190 N. Fujii

Next for any f{(x) we may assume that [|f(x)|?v(x)dx < cc. Then Carleson
and Jones’ condition (1.7) and Hélder’s inequality show that [ | f(x)](1+|x)) ™" dx
< oo and T*f(x) is well defined.

Let fi(x) = f(X)xgx <an(x). Then from (4.1) we obtain

JT*A (P wix) dx < CIS ()P (x) dx,

where the bound C is independent of M. By taking M to tend to infinity
Fatou's lemma shows the conclusion (1.6) ef our Theorem. m
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The structure of maodule derivations of C"[0, 1] into L,(0, 1)
by

YIET NGO (Long Beach, Calif)

Alstract, We completely determine the structure of all continnous and disconti.nuous module
derivations D: C'[0, 11— L0, ),n=1,2,... and | £ p< oz, where C"[0, 1] is the Banac'h
algebra of n times continuously differentinble functions on the unit intervat [0, 1] and L"(O', 1) is
considered as a C"[0, t]-module with module multiplication defined by the C"[0, 1]-operational
calculus for the operator M—nJ where M: f{H—t/(i) and J: f(t)o—»_[‘nf(s)ds.

1. Preliminaries, Let C"[0, 1] denote the algebra of a_ll complex-valued
functions on [0, 1] which have n continuous derivatives. It is well known that
C"[0, 1] is a Banach algebra under the norm

If} = max 3 1790k,

ef0,1] k=0
and that its structure space is [0, 1]. We will need a characterization of the

squares of the closed primary ideals with finite codimension in C"[0, 1]. We
use the notation

Myy(to) = {f €C[0, 11 79(tg) =0, j = 0, 1, ..., k.

These are precisely the closed ideals of finite codimgns.ion contained in the
maximal ideal M, o(t,) which consists of functions vanishing at #,. Throughout
this paper we write M, for M,.(0) and set z(f)=t,0 <t < 1. We have

1.1. THEOREM. Let n be a positive integer. Then

() M2 =2M,q=1{f]f(0)=f(0)=0 and fUr1(0) exists),

(i) M2, =z2*" "M, 1Sk<n=-1,

(i) M2, =2"M,,. |

Part (i) is from (1, Example 3]. Part (ii) is due to Dales and McClure [3,
Theorem 3.1.]. The proof of part {iii) can be found in [2] ‘ -

The squares of the closed primary ideals M,,,k(r?) at other points i, .1n [0, 1]
are given by exactly similar formulas, where z is replaced by z—tg.
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192 V. Ngo

We say that L0, 1) is a C"[0, 1]-module if there exists a continuous
homomorphism ¢, of C"[0, 17 into B(L,(0, 1)), the bounded operators on
L,(0, I). The homomorphism g, is used to define module multiplication on
L,(0, 1). In this paper we consider the case when ¢, is the operational calculus
for the operator M—nJ: L,(0, )-L,(0,1), ie ¢,z =M-—nJ. Here
M: frozf, where (zf){t) = tf(t) and Jf = uxf, where u(t) = 1,0 <t < 1, and
» denotes convolution. Kantorovitz [6] showed that g, is given by the formula

e{f)x =3 ({—1VF(f9x),
j=0
Alinear map D: C"[0, 1]—=L,(0, 1}is a derivation, or a module derivation if
D satisfies the identity

D(fg) = 0,(f}D(g)+e,(a)D(f), f,geC"[0, 1].

We are mainly interested in the form taken by discontinuous derivations.
To measure the discontinuity of a derivation D one introduces the separating
space S(D). This is a subspace of L {0, 1) defined by

S(D) = {yeL,{0, 1)|there exists {f,} < C"[0, 1] with f,—0 and D{f)—y}.

It is easily checked that S(D) is a closed submodule of L,0, 1) and that the
derivation D is continuous if and only if S(D) = {0}. The continuity ideal for
a derivation D: C”[0, 17— L,{0, 1) is defined as

1D} = {feC [0, 1](0,(/)S(D) = {0}}.
The ideal I(D) is closed in C"[0, 1]. It is proved in [1, Theorem 3.2] that
' I(D) = {feC"[0, 17|D, is continuous},

where D () = 0,(f)D(").

