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we set T*f(x)

STUDIA MATHEMATICA 98 (3) (1991)

A condition for a two-weight norm inequality
for singular integral operators

by

NOBUHIKO FUJLI {Shimizu)

Abstract. We give a sufficient condition in order that a two-weight norm inequality holds for
singular integral operators. In the case of equal weights our condition for the weight is equivalent
to Muckenhoupt’s 4, condition.

1. Introduction. Let K (x) be a function defined outside the origin in the
n-dimenstonal Euclidean space R" which satisfies

(1.1 K& Cyx™" for x #0,
(12) K ()= K (x—y)| < C, [ylPfIx]" 2

where C,, C, and § are positive constants.
We define a maximal integral operator T* with kernel K (x) as follows:

T*f(x)=sup| | K{x-yf (y)dyl

e>0 |x-y|>e

for |x| > 2y,

for any Lebesgue measurablé function f{x) on R”. If T* f (x} is not well defined,

= on. We also assume that T* is of weak type (1, 1), that is,
: . C _

(13) [{xeRm: |T*7(91 > 2 < =2 [ 1f (ol d

. R*

for any measurable function f (x) and any A > 0. Here | E| denotes the Lebesgue

measure of a Lebesgue measurable subset E of R”.

If K (x) = ¢, x;/|x|"** where x = (x,, ..., x,) in R”, T*fis the jth (maximal)
Riesz transform of f, which satisfies (1.3). As is well known, Coifman and C.
Fefferman [4] showed that if a nonnegative function w{x) satisfies Mucken-
houpt’s 4, condition:

(4z) sup 1] 7* [w (e du ()72 fw ()7 dxf ™! < 00
I T 7
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where 1 <p < o, {1-p)(1—p)=1 and ! denotes a cube in R" with sides
parallel to the axes, then
14 J(T*f )P wx)dx < C4§|f (x)dx
Rl‘l

for all f (x) Here the constant C, is independent of f.

A more general result for the mequahty (1.4) was obtained by Sawyer [13],
who improved the method of Ceifman and C. Fefferman.

The A, condition is also sufficient and necessary in order that the weighted
norm inequality holds for the Hardy-Littflewood maximal function M*f{(x):

M*f(x) = sup III'lilf(x)l dx.

This was shown by Muckenhoupt [11]; later Sawyer [12] found that the
following statements (S,) and (1.5) are equivalent:

($,) There exists a positive constant Cs, depending only on w, v, pe(l, oC)
and n, such that

(U (0t ) () dx < Cs o™ () < oo
I

I

for every cube I, where x;(x) is the characteristic function of I.

There exists a positive constant Cg such that

(L5) J (M3 (A w (< C ] G0 09

nn
for every measurable function f(x).

In this note we shall consider the inequality (1.4) from the point of view
taken by Cordoba and C. Fefferman [5] and Jawerth and Torchinsky [10];
that is, the sharp maximal function of T*f(x) is majorized by {M* (/1) ()},
r>1, or M*f(x) pointwise.

Let w(x) and v(x) be nonnegative measurable functions defined on R” and
let w(x) be not identically zero. We set for w(x) and »(x) the following
condition:

(W,) There exist constants «e(0, 1), f and C,e(0, o) such that for
every cubc I and for all measurable subsets E and F of Iwith EnF=0 .md
|Ft 2 ol

[wedx(I~* | 77 (x)dxy
E .

cin,a)}

< Co(EA fv* 7 (x)dx < o0,
F

where 1 < p < oo and ¢(n, «)] is the cube with the same center as I expanded
c(n, o) times, and ¢(n, o) is a constant greater than 1 depending only on n and
o which is increasing with respect to o.

We shall determine ¢(n, «) in Lemma 3.3. Our result is the following:
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THEOREM. Let 1 < p < oo, Suppose that a pair (w, ) of nonnegative functions
satigfies the condition (W,}. Then there exists a positive constant C, depending
only on C,, C,, 8, C3, Cy, w, B, p and n such that

(1.6) J(T*f Pwlx)dx < Cy | 1f ()P vlx)dx
'Y

Rn
Sfor every measurable function f(x).
Remark 1.1. If a pair (w, v) satisfies (W,) then

1.7 [ (L™ 0! (x)dx < 0.
RYI

It is the condition found bj Carleson and Jones [3] in order that there exists
w # 0 satisfying (1.6).

