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Sums of square-zero operators
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Dedicated to Professor Paul Halmos on his 75th birthday

Abstract, This paper is concerned with characterizations of bounded linear operators on
a complex Hilbert space which are expressible as a sum of two or more square-zero operators. We
characterize sums of two square-zero operators among invertible operators, normal operators and
operators on a finite-dimensional space. In particular, we show that if T is such a sum, then T and
— T have the same spectra moduio the maximal ideal in the algebra of all bounded linear
operators. This, together with a result of Pearcy and Topping’s, yields a characterization of sums of
four square-zero operators: T is such a sum if and only if it is a commuiator. We also obtain
various necessary or sufficlent conditions for sums of three square-zero operators on a fimite-
dimensional space. )

1. Introduction. In this paper, we are concerned with the problems of
characterizing bounded linear operators on a complex Hilbert space which are
expressible as a sum of two or more square-zero operators (an operator T is
square-zero if T? = 0). Such problems were first considered by Pearcy and
Topping [9]: they showed, using the structure of commutators, that on an
infinite-dimensional space H any operator of class (F) is the sum of four
square-zero operators and that any operator on H is the sum of five such
operators. Recall that the class (F) consists of operators not of the form AI + K,
where 1 is a scalar and K belongs to the unique maximal ideal J of the algebra
Z(H) of bounded linear operators on H. One of our‘main results (Theorem 3.8)
complements these: an operator T is the sum of four square-zero operators if
and only if T is a commutator: It is interesting to contrast this with a result of
Fong and Sourour [5] that T is the sum of two quasinilpotent operators if and
only if T is a commutator. '

‘We start in Section 2 by studying sums of two square-zero operators. We
are able to completely characterize such operators among invertible operators,
normal operators and operators on finite-dimensional spaces (Theorems 2.4,
2.9, and 2.11). For noninvertible operators on an infinite-dimensional space,
a complete characterization seems difficult. We obtain various necessary
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and/or sufficient conditions. Among other things, we show that if T is the sum
of two square-zero operators then T and — T have the same spectra (modulo J}
(Theorem 2.12). This, together with Pearcy and Topping’s result, is the main
ingredient in proving the above-mentioned result on sums of four square-zero
operators.

In Section 3, we consider the problem of expressing operators as sums of
three or more square-zero ones. Here we mainly confine ourselves to the
finite-dimensional case. We show that every finite matrix with trace zero is the
sum of four square-zero matrices (Theorem 3.6) and proceed to determine
whether fewer will do. Depending on the dimension of the underlying space, the
minimal such number can be completely determined. This is achieved through
an examination of matrices which are expressible as sums of three square-zero
ones, Although we have not been able to give a complete characterization of
such matrices, we do obtain some necessary and/or sufficient conditions on
matrices in order that they be expressible as such. In particular, we show that if
the nx n matrix 7 is the sum of three square-zero matrices then the geometric
multiplicity of any eigenvalue of T is at most three fourths of n (Theorem 3.1).
The paper is concluded in Section 4 with some open problems.

We would like to thank the referee for pointing out some errors in the
original version of this paper.

2. Two squaro-zero operators. Recall that an operator T is an involution if
T? = 1. We start with the following

Lemma 2.1. Let T be an operator. If there exists an involution V such that
TV = —VT, then T is the sum of two square-zero operators.

Proof Let T, =4T(I—V)and T, = £ T(I+ V). Then it is easily seen that
=T'=0and T=T,+7T,. u

For an operator T, a(T)-(resp. o;(T)) denotes its spectrum (resp. spectrum
modulo J, that is, the spectrum of the coset T+J in #(H)/J). We say that (T)
does not surround 0 if 0 belongs to the unbounded component of C\o(T). It is
well known that if ¢ (1) does not surround 0, then T has a square root which is
an analytic function of T (cf. [11, p. 246]). We next extend Lemma 2.1 shghtly
by relaxing the restriction on V.

ProposiTion 2.2, Let T be an operator. If there exists an operator X such
that TX = —XT and o(X?) does not surround 0, then T is the sum of two
Square-zero operators.

Proof Let Y be an analytic function of X? satisfying Y2 = X* and let
V=XY"' Since Y~! commutes with X, it is easily seen that ¥ is an
involution. On the other hand, TX = — X T ifmplies that TX? = X2 T, whence

TY=YT We infer that TV = — VT Our assertion then follows from
Lemma 2.1. =

icm

an invertible operator implementing this similarity:
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CorROLLARY 2.3. Let T be an operator. If either TX = —XT for some
operator X with no real spectrum or T is unitarily equivalent to — T, then T is the
sum of two square-zerc operators.