The hull F of I(D) is called the singularity set for D. If D is a derivation from
C"[0, 1] with singularity set F, then F is finite, and J(D) = (Veer Moy 1(8).
Moreover, we can decompose D into a finite sum of derivations whose
singularity sets consist of exactly one point [2, Theorems 1.2 and 3.2].
Throughout this paper we shall assume that a discontinuous derivation has the
point zero for its singularity set.

We also need the notion of the differential subspace of a C*[0, 1}-module,
a concept first introduced by Kantorovitz, who named it “semisimplicity
manifold” [4, 5]. Let .4 be a Banach space which is a " [0, 1]-module with
multiplication defined by a continuous homomorphism ¢: C*[0, 1]— B(.#).
The differential subspace is the set W of all vectors m in .4 such that the map
p—e{p)m is continuous on P, where P is the dense subalgebra of polynomials
in z. We quote the following result from rz].

feCmo, 11, x e L0, 1).

1.2. THEOREM. Let 4 be a C*[0, 1T-module. A vector m lies in the differential
subspace W if and only if the map g+ g(p)m is continuous Jor the C"~ 1[0, 1]-
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norm on P. For me W, define

limill = sup{fie@ml | lpl.—1 = 1}.
Then
(1} llml < lllmlll, me W,
(2) W is a Banach space with respect to the norm ||| |||,

(3) Wis o C""1[0, 1]-module. There exists a unique continuous homowmor-
phism vy: C"7'[0, 17— W such that

3(p)m = olp)m, meW, peP.

Since DLfYy=+(/"VD(2), feC"[0, 1], for every continuous derivation
D: C'[0, 1] —.# [2, Theorem 4.5], a computation of y, given .# and
g: C'[0, 17— B{.#), will give us an explicit structure of continuous derivations
of C"[0, 1] into 4. '

A non-zero derivation D: C"[0, 11— .# is called singular if D vanishes on
P (equivalently if D(z) = 0). A singular derivation is necessarily discontinuous.
We say that a discontinuous derivation I is decomposable if D can be expressed
in the form D = E+ F, where E is continuous and F is singular. Such a splitting
is unique. It was shown in [2] that a discontinuous derivation D: C*[0, 1]
~» .4 is decomposable if and only if D{z)eW. If D is decomposable and
D = E+F, then its singular part F vanishes also on I(D)*. An indecomposable
derivation is a discontinuous derivation which is not decomposable. In 1978
Curtis [2] computed an explicit example of an indecomposable derivation {rom
C'[0, 1] into L,(0, T) which is discontinuous on every dense subalgebra of
C'[0, 1]. In this example module multiplication on L,(0, 1) was given by the
operational calculus for the operator M —J. In 1988 a description of all
derivations from C'[0, 1] into L,(0, 1}, with the same module structure, was
given by myself in [7]. This paper is continuation of work of Bade and Curtis
[1, 2} and myself [7]. :

2. The differential subspace of L,(0,1). We fix p with 1 <p <o gnd
consider L,(0, 1) as C"[0, 1]-modules (n=1,2,3,..) with module action
. C'[0, 11— B{L;(0, 1)) defined by

M alf)x= Y OISO, feC0, 1], xeL,0, 1)
j=0

We shall characterize W({g,), the differential subspaces of L,(0,1). In the
following if x is a function of bounded variation, we vsfrite x(ds) and ©(x) (ds) for
the measures corresponding to x and its total variation. -

2.1. Tueorem. Let L,(0,1), 1 <p<oo, be given the C'10, 1]-modul'e
operations defined by (¥). An element x of L (0, 1) belongs to W(g,) if and only if

(1) x is of bounded variation on each interval [0,1],0¢ < t< 1, and

@) [3(I* () [0, D)ydt < oo,
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Proof The case n= 1 was proved by Bade and Curtis in [2]. We use
a similar argument to prove this theorem for n > 2.
Let x satisfy (1) and (2). We can suppose that x is right continuous. For all
polynomials h in P we have
n=2

T, (= PP EPR) @+ (=1 -

i=0

(eath)x)(t) = DA 1) ()

F (=1t Y ) x jh(")(s x(s)ds).
Integrating the last term by parts yields

(a(m)x)(t) = Z M= PP EPx) O+ (=1 Hn— 1)(J” (R )

n—1

(= 1P TR 5(0)x(0)

(n— )

Letting G(t) = J"" ! (v(x) ([0, £])), it follows from Minkowski's inequality for
integrals that

1)1] IJH l(j'hn 1)() (EI"T))
0

n—2
< Y AN Ixl, + =D RV N,

i=0

+ AR I O+ 1RV (Gl

le.)xl,

hence
lea(P)xll, < nt A (X +27 x|, + 1G] ).

