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Tmproved ratio inequalities for martingales
by
MASATO KIKUCHI (Toyama)

Abstract. We show that the martingale inequality
E[{MyL exp(ad M) o/ME)] <€ Cop ELXMOE]

is valid only for 0 < ® < n%/8. In a previous paper [3] we proved it for sufficiently small o > 0. Our
new result is a sharp estimate on e

1. Introduction. Let (@, §,(F)zo. P) be a filtered probability space
satisfying the usual conditions. Throughout this short note, we deal only with
continuous (local) martingales adapted to the filtration (=0, and such
a (local) martingale is called “(local) martingale” simply. Moreover, unless
otherwise precisely stated, we assume that (local) martingales vanish at t = Q.

As usual, for every martingale M = (M ),z 0, We set M = sup, ¢, 1M and
denote by <M) its quadratic variation process. The following result, which is
an improvement of results in Gundy [2] and Yor [5], have been established in
[3]: for sufficiently small o >0 and every p> 0, we have

(0 <p<c0)

(1) E[MEexp(aMb/{MyE] € Cop EIMET],
2) E[{M)E2exp(a(Mo/ME)] < Co , ELXMYEL,

where C,, denotes an absolute constant depending only on « and p. Note that
it is not necessarily the same from line to line, and we shall use this notation
also in what follows. We should be careful with the difference between the
powers of ratios appearing in (1) and (2).

2. Statement of results. Our new estimates for the inequalities (1) and (2),
which are themselves our main object, are the following.

TuroreM. {i) If 0 < x < 1/2, the ratio inequalities
(3 E[M*exp(aM¥ /(M) )] < Coz E[MZY]
(39 E{CMYEPexpeMA2 /(M) )] € Cop E[XMOER]

(r >0,
(p>0)
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hold for every p > Q and every continuous martingale M with M, = 0. However,
these inequalities are no longer valid for any p >0 when o = 1/2,
(i) On the other hand, if 0 < o < 7*/8, the ratio inequalities

(4) E[{M 52 exp(adM) o/MEN] < Co , EKMMPT (0 > 0),
() E[MFexp(alM) /M) < Cop E[MET] (p>9)

hold for every p > 0 and every continuous martingale M with M, = 0. However,
these inequalities are no longer valid for any p >0 when o > n?/8.

Furthermore, ETM 4] and E[{M»%*] are interchangeable in the above four
inequalites. .

Remark. Using the Hélder inequality, we can deduce some inequalities
such as '

(5) E[M¥] < C, p EIM ¥ exp(—aME/ (M) )]
for every o> 0 and p> 0, provided M* eI*. Furthermore, we have
E[MZ] < Copsup E[M{Pexp(—aM$/{M} )]
T

even if the left-hand side is infinite, where the supremum is taken over all finite
stopping times T. However, we are unable to say anything about the problem
whether the restriction M¥%el? can be removed in the inequality (5).

It was already shown in [3] that neither (3) nor (3') is valid if o > 1/2, and
that neither (4) nor (4) is valid if o > =%8. In fact, let « =1/2 and let
M,=B,,;, where (B) is a one-dimensional Brownian motion. Then the
left-hand sides of both (3) and (3') are infinite although both right-hand sides
are finite. On the other hand, if we set x = n?/8 and 7 = inf{t: |B,| = 1}, then
the stopped martingale M = (B,, )=, satisfies neither {4} nor (4.

The rest of this note is devoted to the proofs of the inequalities (3), (3", @),
and (4) for suitable o

3. Lemmas and proof of Theorem. We need some preliminary lemmas. The
first one is purely analytic and shows that, to prove the theorem, it suffices to
establish a distribution function inequality for M?% and (M Yeon

LEMMA 1. Let X and Y be two nonnegative random variables such that
(6) P(X > 92, Y <)< cexp[—al/y—bP1-P(X > )

Jor every 4 >0 and y > 1, where a and ¢ are two positive constants and b is an
arbitrary constant. If O <o <a and p> 0, there exists a constant C =
Cla. b, ¢, o, p) depending only on the parenthesized numbers such that

@ E[XPexp(aX/Y)] < CE[X7],
8 ElY?Pexp(aX/Y)] < CE[Y7].
Furthermore, E[X"] can be replaced by E{Y"} in {N.
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This lemma was also used in [3] without proof. We give here a simple
proof which probably has not been published yet.

Proof. First we note that the ratio X/Y is meaningful, which follows from
the fact that X vanishes almost surely on the set of w such that ¥{w)= 0. To
see this, it suffices to let A —0 and then y — o0 in (6). Moreover, it is well known
(cf. [1]) that (6} implies E[X"] < K E[Y"] for some constant K, depending
only on p. .

