorem 4.2 says
‘that F is weakly compactly generated and thus K is. Ebetlein compact. =

Remark. Let us mention that the above argument can be simplified if we
replace the assumption “K is Corson” by the stronger assumption “K is
Gul'ko”. Indeed, as it is known that for a Gul'ko compact space K, the weak*
unit ball of C(K)* is Gul'’ko compact we do not have to refer to the results of
[AMN] in this case. The interpolation space F is then weakly countably
determined {apply Corollary 3.2 to the perfect class of Gul’ke compact spaces
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and note that F is weakly countably determined iff (ball(F*), ¢*) is Gul'ko [T]).
Hence we do not need the full strength of 4.2 above and can instead apply
a result of M. Fabian [F] to conclude as above that F-is weakly compaetly
generated.

We now turn to the proof of Theorem B stated in the introduction.

Proof of Theorem B. Suppose that E is a Banach space such that
(ball(E"‘), rr*) is Corson compact and such that there is a continuous linear
map from an Asplund space X into E with dense range. By Theorem A,
{ball(E*), o*) is Eberlein compact. Note, however, that this only would allow
us to conclude that E is a subspace of a weakly compactly generated Banach
space. But an inspection of the proof of Theorem A shows that (ball(E*), o*) is
in fact affinely homeomorphic to a weakly compact subset of ¢, (I'). Hence by
a theorem of Lindenstrauss [L, Th. 3.3] we may conclude that E is weakly
compactly generated, thus completing the proof of Theorem B. =

Remark. It seems to have been unknown so far whether weakly K-analytic
or—more generally —weakly countably determined Banach spaces necessarily
are GSG. Of course, Theorem B above shows that this is not the case: For any
Corson compact space K which fails to be Eberlein compact (e.g. Talagrand’s
space) the space C(K) fails to be GSG.
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