Remark 1.2. The condition (W,

P

(1.8) Iw ydx (1|70 | ot (x)dx) <

) also implies that

Civt P (x}dx < o,

eln,a)f F :
where F is a measurable subset of a cube I and |F|= (1+2){I}/2. By
[7, pp. 473-474, Theorem 2] and (1.8) we see that (W) implies (5,}.

Remark 1.3. Obviously (W,) is not necessary for (1.6) in general; however,
when w = v, (W) is equivalent to the 4, condition because w(x) and w! ™' (x)
satisfy the A_ condltlon

We give another ex.ampie of a pair (w, v) which satisfies (W,):
EXAMPLE. Let u(x) satisfy the A, condition, that is,

fulx)dx < C{EN [u(x) dx,

E Y

for a cube I and a measurable subset E of I. We fix a cube @, and set
Q.= (1+2Q, where ¢ > 0. We define v(x) and w(x) as follows:

v (%) = () {1 —xg, () + 9 (%) %0 (X)) 77,
w(x )mu(x)(l—ch(X))(supII § o (x)dx)77,

c{n,oif
where g (x} is any nonnegatwe locally integrable function and we also assume
that supp, 17 fymar 0° TP (x)dx < oo, and o is determined by u(x) and &.
Then the pair (w, v) satisfies (W,) even though w(x) and "7 (x) are notin A,

Remark 1.4. If (w, t)e(W,) and if w, (x) < w(x), then (w,, v)e(W,); and
also if (w, v) satisfies a sufﬁment condition by Sawyer [13] for (1.6) and if
v, (x) = v(x) then (w, v,) satisfies the same condition. So we see that between
(W,) and the classes of pairs of weights determined by Sawyer’s condition in
[13] there is no inclusion relation simply as classes of weights, but we do not
know yet any precise relation between them as sufficient conditions for (1.6).
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We prove our Theorem in § 4 by using the sharp maximal functions defined
with the use of median values over cubes which were introduced by Stromberg
[14]. Our methed is also found in [8].

In § 2 we state some fundamental lemmas on median values over cubes, and
in §3 we prove some lemmas which are main parts of our proof of the
Theorem.

Throughout this note @, [ and J denote cubes [ F=1[a; a,+1) where ;e R
and [ > 0, CE denotes the complement of a subset E of R", and ¢l denotes the
cube with the same center as I which is expanded ¢ times. And we will take
0-00 to be 0.

I would like to thank Professor Kéz&é Yabuta for his reading of the
manuscript and suggestions, and for pointing out some mistakes, particularly
in Lemma 3.3. Also thanks are due to Mr. Akihire Nakamura for his help in
preparing this note. Finally, I would like to thank the referee and the editor for
their careful reading of the paper and many valuable suggestions.

2. Properties of the median. In this section we shall mention some
fundamental properties of median values over cubes and prove them. The
reader should also consult [14] and [10]. '

Let f(x) be a real-valued measurable function on R”. If f(x) is almost

everywhere finitely valued, then for every finite cube Q in R" we can define

a finite number m,(Q) as follows:
mA(Q) = max {MeR: [{xeQ: f(x) < M}|< %Ql}.

The number m,(Q) is called the median of f over Q. We learned this definition
from Carleson [2]. From the definition it follows that

(2.1) {xeQ: f(x) = m (Q)}] = 3101,
2.2) | HxeQ: f(x) < m (Q} =30l

.LE-MMA 2.1. For a measurable function f(x) on R" and a cube Q
(23) I (O < 71y (Q). |

Proof. For m.(Q)> 0 the conclusion is immediate from {xeQ: |f(x)|
<m Qe {xeQ: fx)<m (D). U m(Qy<0, then {xeQ:|f (x|
< [m Q) = {xeQ: f(x) >m, (Q)} and from (2.2) we have (2.3). m

Lemwva 2.2. For every almost everywhere fi mtely valued measurable June-

tion f(x)

(2.4) |Q|EfJnQa m(Q)=f(x) for ae. x in R"

Proof. For every k=1 we define

5p(x) = Z Oy, j XEy, ; A(x)

J=—oo
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where oy ; = (j—1)/2* and Ey;= {x: (j—1)/2" < f(x) <j/2*}. Then

2.9 0< f(x)—~s,(x)<27%  for all x in R,
(2.6) My (@) <m (Q) for every Q.
Let

F = ) {xeR": there is j with xeE,; and |lilm |Ee; QIR = 1}
k=1 : o[-0
Oax

Lebesgue’s theorem on differentiating the integral implies that almost every
x in R" belongs to F.

