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A method of solving a cocycle functional
equation and applications

by
L KWIATKOWSKI and T. RCIEK (Toruf)

Abstract. The problem of isomorphism in a class of finite extensions of adding machines is
studied. This leads to a functional equation of the form
(%) JSoT—f =yoS—p

where ¢, W, f1 X—=H are measurable, T: (X, %, m)a is an ergodic adding machine and
S commutes with 7. A new method of solving (#) is provided. Some applications are given.

Introduction. Let T: (X, #, m) be an ergodic automorphism of a Leb--
esgue space. Given a compact metric abelian group H and a measurable map
¢! X > H (called from now on a cocycle) we define T, (X x H, mxmy) 2
(my is the Haar measure of H), the H-extension of T, by

T x, b) = (Tx, @(x)+h).

Two cocycles @, 't X - H are said to be equivalent whenever there exist
a measurable 1 X —H, an Se C(T) (C(T) being the centralizer of T, ie. the
semigroup of all S: (X, #, m)» commuting with T) and a continuous
isomoerphism v: H—H such that

(A) FTxy—f (x) = p(Sx)—ovf{e'(x)), mae xeX.

Assuming that T: (X, #, m) 2 has discrete spectrum, (A) has a measurable
solution fiff T, and T, are metrically isomorphic [6]. Many other problems
concerning group extensions are equivalent to the existence of a solution of
a lanctional equation of the form

(B) JoT~f=¢

with given ¢ {for instance ergodicity of T, [7], the centralizer of T, [3], [2],
weak isomorphism problem [4]). In this paper we take up the study of (B)
when T: (X, #,m)p is an adding machine (i.e. up to isomorphism 7' has
rational pure point spectrum with the group of eigénvalues
Sp{T) = G{n;: t =0}, n|nr.y, t 20, generated by the n,-roots of unity), H is
a finite abelian group and ¢: X —H has only a finite number of points of
discontinuity (a special Toeplitz cocycle).
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70 J. Kwiatkowski and T. Rojek

The paper consists of two sections. The first is devoted to the presentation
of a method giving a necessary and sufficient condition for (B) to have
a measurable solution. In §2 we present some applications. The method of
solving (B) is based on the existence in X of a sequence of T-towers &,
& =(Dh, ..., D~ ), t =0, such that &, ~ ¢ (¢ is the partition of X into points).
It f: X— H is a measurable solution of (B), then there exist &-measurable
functions £, ¢ > 0, such that the sequence { /;} satisfies the Cauchy condition in
measure. The main result of §1 (Theorem 1) says that the functions f, can be
chosen in such a way that

o0

Z m{X: Silx) # f¢+1(x)} < 0.

=0

The last condition implies that
milimsup 4,) =0,

where A, = {xeX: f(x) # fi..1(x)}. Therefore {f;} is convergent m-a.e. Our
method of proving Theorem 1 is based on methods used in [87.

In §2 we describe the centralizer C(T,), where ¢: X — H is a regular Morse
cocycle, This result is a generalization of [2], where C(T,) was described if
H =17, The next problem we deal with is concerned with ¢: X —~Z,
admitting an approximation with speed o(1/n'*", ¢ 0. Is it possible to
modify this cocycle by adding a coboundary to get a cocycle with one point of
discontinuity (a Morse cocycle), ie. are there W, X —Z, such that

Q)+ (x) = f{Tx}+f (%),

(of course, except for some trivial cases we cannot get ¥ continuous)? Fore > 1
the positive answer has been found in [5] and then for every ¢ > 0in (17, In [1]
the authors stated the question whether the same is valid for ¢ = 0. It seems to
A. Fieldsteel (Math. Rev. 89:28038, p. 3158) that this is also true. Here, we
construct a cocycle ¢: X — Z, with speed of approximation o(1/r) which is not
equivalent to any Morse cocycle. We finish this paper by proving that for
cocycles g2 X —Z, having only one point of discontinuity with a condition of
regularity there exists SeC(T). such that the functional equation

m-a.e xeX

poSi4 . -+—<p0Si’=+quU =foT+f

cannot be solved forany iy < ... < i, k22, Ue C(T). This gives a partial {and
positive) answer to a question stated in [4]. The relevance of the existence of
¢ with this property has been exhibited in [4], namely it leads to some
counterexample machinery in the class of loosely Bernoulli transformations (i.e.
in the class of induced automorphisms of irrational rotations),

The authors would like to thank M. Lemanczyk for very fruitful discussions
and for a suggestion how to construct cocycles in §2.
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§ 1. Description of the method. Let (X, T) be an adding machine, ie. T has
rational pure point spectrum with the group of eigenvalues
Sp{T) = Gin;: t 2 0}, nnq, t 20, where G{n,: t = 0} denotes the group of
all nroots of unity. The set X can be identified with the group of all n~adic
integers, ie.