By [2, Theorem 4.3], xe W(g,).
7 Now let xe W(g,) and yeL, (0, 1) where 1/p+1/g=1if p>1,g=c0 if
p=1. We write

g (@) (en(N)x)(t) dt = Z (-1Y¢) fy(f (HO0)@ at

1
' +(*1)”£Jf(f)(J"(J""’x))(t)dl‘

The sum on the right—hand side only involves the first n—1 derivatives of f so
tha_t1 the map [ 3525 (— 1Y () 5y (@) (F(f9x))(r)dt is continuous for the
C" l-norm on C*[0, 1. And since x& W(p,), it follows from Theorem 1.2 that

the map f— [§y(®){e,{f)x)()dt is also centinuous for the C"~*-norm on
C"0, 1], thus we have

1 tory Fh-1

L SOy dsdra-y . drydi] S K (YL S et

0 o0 Q
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for yeL,(0, 1)-and f&C"[0, I]. Note that in the above inequality the term
], is absorbed into the constant K. Repeated application of Fubini’s theorem
yields '

1 L

frf §... [me (s)dsdryny ... dr dt
Q [4 N1
1 1 1 .1 .
ﬁjff"’(s)x(s)j [ fy@dide, ... dry_yds.

Wooodet Yoy [E [0 visidsdry Lo dr,_y, then

1‘1' Y@ /@ di < Klylgh -
)

Thus for each yeL,(0, 1), there exist constants by, ..., baea and a finite Borel

measure v, on [0, 1] such that

1 f( (0 1
Y@/ "0 dt = Z by——— +jf‘" D@y, (dn,
4]
for all feC"[0,1]. If we let f run over the set {1,z,...,2"" 2} we get
by =b, =...= by, =0 so that
1 1
Laok) f Y (Ox () ™) de = Ij""_l’(t) v,(de), [feC"[D, 1].
) - a

e85 and U, be the distributions on R whose value on a test function ¢ is

S
1

S(@) = ol

]

NY({Bx(dt and Uylep) = 5<,a ) v, ().

Then from (x*) we have §¢(¢p)= —U{""Y(p), so that
=] n—2
Sy = (=17 Uyfo)+ | (L s
i=0
where ¢g. ..., Ca- are constants and S and U denote the kth derivatives of
S, and U, respectwely, in the sense of dlstrlbuhons 1t follows that §, is
a dmtrlbutmn which has a measure for its derivative. Therefore its functlon
Y(1)x(t) is of bounded variation on sach bounded interval of R [8, p. 54]. Let
y=n! on [0,1], Then Y()=(1-1)", so that x(#) (1 -2 is of bounded
variation on [0, 1]. Thus x(z) is of bounded variation on [0, c] for 0 < ¢ < 1.
We next prove that Ge L (0, 1), where G(f) = J"~ o) ([0, £1)). Define J*:
g(6)— {} g(s)ds. Then Y(t)—((J*)" y{#). We write vx(r ) for u(x)([0, £]). Let
yeL (0, 1). Then for all g in C[0, 1],
1 1
Ja@yxY)(dr) = Ig(t)x{f-)((l*)”‘ly)(t)dr+j g(©)Y (1)x{de).
0 0

[
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Thus Y{t}x(df) is a finite measure on [0, 1] whose total variation on [0, ¢] is
{5 Y ()|v(x) (di). Restricting ourselves to y = 0 and applying Fubini’s theorem,
we have

a—1

FU=r 1000 @) = 3. Fod(@- ()0 +§ e~ o).
O Jj=0 0

The left side is bounded as ¢ — 1. All the terms on the right side are positive. It
follows that

Py to)mdt < oo, yeL,0,1), y=0.
Q

We conclude that GeL,(0, 1).