Suppose that xe F. Then by the definition of F for every k we have E, ; with
x in E,; and ‘

2.7) |Ee;n @l > 20
for sufficiently small cubes Q which contain x. Fix such a cube Q. Then
Mg (0) = ;. Since [{yeQ: m,(Q) < f(M} = |Ql/2 there exists yeE,; such
that m,(0) < f(). By o; = 5 (x) = 5,(y) and (2.6) we have

Im - (Q)—f (x)| < Imp (Q)— s, W +Is ) —f &),

< S =5 )+ s ) —f X
_ <278 (by (2.5).

This, implies (2.4) for x. m

Remark 2.1 If f({x) is locally 'integrablc, (2.4) is proved immediately from
Lemma 2.1 and (2.1) by using Lebesgue’s theorem on differentiating the
integral.

Let 4 > 1 and set
(2.8) M4 AQ) =inf{A > 0: [{xe0: |f(x)—m (Q)] > 4}| < 1QI/4}

for a measurable function f(x) and a cube Q. The sharp maximal function
M ﬁ f(x) = supg.. M 4 ,(Q) was studied by Strémberg [14]. An observation on
Mﬁ f(x) by Jawerth and Torchinsky [10] yields the following lemmas:

LEMMA 2.3. Suppose that f(x) is an integrable function supported by a cube
Q and that I and T are cubes such that I < T, I =2"|1|, and 2I = Q. Then

fnpey (D—mpp (N <€ sup IJE_lgif(x)ldx

IeJe=Q,Jeube

where T* is a maximal singular integral operator with kernel K (x) which satisfies
(1.1)~(1.3) and the constant C is independent of f, I and Q. "~

Proof. Let x, be the center of I and ¢; = T*(fxcar) (). Then using
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Lemma 2.1 we see that
iy (1)~ g (D] < ey (= el + ley—mye (T}
K Mgy (D g (-
From the argument of {10, pp. 260--261] we obtain
Myger-e (D) < C sup Y711 (x)idx.
_ rel=g )
The same estimate holds for mypep ., (I). =

LEmMMA 2.4 (Jawerth and Torchinsky [10, pp. 260-261]). Let a function f(x)
be supported by a cube Q. Then for A >1 and for a subcube I of @

M o (1) < CA sup VI7H]Lf(x)]dox.
Iereg 1

Here the constant C is independent of f, I and A.

3. Some lemmas. In this section we prepare two lemmas for the proof of the
Theorem. Lemma 3.1 is a refinement of Lemma 1 of [8] in a particular case; its
proof is based on the argument of Carleson [1]. In Lemma 3.3 we shall use the
hypothesis (W,).

If a subcube I of a cube @ is obtained by bisecting @ a finite number of
times we shall say that I is a dyadic subcube of (.

Lemma 3.1, Let f(x) be an integrable compactly supported function and let
T* be a maximal operator with kernel K (x) which satisfies (1.1)-(1.3). If a cube
Q contains the support of f, then for any A > 2"*! there exist a measurable
function g(x), families F,, j = 1, of dyadic subcubes of Q and sequences {a{'},
Ie#;, j= 1, of numbers such that

(i F, is a disjoint family for each j,
(i) U I 1,
Iedjs le&;

i) forall j=0, k=1 and IeF, (F,={0})
Y <Ak,

RE L
(iv) T*f(x)=g@)+ 3, > afy(x) for ae x in Q,

. i=1 1eH _ '
) lg@al < CA 3 x,(x) sup 7' f|f (x)dx

e r=sicg 7

forae. xin JInC( ) J),j20,
Ted; Jed g
(vi) laf] < CA sup |[J|7* [|f ()] dx, leF,j=1.
[=icp 1
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Here the constant C depends only on K(x) and n.
Proof. Put (T*f), (x) = T*f (x)—mp,{Q). Let &%, be the family of al