X = {x ={/)ze: 0 j € n—1, jivr =, (modn), 12 O_],

and T with the translation by the unit element T = (1, 1,...). Denote by m the
normalized Haar measure on X defined on the algebra of all borelian subsets of
X. Putting

Dy={x=(Neo dy=/}. i=0,..,n-1,

we see that DinDi=@ il j#s, | Jii!Di=X and T(DY) =D}, j=0,
o =2, T, -4} = Dy, Therefore the partitions & = (D, ..., Dy, -,) are
T-towers and £, ~ &, where ¢ is the partition of X into points. The sets D will
be called levels of £,. Finally, put 4, =m/mn,_,, t 21, i, = n,.
Let H be a finite abelian group. A measurable function ¢ X — H is called
an H-valued cocycle. A cocycle o is a coboundary if there exists a measurable
function f: X — H satisfying

(1) FTX)=f () = o)
for ae. xeX. A cocycle @ is Toeplitzgf the set S, of ail levels of £ = (Dj,
., Di,_1) on which ¢ is not constant a.e. satisfies the condition card 5,/n, ~0
ag t—co (here card A is the cardinality of the set A). By a block B over H we
mean a finite sequence Bf0] ..:B{n—1], B[ile H, 0 <i < n—1. The number
n is called the length of B and is denoted by |B. If 0 i< k< n—1 then
B[i, k] denotes the block B[7]...B[k]. Given he H define a block B+#h by
(B+W[i] = B{iJ+h,i=0,...,a~1.1fC= C[0]... C[m—1] is another block
over H then B x C is the concatenation of the blocks B+ C[f], 0 <j<m—1,
1e.
BxC = (B+C[0)...(B+C{m—-17]).
Assuming |B| = |C| = n one can define a block B+C by
(B-+ O[] = BIi]+C[1].
By the distance d(B, C) between such blocks we mean the number
d(B, C) = card {0 € i< n—-1: B[i] # CL}}/n.

A Toeplitz cocycle ¢ determines a sequence of blocks {4,}/1o such‘tl.uat
|4 =n, A[]1=¢lpeH il j¢5 and A[j]="-" fo; the remaining
je{0,...,n—1}. We say that a place j, 0 <j<n—1, in 4, 1§_ftlled if
A,[fle H, ie. if ¢ is constant on D}, and that it is empty (or the place jis a hole)
il A,0j] =*“=".1f je§, thea the function ¢ admits at least two values on
subsets of DY with positive measures (see Fig. 1).

i=0,...,n—1,
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1]
ot Tr
- R ¢ Is not constant
T ‘ .
s ! v = 407
T
D i ¢ = A1
DY 17 o = A[0]
Fig. 1

It follows from the definition of the blocks A,, t = 0, that 4, ; is obtained
as the A, y-fold concatenation A,...4,, in which some holes are filled.
A Toeplitz cocycle ¢ has k holes (k= 1) if S| = k for every t = 0,

Assume that ¢: X —H is a Toeplitz cocycle having k holes and consider
the equation (1), where f is an unknown measurable function. Now, we
are in a position to describe a method of selving (1). Suppose that
Sy = {jo < ... <ji—yr}. Take blocks o =a'[0]...a'[k—1], &[s]eH, 5=0,
..., k—1, and h,eH. Define cocycles @,, t =0, as follows:

p(x) if x¢ ) DS,
(2) i) = o
of[s] if xeDy, s=0,..., k—1.
The cocycles ¢, allow us fo define functions f, = Sle' kY X —H by

h,, xeDf,

3 = N
( ) f;(X) {hg'i'(PrOT—JX‘!'---"I‘QDxOTHlxv XEDj'ij]""’n‘—]'

In the sequel we will consider special elements h,e H. Let
Mo, ol Th R B =m{xeX: fio (a7, H)(x)# filod, B)(x)},

Put #, =0 and next choose inductively h, h,, ...

h,ieH.
as follows:

(4) M, o™ By g, h) = nhlif?M(az', o' By, B

Then f{e, h,) depends only on o and we will write f,(«) instead of /,(o, h,).
Let ¢ be a Toeplitz cocycle having k& holes and assume that

e

(5) 1/2, < o0.

t=0

1
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Limma 1. Let [+ X —H be a measurable function such that
FIX)~f(x)=o(x) jor ae xeX.
Then there exist blocks o, t =0, of length k such that f,(&)—f in measure.