For the sake of brevity, let @(y) = cexp[—a(\/ y—b)*] and let ofa < § < 1.
Integrating both sides of (6) with respect to the measure 4(4?) and using
Fubini’s theorem, we have

E[X/yY—~YP:0X/Y 2v] < () E[X"]
for every y = 1, since § < 1. Now we integrate again both sides of this

inequality with respect to the measure y?exp((o/5)}y)dy over the interval [1, o),
and apply Fubini’s theorem. It then follows that

2.4 4

©) E[ [ (X7 —y? YPexp((e/6)y)dy: X/Y 2 1/8] < CoE[X7],

where C,, = [ o (y)y? exp((#/8)7)dy. The constant C,,, which depends on 4, b, ,
o, and p, is finite since ofd—a < 0.

For every y such that 1 < y < 6X/Y we have X?—yPY? > (1 — &%) X7, Then
it follows from (9) that

oaCy
(1—5%16

E[X*{exp(aX/Y)—exp(#/d)}: X/Y > 1/6] < ELX?]

and hence that

aCy
(1-67)6
Thus (7) follows immediately from the inequality

E[XPexp(aX/Y)] < E[XPexpX/¥): X/Y = 1/8] FePE[XP: XY < 1/5].
The inequality (8) also follows from (10). In fact, we have

E[YPexp(aX/Y)] < P E[X7exp(aX/Y): X/Y = 1/6}+ 7 E[YT].

Hence we obtain (8) by (10) and the inequality E[X7] < K E[Y’]. =

The following lemma plays an essential role in deducing the distribution
function inequalities for M*> and (M), of the form of (5).

LemMa 2. () If |[<M) ]l < oo, then for every A>0 we have.

(10) E[XPexp(eX/Y):X/Y > 1/6] < E[XP]+e*E[X?: X/Y > 1/5].

. A
(11) PIME > 1)< 2¢xP(“m>
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(if) On the other hand, if |M%
have

(12) PUAMD > A<

< o, then for every a < n*/8 and A > ( we
ak
IMEN%

Proof. (11) is a classical result due to Stroock—Varadhan [4]. Their proof
is as follows: for each real number 0, we denote by (Z{*) the “exponential
martingale” (exp(0M,—502{M))).»o. Since (Z{) is a positive martingale such
that Z& =1 as, Doob’s inequality implies that

P(sup M, > /1) < P{sup Z® > exp(0/2— 0% <MD, [.)

< exp(— 0 /A+467 (M o ]o).
Noticing that we may replace M by — M in the above, we obtain (11) by setting
0= /aIM N5

A similar argument is available also for a proof of (12). Now, for each real
number 0, let Z® = cos(OM,) exp(0?(M>). Then the process (Z¥) is
a martingale since it is the real part of a martingale (exp{i0@M,—£62 (M ,}).
Although we do not assume that M,=0 now, we have E[Z{]
<exp@0? IM%2) as (M)>,=MZ TFor given a<n%8, we set
B = \/EHM:;H;}; then it is clear that cos \/ﬂ) < cos(0M,) as
OME|l,, < /2. Hence

cos(\/2a) Efexp(a{M)./IMEIL)] < E[Z9] < E[ZP] < e
Then (12} follows imediately from Chebyshev’s inequality and the above one. =

sf)ep(

without assuming that M, = .

To utilize the inequalities (11) and (12), we need to put them in conditional
fonn Let S and T be two stopping times such that P(S < T) > 0. We set
={8§<T}, &= Fs+dn, and P(dm) = P(dw|S < T). For every martingale
M on £, the process M = Mgy r— Mg is an (@1, P)-martingale on & satis-
fying (MY, < <MD, and M% > M§—M§ P-as. Then we can apply (11) to
M in order to get

(11)  P((M}—M¥*> 4, S<T)< QSXp(—WM&ST)P(S < T).
Tlleo

In a similar way, we have the conditional form of (12):
(12)  PEMYp—{Mys> 4, 8<T)<C cxp(_aA/MM*ﬂz)P(S < T),

where a < n2/8 and C, = e%/cos \/ﬂ) Now we must set M, = Mg, , 1 50 that
the relation M% < M# holds. For this reason, we have proved (12) without the
asumption M, = 0 We should note that, in this case, (M}, is not equal to
Mpsinar bt Mg, r—<{M>s+ME We now prove the theorem.
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3. Proof of Theorem. The last statement of the theorem is obvious by the
Burkholder-Davis—Gundy inequality.

For each fixed A >0 we define two stopping times § and T by
inf{r: M}*> A} and inf{s: (M), > A} respectively. It is then obvious that
ME* < A and {M}, < A as., and hence for fixed y > 1 we have

P(ME2 > 32, (MY, < A) < P((M%~ME? > (S5 — 1)1, 8 < 00, T = )
P(ME—ME? > ((Sy—1)24, 5 < T)
(/y—1721
Qexp( 25 )P(S< g

- 1)PME > ).
We have used (11') to get the third inequality in the above. Similarly, using
(129, we get

< 2exp(—

e?.a
PM), > yh, M5 < 1) < ———=-¢exp(—ay)
(W S cos(2a)
for every 1 >0 and y > 1 if a < n*/8. Then the theorem immediately follows
from Lemma 1. =

P(M> > 4)
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