" maximal dyadic subcubes I of 0 which satisfy ‘

mgpe gy, (1) > max {M 4 7+, (0), 107 [ Lf ()] dx}
]

and set af!’ = mypy, (1) for every I in #,. We put

(T*1) () = (T*N )~ ¥ af" g (%)

TesF;

Inductively, we let #; be the family of all maximal dyadic subcubes I of @ such
that I is contained in a unique cube J in %;_, and

(3.1) mipe gy, (D] > max {M 4 oy (), 1Q17" | ()l dx}.
e
We also put _
T (3.2) af? = meprp, Iy for every I in &,
(3.3) (T*f )1 () = (T*f); 0= 3 af 2,00
TeF
If J=1I, JeF;4, and IeF;, we get from the definition (3.2)
(3.4) a‘(jH-l) == m{T*f)j(J)-—m(pf)j (I) = mT*f(J)“"?’ﬂT*f(I).

Hence we have from (3.1) and Lemma 2.1
M g0 p (D) < [mpsp () =g (Dl < 1y 70— iy )
Therefore we obtain from {(2.1)
72 < [{xeJ: |Tf ()= (D] > Mazer (D]]-
Sﬁrnming over all J = I we get from the definition of M4, ()
T IS 20l (T4 )=y ) > Mars O <2l

Repeating this argument we get (ifi). (i) and (i) follow from the definition.

Now suppose that I is in &, j > 1, and that T is the dyadic .subcube of
Q such that I < T and |I] = 2"|I|. Then from the definition of af? it follows
that

(3.5) 6| = tmeps py, (D) < [gen g, () =My (D) ey, (D)
w2 e (D} — e o (TH A 1777, (ﬂl

From the definition (3.1) we_observe-that

(3.6) e gy, (D] € max {M (I, 1017 £|f(x)| dx},
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where T is in #,_; and T< I From Lemmas 2.3 and 24 we have

s (D) —mpp (D] < C sup V]~ 1! | f (i dx,
’ I=J2Q

Mz < CA_sup |J)” 1j|f (9l dx.
I:JI:Q
Hence we obtain (vi) from (3.5) and (3.6},
Next we assert that lim;_,(T*f),(x} converges for almost every x. We fix
a point x in Q which satisfies limyy o s e (1) = T* f(x). Then, if there exists
Ie#; which is a very small cube containing x, we see that

tcragy, o0 (D) = |mgep(J) —mpe D] < 1Q17 I L () dx
for all cubes J such that xeJ < I. This implies that the number of cubes
I containing x is finite. Thus if we put

g(x} = mpp (@) + lim (T*/);(x),
iyl
Eemma 2.2 shows (iv). _
Finally, for almost every x in | Jrs INC({ jses,, J) we have

g(x) = meep(Q)+(T* )1 ().
Since x ¢ | } ss554; J» from the definition, if xel and if I is in #; then we get

(37 erepy, s 0N < max (M, rep(T), 107 [ | ()] dx}
: i

for all dvadic subcubes J such that J< I and xeJ. Hence Lernmas 2.2, 2.4 and
the fact that mp(Q) < C|Q|™* [olf (3)|dx imply (v). m

If a cube I has the form [ [%.; [1;2% (I,+1)2%) where k and [, are integers, the
cube I is said to be a dyadic cube. According to Sawyer [12] we call
A a t-dyadic cube if T coincides with some dyadic cube after translation by
t, teR". In this note, “dyadic subcubes of a cube™ and “t-dyadic cubes” have
different meanings. To state the next lemma, we introduce some notation. Let
I'be a fixed cube, 0 < ¢ < 1, and let J be a t-dyadic cube for some ¢t R". Then

Ing = T] [m;, m+1)
=1

where m;eR, [; > 0. We define

I(J)= min I,

1<€j<n

R()=Tn H [mj——sl(J), m;+1,+6l(J)).

LEMMA 3.2. For a cube I, any teR" ami ¢e(0, 1) there exzsts a family & of
t-dyadic cubes, 1 < card & < 2", such that

icm
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Q) Yl < <2 for all JeF
(i) | I'={ R,
Je&F

(iii) Iy = e, Y™ for all JeF,
where the constant c(n, &) depends only on n and &

Proof. Let J be a t-dyadic cube which intersects [ and satisfies (i). We may
assume that [, < ... <[, < |I['"

Case 1: 1 < (¢/2)|f]'/". In this case there exists a unique t-dyadic cube J’
such that the side lengths of J' ~ [ are larger than (1 —g/2)|{]'" and R(J") = I.