Proof. There exist {-measurable functions g, X — H such that g,—f in
measure, because £, ~ &, Let us divide the tower ¢, into A, ; columns K,(j),
=0, ..., Ay — 1, where K,(j) = | Jrog' DL, (see Fig. 2).

1oL Dt
D:“... 1 ne~ 1 g tng=—1
D.;]k'-l [ e e e e e e e ¢ is not constant
D:tiu B ] mib bty Rebebtt (p is not constant
b |2 it
o, 2 Dl

0
K7

Fig. 2

Let J, be the set of those j, 0 <j< A,+;—1, such that ¢ is constant on
each level Dy, r=20,...,n—1. Since ¢ has k holes on £, we have
|4, = 4,41 —k. For every jeJ, the cocycle ¢ determines a block B} with
[BY| = k such that Bi[s] = ¢|psr , s=0,..., k—~1. There exists a block o,

ek 2
|#'| = k, for which the set J, = {jeJ;: B} =cd'} satisfies
(6) o Wl 2 e > 0.
Put Eie= | Jjep, Dimtes r=0,.., n,—1. We have T(E)= K4y, r=0,..,
n—2; T(¥,. ) = EYy. Hence

Ap= 1

7 m( ) E) =T A1,

re)

m(E) = 1,/ 1,

and the functions ¢ and g, are constant on each E}, 0 <r < n—~1. Let hie H be
such that

mi{xeEy: f(x)=h}= max mi{xeEh: f(x)= h}.
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Hence putting F = {xeE}: f(x)
(8) m(Fy) 2
If xeT'(Fy) =:F., then .
®) S = ST %) +e(T ")+ ... +o(T 'x)
=+ @(T7"x)+ ... +o(T7'x) = fi(x) = file, k)(x)

because f satisfies (1), r =0, ..., n,— 1. Further, T"(E}) =
(10) m(Fy) = m(Fo) = m(Bo)/|H| = m(E:),
Now using (6)—-(10) we have

mix: fi(x) # g, (x)} =n~

_ e, IJI
|JI Mg

= hj} we obtain

m(Ep)/|H|.

E&, which imptlies

O<r<n-~—1.

Yeard{0 <r < m—1: filn # gl s}

card{0 <r <m—~1: filps # gl s}

A’Hm(E )card{ < o7 H|m(Fy)card{...}

Il
ne—1 ng~ 1
THHim{xe |) F: fi(x) # 0,00} = e Hm{xe {) Fi: f(x) #g,00}
r=0 r=0 '
“HHIm{xeX: f(x)#g,(x)}.
Thus the condition g,—f in measure implies m{xeX: f(x) # g,(x)} =0,

which gives f,—f in measure. The proof of the lemma is finished.

THEOREM 1. 4 measurable solution f: X — H of (1) exists if and only if there
exlsts a sequence of blocks {u'} of length k over H such that the functions
— /(o) satisfy

o

(11) Yom{xeX: fi(x) # £+ (%)} < 0.

t=0

Proof. Sufficiency. For every t =0 and r > 0,

m{x: fi(x) # Lo, (9} <mf U {x: /.

(X} # frair 1 (2)})

< g m{x: fiidX) # frarpg ().

The above inequality and (11) unply that the sequence { f,} satisfies the Cauchy
condition for the convergence in measure, so {f;} converges in measure to
a measurable function /: X — H. It follows from the definition of o, and f, that

icm
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JATX)—f,(x) = @,(x) = o(x)

for XCUJEE'MD Using this equality and the property m({ us, D9 71 we
obtain (1}.

Necessity. Suppose that f satisfies (1), There exist £-measurable functions
g, X —H, t 20, such that g,—f in measure, because ‘f; 7 ¢, Using Lemma
1 we can assume ¢, is of the form g, = f,(¢), where the o are blocks over H.
la‘| = k, t 22 0. Let B, be the block obtained from 4, by putting «'[s] in the
places A, [ j/],j&S,. If C = C[O]C[1]...C{n—1]is a block over H, then denote
by C the block

0, C[0], C[O]+C[17. .... C[0]+C[1]+ ... + C[n—2].

It follows from (2) and (3} that the members of C, = B, + h, are the successive
values of f, on Dy, Dy, ..., D}, - . Now we will modify the functions f, to obtain
other £-measurable functions f] such that

34} o

-?(;f;.1 }<m ZJﬂ-{x

t={ =0

b flx) # filx

)} < 0.