2.2. REMARK. Let D: C[0, 1]—L,(0, 1) be a discontinuous derivation with
singularity set F = {0}. Then D(f) is of bounded variation on each interval [a, c]
for 0<a<c<l

Proof. Since z"eI(D), g,(z")D(’) is a continuous derivation so that
0, D(eW(g,) for all feC"[0, 1]. Henece

n

D)) = Z

— WY F{( D))+ yle),

where ye Wig,). All the terms on the right-hand side are of bounded variation

on {0, ¢} for 0 <c< 1. Thus D(f) is of beunded variation on [a, ¢] for
O<a<e<.

The spaces Wip,) equipped with the norm described in Theorem 1.2 are
C" 1[0, 1]-modules whose module action will be denoted by
.. C*71[0, 1] B(W{g,)). We need the following two technical lemmas for
the computation of y,. The explicit formula that we obtain for y, is essential in
the description of continuous and discontinuous derivations of C"[0, 1] into
L0, 1).

2.3. LEMMA. Let x be of bounded variation on [0, t] where 0 <t < 1, and let
geC[0,1]. For k=1,2,3, ..., we have

(Ig x(ds)) == I(tms (s)x{ds).

Proof If y(s) = [} g(u)x(du), then  is of bounded variation on [0, ] and

S)"

i

yr(ds )) ;:—, g (t—5)*g(s)x(ds).
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24, LemMa, Let geC™[0,1], m=0,1,2,... For i=0,1,...,m

m—i+k)

(2 g™ = m! z (i 2

K= (m—i+kl

Proof Thecase when m =0 or i = 0is frivial. Let i == 1. An induction on
m shows that

(zgy™ = mgm~ BV qzgm =12, ...

Suppose that the lemma is true for i; by writing
. (Zi+lg)(m} — (z(zfg))(m) = m(z‘ig)(m—lj_*_z(zig)(m),

a short computation shows that

R g(}n—(i+1)+k)
i+1 a0m) 1 i+ 1y .k .
(Z g) m'kgo( k )Z (m—{l+1}+k)'
2.5. THEOREM. Let L,0,1), 1<p < o, be given the C"[0, 13}-module
operation defined by

n

Y =% ).

j=0

(o)) () =

Let v, be the corresponding continuous homomorphism of ct1[0, 1] into

B(W(g,)). Then for all feC" 1[0, 1] and x& W(g,),

(74 f)X)(I)wX(O E(" =18,

+( 11)' E "5 (— 1)111“211 1=3 £y g)x( ds)

where 6,(f) = fUQ)j! and x(0) = lim,_o-x(2) since we may assume that x is
right continuous.

Proof. Let peP and xeW(g,). Then

(00 = @G0 = 5, (=100
Using the fact that (;i,)=("7")+( jﬂ) we write

“zl(”“ M= 1Y H(pP(e)x () — j"p‘-”'”(s)x (s)ds).

j=o

(J*,,(p)X)(t) =
Integrating the last integral by parts yields

Z C3(=1Yp ”)(O)X(O .+ Z 3= 1)’JJ(IP”’(S)>C{dS))

i=

(.(p)x) (¥)
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Letting SUM = x{0)¥ 124 ("3*}(— 1Y 8,(p)¥’ and applying Lemma 2.3, we obtain

n1 _ 1 p(f)(s}
{?n(p)x)(z) =SUM+ Z ("jl)(—l}lg(t—d}'—j—!——x(d )

j=a

Writing (t—sp = Y=o ()t " F(—1)*s* and changing the order of summation

yields
n—1n—-1

B =SUM+ Y ¥ 3H(=1H(-1)

k=0 j=k

e~ "j"s"pj( )x(db)

We shift the index of summation, I'E:p].d.cmg j by j+k, and observe that

_,+rc)(“r+k "7 1)( ) Then
cp-ln—k-1 B p( +k()
(p)x)) =SUM+ ¥ § (7H-1Y(7] l)f’IS" x(ds).
' k=0 j=0 (Jj+k)!
Switching the order of summation again, we find that
r -1 J kpj+k)( )
(,(P)x) (£ = SUM + Z CINPE] YT,

0 k=0
By Lemma 24, ‘

n—1

1 Lt .
e PACRIC i GRS
i 0

Since y, is continuous for the C*"*-norm and the right-hand side only involves
the first n— 1 derivatives of p, the same formula holds for all f in C"~*[0, 1].