Case 2: 1, > (¢/2))]'" and e,1;.; < 1;, 1 <j < n—1, where g, is a positive
number smaller than £/(1+e¢). Then we have I(J) > (et~ /2)([f]*". Hence }(J)
satisfies (iii).

Case 3: 1,>(g/2) II M and there exists j, such that 1 <j,<n-—1,

o < By Lyt and = el 41 {j >]0+1) n = 2. Then therc exists J' such that the
s1de le11gths of J Il are [[Mr-1,, ., | . L, with
() = min{(1 —e T, Lo

If }J) = (1—&:1 11'"]”" then for j <j, we have

T = 1)+el(F) 2 {1 +e—(1+e I > .
I 1) =l 01, we have I(F) = Jeel™1]¥" and for j <o
(1 —1)+el0) = IR CE I A

Hence, in this case we get R(J" >Tnl
Thus, in either case, if [~ J] is small, the rectangle T~ J is contained in
another enlarged rectangle R(J). w

Jo’ Jo+1’ .

Remark 3.1. If -s is sufficiently small with' respect to ae(0, 1), we have

subcubes {J,}, of R{J) for Je# such that

(3.8) |7, =1y for all v,

3.9) A ;%ﬁuv; for all v,

(3.10) N=\JJ, and Y,()<C, for all JesF.

Notice that there exists a constant c(n, z) depending only on 1 and « such that
Jeeln, o), for all w

Next we shall show a lemma which will reduce our argument to that for the
dyadic maximal functions. We define the t-dyadic maximal function ‘M¥(f) for
a nonnegative function a(x) as follows: :

M(f)(x) = sup J-(

Jux,J t-dyadic

Ilf(yl o () dy.
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Fix a cube I Let {I,} be a family of pairwfse disjoint dyadic subcubes of I,
let J, be a cube with the same center as I, with [, < J, and |J,| < I for each
£ and let E, be a measurable subset of [, for every & Then we have the
following lemma:

LeMma 3.3 Suppose that a pair (w, v) satisfies the hypothesis (W ,). Then there
exist positive constants A(n, o) and C depending only on «, f, C,, nand p such
that if A > A{n, o) and if each E. satisfies Ey < AT where m = 1, then

@31y 3w dx(lJél"lj £ ()] dx)

£ Ez
SCN"A™ [ di
|1&N  InC(JeEg)
G.12) Y § wlddx(T47" §Lf (ol d)?
¢ Iz Jg
<CN™" | at |
(1N InC(lzEg)
Jor any function f(x) which satisfies JIfx)Pu(xydx < 0o. Here o(x) = vl P (x)
and N is a positive number larger than 2*n'?|I|M".

(M*( /o) (X)) o (x) dx,

(ME(f/o)(x)) olx)dx,

Proof For cach & we can take a dyadic subcube I, ¢ of I such that T, 21
and |/ < Ifél < 2"|J|. For every £ and cvery t we have a family #; of t-dyadic
cubes, 1 < card#, < 27, and the associated rectangles defined as in Letnma 3.2
such that

(3.13) 2F) < <22y for all JeZ,
(3.14) T,= U RW.
Jefs

Here the constant ¢ in Lemma 3.2 is determined only by the constant « in the
hypothesis (W,), see Remark 3.1.
If there exists Je4; such that J, = J, we have

(1747 PN dyP re0 < CUNTT FLF O Y)Y tmgmrn{X)
I J

Hence from the observation by C. Fefferman and Stein [6] we see that
(7 TS0l dyYaex) < CNT7 [t 3 (W17 LAY Hgrmen(X).
Jr J

€N Jed
Thus we get
(3.15) ‘é EI w(x) dx (|7 Jj |f G dy)
Z 4
<CY [wdx (N7 | dt ¥ (171 0N dyY trgnrent®)
& Eg HEL JeFy J

=CN™ [ aty, 3 [ wlx)dx(J7 IS 0 dy)

lif<N & JeF EsnR(J) I
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Assume that Ag>1 and fix , |f] € N. Let %, be the subfamily of all
maximal cubes of {I,} and let #, = {R: R = R(J) for some J e Z,, there exist
I,e¥, and J'e#, such that I,el,J<=J and |[JI7'[,[f(x)]dx
< Aol [rif () dx}. Inductively we set @, = {I,: I, is the maximal cube for
which there exists R¢{ Jiz{ 4} for k22 and #, = {R: R = R(J) for some
JeF,, R¢\Jioi @, there exist [,e%, and J'e #, such that [, =T}, J = J',
RV =i 2, and |J)7 [ 1f Gl dx < Al 7 el f ()] de).