From now on we use the following notation:

0,=0...0 (n-fold repetition), n = 1.
Since f,~+[ in measure, we have
(13) supmix: fiu,(0) # £ ()} —0
rz1

The values of /;, on Dy, ..., Di7”_, form the block C,x0;,, . 5,, so the

Ni+p

condition {13) can be rewrltlen as
(14) ' supd(Crpr, Cx 04,1000 20

vzl
Define blocks Nyyy, [Nyl = A Ay, in the following way: For 0«1
€ 44, —1 consider the numbers
(15)  d(h) = d(Crp [In,-y, {4+ Dnp =11,
(C, %0y, Jlnge s I+ Doy —11+h),  heH.

Now, choose hye I such that d(h,) = miny, d(h) and put N, [1] = hy. ‘l; is
not hard o sec that at least A,k of the subblocks C,[gn,.. 1, (g+ 1) —~ 1],
g=0,..,A4~1, of C bhave the form

(16) B, +Hh,

where hefl, Thus at least A, A, —An1k corresponding subblocks of

C,%0,,,, have the same form. Moreover, the same subblocks of C, ., ; have the
form (16) too. Henge the distance d in (15) is O for at least J, .44, — A4 k of Is.
As a consequence we have
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ACre1—Cx 0y, Op X Nyyq} € kdgs - 1/noyy = Kf4,

and using (5) we obtain

{17) iﬂd(CtH—C,xOAM,OHtﬁlxN,H)<oo.
=
Further we will need the identity
(18)  Corp—C,x 0y, n,,
= iy Crapmy X004, H(Cripmt = G2 X0y, )% 0y, A+ 1
HF(Crra—Crr1 X043 %05t F(Cra 1 —Cx 00 3% 0 shr
Putting
dy(r) = d(Cosr—C, % Op 1 isenrs Ones)
and using (17), (18) and the inequalities
ld(4, C)—d(B, C)| < d(A4, B), A, B, C blocks of the same length,
d(A;+B;, A, +B,) < d(4;, 4,)+d(B,, By),
we have
dr) = d(0n,,, ;X Nogr+0n i s KNy X054 . +0,,%x Nyip
X Oy gterrt0n X N1 X000 asns O )60 = A7) +6,(),
wherte sup,s&,(r)—0. For even r,
d(r) = d{0y,,, ;X Nesr+0s, X Noya %05 syt oo 40
X024 sotpors =LO0nsr 3 X Nigpe1 % 05, ]

oo [On % News X0, 1) =101, ),

X N2

Ne

Now, we apply the identity
(19 (Ax0)+(©0,x B) = 4x B,
We obtain

|| = g, |B| =s.

0"t+r—2 x Nr+r+0m+.--4 X Nr+r—2 X 0At+rlrvl-r‘—j = OHM-r--nI X Nr-l“r_z X NH'r
and applying (19) many times we have
1= OnEXNH-Z b S XN;+,,, Il = —[Ollrfl XN,_HX e XN1+,.—1 XOA.H.,-:]'

Hence

(20) 4= d(OAgXNt+2X }'<Nl+r= ~[Nys % ... XNyt % 0y, 1)

Cocpele functional equation 7

The condition (14) gives sup, d,(r)~0 as t-—co and similarly
21 supd,(r)—0

rzl
Now, it follows from (19), (20) and from [8] that there exist blocks
Gy, o g1 | = Agge 18] = Az q, 82 0, satisfying

Z d(mNZ.s'n iisxas-!-l) < oo,
§m 0

as t—ao.

o
Z d(N.'Z.\‘—l’ asxﬂs) < Q0.
570

Since (1) = d{N, .1, 03, )~ 0 a5 1> o0, we have

dlay X dy, Oayy 12, )= 0 and  d{id, x a,. Oip122)—0  as s—00.
The above implies that there exists he H such that
dlag+h, 05, )>0 and dd,~h, 0, )—0 as s~ co.