(7. (P)x)(t) = SUM +——

immediately following from this theorem we obtain a formula for con-
tinuous derivations of C*[0, 1] into L,(0, 1), 1 <p < o0,

2.6. THeEOREM. Let D: C"[0,1]-L,(0,1), 1< p < o0, be a contimious
derivation. Then D(z)e W{p,), and for all feC"[0, 1],

D(f) = %,(f1D(E = DR T ()~ Y5,
i=0

1 n—1

are ARG CRR AR OLIOI)

3. Discontimous derivations of C"[0, 17 into L (0, 1). We next turn to the
characterization of singular derivations. Let D: C"[0, 1]-L,(0, 1),
1 € p < co, be a singular derivation. By [2, Theorem 3.2] we may assume that
its continuity ideal I(D) equals M, ,_; for some 1 <k < n By [7, Corollary
2.6] the range of D is contained in the kernel of g,(z*). We prove that ker g,(z)
is a finite-dimensional cyclic submodule of L,(0, 1).

3.1, LeMMaA. For k=1,2,...

, zn—l}_

, n, kerg, (28 = span{z""k, ...
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Proof From [6, Lemma 12}, kerp,(z) is the one-din ~nsional subspace
spanned by z"”'. Suppose that the lemma holds for k—1 let xekerg,(z").
Since ¢,(z" " "} (e, (2)x) = O, there exist constants a,. -y, . .- such that

CalZ)X =G, 4y 2" T L 4, T
Since
i+1—n .
Dl =1 2Tt i=0,1.2, ...,
2.(2) Iy J .
we can write
0,2 = 0,42) (bpy 2" * .. B2 )

for some constanis b, _y,

n—k

vees By—q. Tt follows from the form of kerg,(z) that
xespaniz" "¢, ... 2"

The structure of singular cyclic derivations into finite-dimensional modules
was determined in [2, Theorem 5.3]. Using this result we obtain

3.2. THEOREM. Let D: C'[0, 11—+ L,(0, 1), 1 < p < we, be a singular deriva-
tion with continuity ideal 1{D)= M, ;.1, where 1 S k< n Then there exists
a discontinuous linear functional 0 on C'[0, 1] whlch panishes on polynomials
and on the principal ideal 2 C"[0, 1] such that”

k-1
D(f)= % 027171, )z" 7,

i=0

fecrlo, 11.

We now turn to the structure of an arbitrary discontinuous derivation D of
C"[0, 1] inte L,(0, 1). We show that D is the sum of a continuous linear map,
a singular derlvanon, and a discontinuous part consisting of finitely many
discontinuous linear functionals on C"[0, 1]. We need the following lemmas.

3.3. LemMA. Let D: C'[0,1]—-L,(0,1), 1 <p < oo, be a discontinuous
derivation with continuity ideal I(D)= M, ;-y, where 1 <k<n Ler u(r)
= (g,(z5YD(2))(2). Then lim,_o+ u(t) = 0.

Proof. Since z*¢ M-, =1(D) ¢g,(z"D(-) is continuous so that
i =g,(z)D{(z} is in W(g,). By Theorem 2.1, u is of bounded variation on [0, ¢]
for 0 <e¢ <1, thus we may assume that p is right continuous at 0, so
lim, .« (f) exists. Suppose that lim,.q. u(f) # 0. Then lim,.q+ [t*D(z} (1) = O

since
n

wlt) = t*D(z) (1) Z = IV (SN D(z) (5)),

and each term of the sum has lumt zero at 0. This means that there exist ¢ > ¢
and & > 0 such that it*D(z)(#)] > & for 0 < t < 8. But then |D{z)(1) > ¢/ on
(0, 8) and this is a contradiction to D(z)eL,(0, 1).

34. LemMA. Ler D: C'[0,1]1-L,(0,1), 1 <p <0, be a discontinuous
derivation with singularity set F = {0} Then we can write D = D, +D,, where
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D, is a continuous derivation and D,(2) is of bounded variation on [a, 1] for all
O<a<l.