Then #, N #; = @ if k # jand UeUses RO = Uity U reans R In fact, ot
R be associated with I then if there exists I el %, such that gl
(otherwise [ is in ¥, and Re #,), we take k =max {j: I, 2 [ with [, in 4 }. In
this case, if R¢|Js=1%,, we have I,€%., thus Rey,. (The above
argument is due to Professor Yabuta.)

Therefore we have

@16 Y Y [ wdx() T A Ohdy)
¢ JefFz FgnR(JS) J

o

=y [ wedx (U (IOl dyy

k=1 R(J)eBu.JeFn EsnR{J)

= i ) Y w0 dyY
k=1 Fue# RWNe#IscTy EsnRUD J

=2 X X x | wedx(17H 170 dy)
k=1 Ipe¥e R ey l'edy RtNedty JeFe, J= I EznR(D) J

Since R(J) © R(J) and {E,} are pairwise disjoint, from the definition of %, we

majorize the above expression by

4% Y % i

k=1 I,6@ R(I)edt,t'ef |JsbenRUTY

wi) dx(l7 J LGl dyy

o

<45 X ) § wixdx(17 | o(y)dy) (inf (M f/o) @)
k=1T,e% RISl sF, (JeEsnRUT) & zef
For each R(J)e%, we have subcubes {J5} which satisfy (3.8)-(3.10) of
Remark 3.1 to Lemma 3.2. Hence we get

(3.17) [ weds(1" | oy
UsBznRGY J
<CY [ wedx(n™t ] e dy)
v | JeFenJy el @) J b

where we take c(n, @) to satisfy J' = c(n, o) J 5.
We set
Fy=J,nJnC{ U E)u(

el < |Tnl RWNel o+ 125

RN T}
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Notice that there exist no ¢ such that |1, > |f,,[ and I, » f;v # 1J because {I,}
are pairwise disjoint dyadic sabcubes. This observation implies that

(3.18) FonJ(E,nd) =@,
&
For F, we have _
(3.19) |y I i R_(J)nJ)] < ¥ |J}.
R(J)EUj;kﬂ-xﬂj J<=J', f maximal

Since |J]7* [, f(x)ldx > Agl'|™* [ |f (¥)| dx, from. the definition of #; we see
that' the right-hand side of (3.19} is bounded by
W\ (Ao [ If Gy dx)™ 3 [If () dx.
J’ JeJ' x
Since [J'| & |Jy| from (i) of Lemma 3.2 and (3.8), we have

(3.20) WnFn( {J RO < CATHR).
R jure+ 1R .

H|E] < A7, we get
(3.21) Y IEd<d4™ Y icATm).

el S gl T en T3 e €| Tyl famnFe 0
Therefore from (3.20), (3.21) and (3.9) we can find positive numbers A(n, )
and A,, depending only on # and , such that |F| = «|J)| for 4 > A(n, o).
Then, from (3.18) the hypothesis (W,) for (w, v) implies
(322) 3 [ wddlBTt ] ek)dyy

v JzEends e(ma}Js

SCA™™Y [o(x)dx < CA™ [ o(x)dx  (from (3.10)),
v Fy
where o

Ui=RNnInC(UEJu{ |J RWnJ)).
4 RNl ) jorc+ 145
Thus we see from (3.17) and (3.22) that the right-hand side of (3.16) is
majorized by

CA™ S, [ (MHFIDWPotdrs CA™ [ (Mo (po(adx.

'Ine(sEy)

. where

e=(Y U RDaNnC(UEJo( U R

Ity JeF 4 & ROl s+ 148

Hence we have (3.11) from (3.15) and (3.16). Using (1.8) we also have (3.12) by
the same argument. m .