Again we obtain

2 A{~ Ny, (@, =h) X (g4 + ) < 00, 2 AN+, (@, x By % (d,—h)) < co0.

Put
_ '""as-u""h ifl‘ﬁZS,
Re= {&g—h it =25—1.
Then
(22) Z d(Nf'?'l"(—Rl)XRinp-l)<CO.
10
Put |
{23) P, =C,+(0, ., xR), =0,

and define a £-measurable function f: X - H by

f;(x) = Pr[j:]a

We have mix: fi(x) £ 7, ((x)} = d(Pyq, P,x0,, ). Next, (22), (23) and (16)
imply

xeDj, j=0,..,n-1.

w 18
(24) Y APy, P x0,,,) < o0,

(=0
which gives » ugmix: Jj(x) # fi..1(x)} < c0. To finish the proof it suffices to
show Y omix: Ji(x) # f,(x)} < w0,

If jeJ, then C,.. [ jn,, (j+1)n,~1] has the form C,+}, hie H. Denote by

D, the block of length |J;| with members b, jeJ,, and let B, = R, 4|5,. Then
P (i Dny~1] = C,+h+R&,[j], jeT,. Further
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d{P,, 1, P,x0,,,) > S card{0 < r < n—1: P [jn+r] # P L}

nc+1jej,
LS card{o <7 < n—1: CLA+M+ R # PO}
nf+1JEJ¢
Vol 1
= ey card ..}
lewr ’%!lejgft
/.|

= d(C,x D,+(0,, % R), P,x0z)) 2 emind(C,, P +h).
t+ 3

But d(C,, P)=4d(0,,0,_,xR)=
mind(C,, P,-+h) = d(C,, P)

hell

d(R,, 0,)-0 as t—co. Thus

for ¢ large enough. As a consequence we obtain
d(Piv 1, Pox 04, ) 2 0d(C,, P,
Therefore in view of (24) we have 3 244(C,, P) < co. This means that

[+7]

2 mi{x: filx) # (0} <

=0
This completes the proof of the theorem.
COROLLARY. Suppose that the equation
SI)—f(x)=oelx), =xeX,

can be solved and let C,, t =0, be the blocks determining the functions f,
constructed in the proof of Theorem 1, If IV, I? are disjoint subsets of
{0, . j.[+1"‘ 1}, t = 0 then

0 I(l)E ]I(Z)i . .
Z { } min{d(C |, CY +h): jellth, jel!®, heH) < o,

)Lz+1 t+2
Whéﬂ"e ng'i)-l - !+1[jn:7 (]-FI)H!"- 1}7 j= 01 rees /.LH-l"—] .
Proof. We have

Aer1—1
d(Ciry, Cx0,, =474 Y d(Cl,. C)
j=0
= ;ij—ll[ Z d C(Jh, t) + 2 d(CM)l: )]
Jerth jeri®

> AL min {1V, (1P I}mmd(CP?-h CH).
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§2. Applications. We start with two definitions.

DErFINITION 1. We say that o: X — H is a Morse cocycle if ¢ has exactly one
hole for every t =0, ie. S, ={D.}.

OfI course, y, = ()2 is an n-adic integer.

DerFNITION 2. A Morse cocycle ¢: X — H is said to be reguiar if there exists
¢ >0 such that

nm{xeD: p(x)=h} = ¢
for all heH and ¢ = 0.

Now suppose that ¢: X — H is a Morse cocycle. Without loss of generality
we can assume that r, =n,—1 for every £ = 0. Let

A, = A,[0]... 4,[n,~ 2] hole

_be the block which defines ¢ on D, ..., D _,. To obtain A4,.; we use the

block
(25) frl=F00. B [Ars s — 2] hole
in such a way that
Apey = B BH0] B, 1], BB [y 1 — 2] B, hole,

where B, = A [0]... 4,[n,—2] with B, appearing 4, ; times. If we put g° = A,
then the sequence of blocks {f'}2, of the form (25) determines the Morse
cocycle ¢ completely,

There is another way of describing the Morse cocycles. Given a (completely
filled) sequence of blocks {b'}}2, over H with |b*| = A, and b'[0] = 0. Define
a new sequence of blocks {c,} by

¢=b"x...xb, tz0,

and put A,[jT1 = ¢,[j+1]1—-¢[jl,j=0,...,n,~2. Then the blocks 4,, t = 0,
determine a Morse cocycle . It is easy to see that each Morse cocycle ¢ can be
obtained in this way.

The regularity of ¢ means that

(26) Arveatd{0 € € Ay =20 B L= 1= h) =0

for all heH and ¢t = 0.

Consider the metric centralizer C(T) of T. It is well known that C(T) can be
identified with X. Each ye X determines § = S,e C(T) by S(x) = x+y, xe X,
and if y = (j}i,, 0€j, < n—1, j,=j4, (modn), then § = lim, T" in the
weak topology of C(T). It is proved in [6] that every S € C(T,) is determined by
a triple (S, f, v) satisfying

(27) fITx)~f () = o(Sx)~v{p(x), xeX,
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where Se C(T), f: X — H is a measurable function and v: H— H is a group
automorphism. We say that SeC(T) can be lifted to C(T,) if therc exist
Ji X—=H and v: H—H satisfying (27).