Proof By Remark 2.2, D{z) is of bounded wvariation on [a, c],
0 <a<c <. Again by [2, Theorem 3.2], I{(D) =M, ,_, for some 1 <k <n,
so that g,{z¥)D(-) is continuous. Let g = ¢,(z*)D(z) as before; then u is in W(p,).
Now, fix b in (0, 1) and let y = yy,,;D(2), where g5, (7 denotes the characteristic
function of [, 13. Then y is of bounded variation on [0, ¢] for all 0 < ¢ < 1.
From the characterization of W(g,) in Theorem 2.1, 2! D(z) is in W (g,) since
u and all the terms in the above sum are. Since y vanishes near zero, it follows
that J”"*(v(y) ([0, sD))e L,(0, 1). Thus ye W(g,). By [2, Proposition 4.2] there
exists a continuous derivation D;: C"[0, 1] L, (0, 1) such that D,(z) =
Then D, = D—D, is a derivation with D,(2) = ;0D (2) & function of bounded
variation on [a, 1] for O<a< 1.

Given a discontinuous derivation D, decompose D as in Lemma 3.4. Since
D, is continuous, it can be described by Theorem 2.6. So it is left to consider
D,, a discontinuous derivation with the property that D,(z) is of bounded
variation on [a, 1] for 0 < a < 1. First we consider discontinuous derivations
from C"[0, 1] te L, (0, 1).

3.5. THeorEM. Let D: C'[0, 11— L,(0, 1) be a discontinuos derivation with
D{z) a function of bounded variation on [a, 1] for all 0 < a < 1. Suppose that
the continuity ideal is I{D}= M, ,—, for some 1 < k< n Then there exist
discontinuous linear functionals Gy -vns 0 on C'[0, 1] such that

Z (n 1) ”—*1

Jﬂk

D(f}=T(f)+ -, feMy.

where T'is a continuous linear map from C"[0, 1] which is completely determined
by D(z) and o,.

Proof Let u= Qn( 2%)D(z). Then wis in W(g,), 1(0) = 0, and p is of bounded
variation on [0, 1] since D(z) is of bounded variation on [«, 1], 0 < a < 1. For
Sel(Dy, we have, by [7, Theorem 2.3] and Theorem 2.5,

1 = .
DU =y (/) ult) = —— Z (”}1)(—1)’t'fI(Z""“""‘f’)‘""”(S)#(d-ﬁ‘)-
(n—1)! 5% S
If 0<j<n—k—1 then the map f(t)—t/ f5(z" 177 %)= D) u(ds) defines
a continuous linear map from C°[0,1] to L,(0, 1) which vanishes on
1,z,...,2/" For n—k <j<n—1 we write

3

v g ("™ D s ulds) = o I (@I D) p(ds)
0

1
—t [ {22 IR D () u(ds).

icm

Module derivations 201

The map f(O)—>S(t) = ¢/ [} (2"~ I~k f) = 1(s) u(ds) is 1 continuous linear map
from M,;-; to L,0,1) for n—k<j<n—1. T2 see this we write
f= Z, (N +R (f), where R,(f)eM,,. Then

1 1 n
IS8Tz, < JH 17770 3 i8,()2 ) s)|o(w) (ds)de
o r i=k .

1
+I F iz VI TER (Y (s) (b (ds) de.
0 t

An application of Leibniz’s rule, Fubini’s theorem, together with the fact that
the map f — f/z from M,,.; to M,.,,—2 is continuous [7, Remark 2.27],
shows that the sums on the right-hand side are bounded by Ko(u) ([0, 1)1 11,
for some K >0. The integrals [§(z"~'~77*f)"~Y(s}u(ds) are defined on
2" IM, -y We set

ﬁl(f) = j:(z—-l+i—kfl)(n—1)(s)#(ds), fezkﬁi+1Mn,k—1: i= 1: AR | k.
0

Using the Hahn-Banach theorem, we can extend f,, ..., §, to linear, func-
tionals on M,,. For feM,,, let

k

n=

1)frfi(z"-l-f-"f')‘"—“(s)u(ds)

1=
E(f)(t) (n I ZO n 1)
n-1
s TR (ot 0 (R GO
*fEn—k ”
n—1
+mf:§i;wk( PN B (1)