4. Proof of the Theorem. We now prove our Theorem. We apply the same
method as in the proof of the Theorem of {8], and use the boundedness of the
t-dyadic maximal functions as in Sawyer [[12] and Jawerth [9]. The idea of the
proof is partly due to Carleson [1] and Uchiyama [15].
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Proof of the Theorem. First we assume that f(x) is compactly
supported and {[f (x)Pv(x)dx < o0, (f(x) is integrable). Let a cube @ contain
the support of f(x). Then we shall show under the hypothesis (W,) that

1) [T )P wlx)dx < C[|f (x)iPoix)dx.
Q o
Here the constant C is independent of f(x) and Q.
For f{x), @ and a number 4 > 2"**, there exist a measurable function g(x),
families &, j 2 0, of dyadic subcubes of Q and sequences {a{}, I eF,jzlLof
numbers which satisfy (i)—(vi) of Lemma 3.1, From (iv) of Lemma 3.1 we obtain

<

(4.2) (T*F G < eplg(alP +c,(Y, 3 Jaf i (o)

f=1 re#
for ae. x in Q, where ¢, = 2°~*. For the second term of the right-hand side of
(4.2) we see that

o0

(Y 2 Iy )

=1 1=

k
XU rem el e, 19 {x)(z Z |“?)|Xr(x))p
j=1 IeF;

|
el
s

[=+]
<S¢ 2 2 1P P tnepes, 1 )
k=1 et

o k=1
+¢p X XUremnnelUresn ) 2 650 2 ey ().
k=2 i

=1 Ty

(See Lemma 2 in [8]) We put

alx, @, p) = |lg(x)? + i Z ]a&”[”xrnc(UI,Eﬂﬂp) (x},

. k=1 I
. ‘ o k"’"l k : (u
bix,Q,p) = Z XUregsDoCUregs, . 1) {x) Z e’ Z a1 22 ().
k=2 =1 Ie%

Then from (4.2) we have

(T*1 ()P < c,(alx, @, p)+b(x, Q,p) for ac. x in Q.
Therefore the inequalities (4.3) and {4.4) below suffice to prove (4.1):
(4.3) ga(xa Q. pw{x}dx < C {52 |f (x)|Po(x) dx,

(4.4) [blx, @, phwlx)dx < Cglf(X)I”ﬂ(x)d?c-
Q
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We shall prove only (4.4), for (4.3) may be obtained by the same argument
and it also follows from Sawyer’s theorem [12] for the maximal functions
because alx, 0, p) < C(M*f (%)) for ae. x in Q.

For every I,e#, k=1, let N(I) be the positive integer such that
20D, = |I Where Iy =y, Igeg/fh 1 and let N(@) = 0. Then, for every cube
1 such that I, cIcQ I,e %, and I ¢ 21, there exists [.e#,, 1 <k <, and
an integer I, 0 <1< N1, such that I < 2‘I and I &2/ 1., where we take

31, = 2N, Le . We also bave |I] = |2'1,]. Hence

sup [I|” 1j|f(3c)| dx < max

1=t O<k5f.0$l$N(J’¢)

270§ 1l dx,
27y

where I, 21, [, .
Let J% be a cube such that

[!j(x)ldx— maﬁ 27470 1S ()ldx,

DEIEN{Ts) 21
Then by (vi) of Lemma 3.1 we get
4.5) ‘ lal’l < CA4 Z |Jg -t j f)ldx, Jiol,.
1k
v (4.5} we have

48 ]bx, 0. w9 < <Y T AT [ Y el wde

k=2 j=1 UIE&;’{I Led

w k-1

. i
<CA Y Yol ) PR IO dyfwix) dx
k=2 j=1 I U_,Eykfmv I=1 Jh
w k-1 I !
<CAr Y Yo ) §o X T D10 dyYwix)dx
k=3 j=1 1ve& UIE‘g;]r‘\IV l=l_ th

||Ms

Teaisdts

=1 IyeiF; (UIEsgnn(UrG;“ﬁI“
(™ [ Ol dy) wixdx
g
w k=1 ’
—ew$ T4ty 3
k=2 j=1 IseF -y Ig=lk,Ises,;

oWa Iroidy)Pwix)dx.