Let y = (j)i%o be an irrational n-adic integer and v: H— H an automor-
phism. Put §=S,, ¥(x) = ¢(Sx)—»{p(x)) and consider the equation

(28) F(Tx)—f(x) = yix), xeX.

Letjiyr =j+g417, 0K g S A1 — 1,8 2 0. Then j, 7 oo and (n,~j,} 7 00,
$0 we can assume 0 < ¢4 < 4,4~ 1. The cocycle ¢ has two holes on £,. We
illustrate it in Fig. 3.

D s e Y is not constant
Dy Vo =c¢,[j—1]~¢[j,—2]~v(c,[r,~1]
. —¢,[n, 2]
D, . W = ¢ [t]—c[0]—vlc[n~j 1]
—¢lm—j0)
Dy jog e W is not constant
D -2 W = fn,—11—c[n—2]—vle,[n,—j,—1]
—¢[n—j,—2])
Dj ¥ =c[ji+2—clj+1]—v{ce,[2] ¢, [1]
Dy o= ¢, [f+1]—c,[]]—v(e,[1]—c,[0])

Fig. 3

Now, recall that if A, B are blocks and h, k' e H, then by (A-+h)(B-+Hk)
we denote the concatenation of the blocks A+h and B+E. If v: H—H is
an- automorphism, then v(A) denotes the block w{A[0])...s(A[n—17) (here
A=A[0]... A[n—11]).

THEOREM 2. Let @: X —H be a regular Morse cocycle determined by
a sequence of blocks {b'}, |b'| =4, B'[0] =0, Yiol/d, < 0. An clement
S, =SeC(T) can be lifted to C(T,) if and only if there exists a group
automorphism v: H—H such that

(i) Z min {jz/nn l"jt/nt} < <o, y= (jt)f-]‘»() = Z RO
t=0 ) =0
(ii) Yod(y,, v(p) < oo,
=0

where y, = (' +r )b +5)[qi, @+ 4,~1], r, 5, are elements of H and gy = gy,
@ =4 if -1 Sm-1—ji-1—1 and g, =g,+1 {mod 1) otherwise, t > 1.

icm
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.Proof. We can assume that y is an irrational »-adic integer, because every
rational y can be lifted to C(T,). S, = § can be lifted iff there exists a function

f1 X — H satisfying (28). According to Theorem 1 this is equivalent to the

convergence of the series 3 Zom{x: fi(x) # fi4,(x)), where f, t >0, are
functions constructed in §1. Analysing the cocycle ¥ (see Fig. 3) we see that

(29)  the values of f, on Di, ..., D, ., coincide with the members of the
block (e, +r){e,+35)Lj, m+j,— 11— vlc),

where 7, sie H. By a simple computation we obtain
(30)  mix: fi(x) # 1 (%)}

j - ’ ! -+ ’ ’ a
== (I ""“'E')d((b£ ' l'f“T‘;+I—f'¢)(h’ Tt s~ b Aiv 1 F Gy — 1], (b 1))

m,

j '} r - ’ ’
+#d((b'+1+"'z+1 IR T R 1 7/ S B, iy v h)

t
- ;(1 -~’—f)-111+“'—’-1v.
n

¢ :
If j/n, < 1/2 then putting
(31) Pt = Foat ™ Hy  Seqq = Sppq — 1
we have
d(0* " v DO s Dy Aew 1+ G — 17, w(b*+1))
< 2m{x: fi(x) # fir 1 ()}
If j/n, = 1/2 then for
(32) Frat = Foo1 =58 Sper = Sipq— 8
we have
(R ST WY TG LR Y | F/ PSS B SRS Ay B U(brﬂ))
< 2m{x: filx} # fi1 (20}
Now, Theorem 1 implies (ii). (30) yiefds the inequality
{33) mix: fi(x) s fre 1 (0} 2 min{ j/n, 1—j/m}IT+1V),

It is not hard to see that the condition of regularity implies ITI-+1V > %p.
Therefore (33) gives ().

On the other hand, if (i) and (i) are satisfied then we put rfy = ry, ) = 5, and
define r, 51, ¢ 3= 1, by (31) and (32). Next define f; by (29). It follows from (30) that

- Jift+ 11 if j/n, < 172,
G () 5 {1 ~JnAIV A 2 12,

6 - Sludia Mathemalien 9.1
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Then the above inequality and (i) and (i) imply

9]

Y om{x: fi(x) # f4100) < 0.