The integrals on the right-hand side define continuous linear maps from
C*0, 1] into L(0, 1) so that the discontinuity of D arises from the linear
functionals ;. Since p,(z*) anuihilates "%, ..., 27", the map g,(z")D(f) is
continuous on M, ,. Now z* is in the continuity ideal of D so that g,(z9)D(f) is
also continuous. Since D and D agree on M2, _,, which is dense in M, ,, we
conclude that g,()D(f) = 0,()D(f) for all feM,,. Since D(f)—D(f)
ekerg,(z"), by Lemma 3.1 we can write

r—1
=D(fNHi+ ¥ (N7,

J=n—k
¢;. This establishes the desired result.

D(f) feM,,,

for some linear functionals ¢y, ...,

We obtain a similar result for discontinuous derivations from C"[0, 1] to’
L0, 1),

36, THEOREM. Let D: C"[0, 11 L,(0, 1), 1 < p < o0, be a discontinuous
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derivation with D(z} a function of bounded variation on [a, 1] forall 0 < a < 1,

Suppose that the coniinuity ideal is 1{D) = M,, 1 for some 1 <k < n Then

there exist discontinuous linear functionals oy, ..., ¢, on C'[0, 1] such that
1 n—1

> TN =Wa-, (N7,

(n—1)1 ;. 252,

where T is a continuous linear map from C*[0, 1] to L (0, 1) which is completely
determined by D(z) and g,

D(f)=T{/)}+ feMy,,

Proof. Since L {0, 1) = L,(0, 1) for p = 1, we can consider D as a deriva-
tion from C"[0, 1] into L,(0,1). By Theorem 3.5 we can write

1! .
DN =TW+g—g5; Z CTHWa () S &M
* j=n—k
so that
1 Lo . .
TN =D~y Z (T WanilNe, [eM,.

Since all the terms on the left-hand side are in L0, 1), T(f)eL,(0, 1) for all
feM,,. Let yeL (0, 1) be in the separating space S(T} of T. There exists
Fu=0in C"[0, 1]and T(f,)—yin L,(0, 1). By Theorem 3.5, T is a continuous
linear map from C"[0, 1] into L, {0, 1}, so that T(f,)-+0 in L,(0, 1). Thus
¥y =10, and we conclude that T is continmous. This completes the proof.
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On the integrability and L'-convergence of
double trigo:metric series

by

FERENC MORICZ {Szeged)

Abstract. We study double cosine and sine series whose coefflicients form a null sequence of
bounded variation. In particular, we consider the special cases where the double sequence of
coefficients is monotone decreasing, or convex, or quasiconvex. We are mainly concerned with the
following problems: (i) the series in question converges pointwise, (i) the sum of the series is
integrable, (iii) the scries is the Fourier series of its sum, (iv) the series converges in L'-norm.

Among other things, we extend the classical thecrems of Kolmogorov and Young from
one-dimensional cosine and sine series to two-dimensional ones in an essenfially more general
setting. Qur basic tools are Sidon type inequalitics.

¢. Introduction. The following theorems are well known for one-dimensional
cosine and sine series.

TueorEM A (Kolmogorov [6] and see also [11, Vol. 1, pp. 183-184]). If
{a;: > 0} is a quasiconvex null sequence, then the cosine series

(©.1 ' fa,-+ Y a;cos8jx
J=1
converges, except possibly. at x = 0, to an integrable function f(x), is the Fourier
series of f, and the partial sums converge in L'(0, my-norm to f if and only if
g;lnj—-0 as j—co.
THeOREM B (W. H. Young [10] and see also [11, Vol. 1, pp. 185-186]). If
{a; j= 1} is a monotone decreasing null sequence, then the sine series

o)
(0.2) Y, a;sinjx

=1
converges to a function g(x) at every Xx, tnd. g is integrable if and only if
Z(aj—aj+ )Inj < oo. If this condition is satisfled, then (0.2) is the Fourier series
of g, and the partial sums comerge in L'(0, m)-norm fo g.

In this paper we will extend these results to two-dimensional trigonometric
series (see Corollary 3 in Section 2 and Theorem 5 in Section 6) in an essentially
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