Ureg Dtz A
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If we put E,={Jsew )1, from (i) of Lemma 3.1 we have [E,|
< (/A HI,. Since |JY < |I4, taking I =13 m=k—I and N > C|I|'" we
btam from (3.11) of Lemma 3.3

f (IJ’WW ) dyyw(x) dx

CIgslnTee® (Ureg Nl

SCNT" dr(C/A)"“‘ Yoo ME(fe) (X)) e(x)dx.

lt| €N IEnC(UIE'g;kI)
Thus we majorize the right-hand side of (4.6) by
w k-1

@n CN"" [ dty 3 ZCJ (C/ AP

HIEN k=2 j=1

x Y [ (M2(flo) x)Po(x)dx

=T I:v;hC(UIEg,-kI)

If we put i = k—j and m = j—I, and interchange the order of summation in the

integrand of (4.7), then we see that

w k=1

L X JZCJ (R ) |

k=2 =1 fee¥i-1 IinClUpeg D)

(ME(ff0) (x))Po(x) dx

o [+2]

- 5 Sy $ acmr

=1 i=1 m=0
x { (ME(flo)x)P o (x) dx
UI&E‘F! 1IEHC(UIEE+ +m D

i (CIAP Y. cn(CiApm
i= m=0

y i g (M (f/o) (X)) o (x) dx

< ¥ & (C/AF Y c;;'(C/A)”'"(i—I—m-%-l)j'(’M:(f/a)(x))Pa(x)dx.
i=1 m=0 f) .
When we take A to be large enough, we conclude that (4.7) is bounded by
CN™" | de [(ME(f/o)(x)) o(x)dx

tI€N | 2
Since ‘M*(f/o) (x) is the dyadic maximal function of ffa, we have
[EME(f/o) ) ()P o(x)dx < C“f x)Pu(x)dx,
0

where the constant C is independent of ¢. Therefore we obtain (4.4).
From (v) of Lemma 3.1, (3.11) and (3.12) of Lemma 3.3 the same argument

is valid for (4.3). Thus we get (4.1).
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Next for any f{(x) we may assume that [|f(x)|?v(x)dx < cc. Then Carleson
and Jones’ condition (1.7) and Hélder’s inequality show that [ | f(x)](1+|x)) ™" dx
< oo and T*f(x) is well defined.

Let fi(x) = f(X)xgx <an(x). Then from (4.1) we obtain

JT*A (P wix) dx < CIS ()P (x) dx,

where the bound C is independent of M. By taking M to tend to infinity
Fatou's lemma shows the conclusion (1.6) ef our Theorem. m
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The structure of maodule derivations of C"[0, 1] into L,(0, 1)
by

YIET NGO (Long Beach, Calif)

Alstract, We completely determine the structure of all continnous and disconti.nuous module
derivations D: C'[0, 11— L0, ),n=1,2,... and | £ p< oz, where C"[0, 1] is the Banac'h
algebra of n times continuously differentinble functions on the unit intervat [0, 1] and L"(O', 1) is
considered as a C"[0, t]-module with module multiplication defined by the C"[0, 1]-operational
calculus for the operator M—nJ where M: f{H—t/(i) and J: f(t)o—»_[‘nf(s)ds.

1. Preliminaries, Let C"[0, 1] denote the algebra of a_ll complex-valued
functions on [0, 1] which have n continuous derivatives. It is well known that
C"[0, 1] is a Banach algebra under the norm

If} = max 3 1790k,

ef0,1] k=0
and that its structure space is [0, 1]. We will need a characterization of the

squares of the closed primary ideals with finite codimension in C"[0, 1]. We
use the notation

Myy(to) = {f €C[0, 11 79(tg) =0, j = 0, 1, ..., k.

These are precisely the closed ideals of finite codimgns.ion contained in the
maximal ideal M, o(t,) which consists of functions vanishing at #,. Throughout
this paper we write M, for M,.(0) and set z(f)=t,0 <t < 1. We have

1.1. THEOREM. Let n be a positive integer. Then

() M2 =2M,q=1{f]f(0)=f(0)=0 and fUr1(0) exists),

(i) M2, =z2*" "M, 1Sk<n=-1,

(i) M2, =2"M,,. |

Part (i) is from (1, Example 3]. Part (ii) is due to Dales and McClure [3,
Theorem 3.1.]. The proof of part {iii) can be found in [2] ‘ -

The squares of the closed primary ideals M,,,k(r?) at other points i, .1n [0, 1]
are given by exactly similar formulas, where z is replaced by z—tg.
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