=0
This completes the proof of the theorem.

The next theorem gives a negative answer to a question contained in [1].
Here we assume H = Z,. For completeness we recall the following definitions.

DermiTION 3. Let f: W—R be a real function. We say that a cocycle
®: X -»Z., admits an approximation with speed o{ f (n)) if for some subsequence
{t,} there exist sets F, consisting of some levels of the partitions £, such that

m(@ " (1)AF) = o(f{n,).
DEFINITION 4. A cocycle ¢ is called ergodic if the Z,-extenston T, is ergodic.

THEOREM 3. There exists an ergodic Toeplitz cocycle ¢: X —» Z, admitting an
approximation with speed o(1/n) such that for every Morse cocycle 1 X —Z,,
o and  are not equivalent.

Proof. Put q, = [34,], p, = [34,] (here [a] denotes the integer part of a),
=m0 Mot L= 0=0p oy, noy =1, t 0.

A cocycle ¢ will be defined stepwise. On step t, ¢ will be defined (and
constant) ont the levels D} except i = j,and i = I, Put x, = [t '4,4,;]. For t =2
we define @|p; =0, i # I,, j,. Now suppose that ¢ is defined on the levels
Di (except i = [, j,). To define ¢ on step £+ 1 it suffices to define ¢ on the levels
DiRL,. Ditk,, where ¥, 5 =0, ..., A4y —1, r# g1, 5% P41, Since on the
remaining levels ¢ was defined earlier. We put

1
@ Dy, = 0

1
Ol ik, = {0

To illustrate ¢ on &, let us make some remarks. It follows from the
definition of g,, p,. j, -and [, that

for I‘G{O, s qt+1——1}u{q,+1—|—x!, caa
for re{‘,lt+i+1) R Qr+1+x;“‘1},

H j-t-!-lh— 1}:

for se{0, .., P =1} P +X, o0y dpug— 1},
for SE{P:H"'I: sney Pr+1+x1”]}-

P> a4 b>j. @A 173, 173,
(p,—q)t—1/3, (4, —jn,—~1/3.

Further, gu414+% <Pre1s Pror+X <Ap—1 for large ¢
Yiol/h, < oo,

because
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:
‘D:I';“"].
tftjt .ty (110 )210...0 (101011
i
(00107 0 T P T 2 ¢ U 1 T PO A A AP A NS O Y |
Dj,
D}
Dy
012 o0 gt oo @1 FX oo Powt oon P ¥% o Ay —1
Fig, 4
1t is easy to see that
21
“1MAF)< 2 =—r—,
mlo ™ AF) € 2x e =1

where F, = | Jor, Di. Here I, = {l,, j}u{is i # 14, j,, @(D}) = 1}. Therefore the
cocycle ¢ admits an approximation with speed o(1/n). The ergodicity of ¢ will
be proved later.

Now assume that there is a Morse cocycle » (with respect to the partition
£, = (D, ..., DY, 1)) which is equivalent to o. Take Se C(T) such that there is
a measurable function f: X —Z, satisfying '

fO T—f= W:
where i = @+108. Put j = n0S. Then 7 has a hole (k)% X. Let {a'"'} be
a sequence of blocks of length 3 and fi4, =f(2'"), t =0, the functions
constructed in § 1. Consider two functional equations
(34) g(Tx)~g(x) = (),
(33) g(Tx)—g(x) = flx), xeX.
Fix ¢ > 0 and construct two functions g4, and g+, corresponding to (34) and
(35) as in § 1 using the blocks o™ (we use o/ 7" on Dykt and DY for g,y 4 and
at*t on DUt for gi.q). It is clear that
Jort = ger1 G-

Let E, F be the blocks of length n,., determined by the functions

grry and .. tespectively. Let E; denote the block E[jn,, (j+1)n,—1],
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i=0,..., 4+1—1. Consider the block E, = E[0, n,—1]. This block deter-
mines three blocks 4,, 4,, 4, of length j,, [, —J,, »,—I, respectively such that E,
is the concatenation of 4,, 4,, A5: E; = A A, 45, Set

L={0,.., ge:1—1}u{gi+x+1, .., poi—1j
P+ X o Derr A — 1)

Ly={dgii+1, ., g1 +x—1},

Li={p+1, 0, prr+x—1}

It follows clearly from the definition of the cocycles ¢ and g,.., that there are
elements 7;€Z, such that

jel, = E;= A1A2A3+rj,

jel, = E;= Alzsza-krj,

jely = Ej= A A, Ay+ry
where B denotes the block B+1. Since the cocycie i has exactly one hole,
there exist blocks By, B,, |B,| =k, |B,| = n,~k,, such that for each j =0,
<oy dopy—1, Fy=F[jn, {j-+1)n,—~1] is one of the blocks B, B,, BB, B Bz,
B, B,. Let H be the block determined by the cocycle f,.,. Of course
H.mEJrF j= 0. We show that for I =2 or [ =3
(36) min{d(H, , H, +n): j.€l,, j,el,, reZ,} = 1/6.
To this end consider two cases.

(@) k, <[n/2] =:u. In this case we take !=3. Put A} = Afu+1—j,
L—i.]. By the definition of ¢ we have H;[u+1,n—1]= A4, +F, for jel,
and H[u+1,n—1]=A44 3—!—r for jEI Here 7;eZ,. Since

(A5 45, ALA) = (n—1)n, > 173,
dAG A5, AGA3) = (U —u/n, > 2/3-1/2 = 1/6,
for j,el,, j,el; and reZ, we obtain
d(H;,, H;,+r) = 1/6.

(b) k, > u. In this case we put !/ = 2. Similarly to (a) (considering /, insteac

of I, and H,[0, u] instead of H’ [u+1, n,—17) we show that (36) is true again,
Since

olfds s = Walfdiw 2 VE=2/ 2041, [ 1Ay > 112,

by (36) we obtain a contradiction with Corollary 1. A cocycle 5 does not exist.

- It remains to show the ergodicity of ¢. But this is clear by Corollary 1,
because for j, €1,,j,€1,,reZ, wehave d(E;,, E,,+r} = 1/3, which means that
there is no measurable function f: X —Z, such that JoT—[=¢.
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Taeorem 4. For each regular Morse cocycle @1 X —1Z., there exists an
element Se C(T) such that for each neN, UeC(T) there is no measurable
Junction [ X -2, satisfying the equation

oS+ ... +poS+pol = foT —f,

where I, <... <,

Proofl We show that there is no measurable solution f of the equation
(37) p+poS+poSi+ .. +poS'+eolU=FfoT—f, nx=2.

The proof of the general case is the same. Let {a,} be an arbitrary sequence of
positive integers in which every number 1, 2, ... appears infinitely many times.
Considering some subsequences of the towers £, = (D, ..., D, -,) if necessary,
we may assume that

Afa, =4, tz=0.

Put

Then 1 € q, <4—1. Set [, =%"_o¢n—, t 0. It is not hard to see that

1 L1 1y 2
- [ <—(n~—1 L2 —[1-=)==, = 0.
(38) SgoD, (1 nt) T 120
Denote the weak limit of {T"} by S. Assume that for some n > 1 and Ue C(T)
there exists 2 measurable [ satisfying (37). Choose 0 < & < 1/2. Fix ¢ (sufficiently
large) such that a, = n4-1. Let g = (j))j2,€ X be an n,-adic number such that
U = lim, T*. Consider the cocycle

Y =p+eoS+ ... +ooS"+oolU.

This cocycle has n+-2 holes: ¥ is not constant (a.e) on the levels Dj .,
Doyt e Dot omyy Dy—1—y,. By the definition of [, we obtain
n— | —ni, > 0, which means that the level D}, ., is the lowest from among

Dy yp,.1=0,...,n The distance between the levels D}, _( ;4 and D}, ;..
P, is at leasl
(39 n/(2(n+1))

(this is a consequence of (38) and the fact that ¥ 1/2, < o). Let s = [31]. By
the above we can choose r = n,~1 or ¥ = n,— 1 —nl, such that i is constant a.e.
on the levels Di.,, Di_ 4y, ..., DL, except the level D..

Now consider the equation ¥ = foT-f. It follows from {37) that

Spp1 =nminm{xeDl,;: f(x)=a}
acZin
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are the same for i = —s, —s+1, ..., 0 and the same for i =1, ..., 5. Since f'is
measurable and £, 7 ¢ and s/n, 2 1/(4(n+1)) (this is true by (39)), we can find
1<i; <5, r—s5 < i, €0 such that

5r+i1<6’ 6r+i2<8

(if ¢ is sufficiently large). Therefore 8, < ¢, 8,4+, < &. So the equality y = foT—f

gives

minm{xeDi Y(x) = a} < 2¢.
acZy

But this is impossible, because ¢ was arbitrarily small and the cocycle ¢ is
regular.
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