Proof The first assumption implies that o(X®) does not surround 0,
whence the conclusion follows by Proposition 2.2. As for the second one, note
that, by the spectral theorem, every unitary operator U has a square root which
commutes with every operator that cormmutes with U. Hence we can proceed
as in the proof of Proposition 2.2 to reach the conclusion. m

For invertible operators, the converses of Lemma 2.1 and Proposition 2.2
are also true.

TreorEM 2.4. Let T be an inverible operator. Then the following statements
are equivalent:

() T is the sum of two square-zero operators;

(i) there exists an involution V such that TV = — VT,
(iii) there exists an invertible X such TX = —XT and o(X?) does not
surround 0.

Proof We need only prove (i) = (ii). Assume that T =T, + T,, where

T?=T#=0. Let ¥ =(T,—T,)T .. Since
(~L)T =N -+ 1) =T~T,T
=+ ~-T) = ~T(,-T)
and (T, ~ )7 = ~T|T,—T,T, = —(T} +T,)* = — T2, we have
V2= (~T)T L ~T)T = (L -T)\T *=

Moreover, TV =T(T,—T,) T '= —(T,—T,)TT™" = —VT as desired. =

The next is an immediate corollary of Theorem 2.4.

COROLLARY 2.5. An invertible operator is the sum of two square-zero
operators if and only if its inverse is.

If more restrictions are imposed oh the spectrum of T in Theorem 2.4, then
we can have a better description of its structure.

COROLLARY 2.6, If ¢(T?) does not surround 0, then the conditions (i)-(ifi) in
Theorem 2.4 are equivalent to

(v) T is similar to S®(—S8) for some invertible S.

Proof. (ii) = {iv). Let ¥ be an involution such that TV = —V'T. Since
= {41}, V is similar to an operator of the form I, ®(—1I,), where I; and
I, are the identity operators on some spaces H, and H,, respectively. Let X be
XV =(I,&-I)X
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We have
XTX Y1, ®(-1) = —([,®(—I)XTX"*.

If XTX ™! =[£%] on the decomposition H,@H,, then carrying out the above
matrix multiplication yields that [£2%] ={"¢ “}]. Therefore, 4 =0 and
D = 0. In other words, T is similar to [88] on H,®H,. Since T? is similar to
[281% = [B¢ &1, BC and CB are both invertible. Thus so are B and C. Hence we
may assume, for simplicity, that H, = H,. We have ¢(BC) = ¢(CB) = o(T?) (cf.
[6, Problem 767). By our assumption, S = (CB)*? exists. If

¥ c™i5 —C-i§
Tl I

then X is invertible (by [6, Problem 717) and [28]X = X [3 -§]. This shows
that T is similar to S@(—S) as required.
{iv) = (i). Since

S 0] _1]s -8 +l § S
0 -S| 2[8§ -S| 2[-8§ -%§
is the sum of two square~zero operators, the same holds for T w

For noninvertible operators, it seems difficult to give a complete charac-
terization of sums of two square-zero operators. This we achieve only for two
classes: normal operators and operators on finite-dimensional spaces. The
proofs depend largely on the fact that we can handle separately the “invertible
part” and the “zero part” of the operators under consideration. The next two
lemmas are the results needed for normal operatoss.

LemmaA 2.7. Let T = T, &0, where T, is one-to-one or has dense range. Then
T is the sum of two square-zero cperators if and only if T, is.

Proof. We need only prove the necessity part. Assume that 7} is
one-to-one and T = S+ R, where

_ 18 8, R R
S*[SS S4:| and R_]:RS R4

are square-zero operators. We have T, =S,+R,, 0=S5,+R, and
0=5,+R,. Since $*=R?>=0, a little computation yields that §,5,
+8,58, =0 and R, R,+R,R, = 0. Hence

Sy =(8;+R}S; = —5,5,+ Ry (—Ry)
= —8;8,+R,R, = “SQS4+(—32)(“S4) = 0.

Since T, is one-to-one, we infer that §, = 0. Similarly, R, = 0. Therefore,
T, = 8§, + Ry is the sum of two square-zero operators. If T, has dense range,
then proceed as above with T replaced by T* & :

icm
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Lemma 2.8, T is the sum of two Square-zero operators if and only if there

exists an operator X such that TX = —XT and X? = —T%

Proof ¥ T =T, +T,, where T? = T} = 0, then, letting X = T, — T,,, we
have TX = ,T)-T\T, = —XT and X*= — T, T,—T,T, = — T2 Conver-
sely, if X is an operator satisfying TX = —X7T and X*= —7T? then

T =3{T+X)+4(T—X) is the sum of two square-zero operators. m

Now we are ready for the characterization of sums of two square-zero
operators among normal operators.

THEOREM 2.9. Let T be a normal operator on H. Then the following
statements are equivalent:

(i) T is the sum of two square-zero operarors;
(i} T is unitarily equivalent to S@(—S)@0 for some normal S,
(i) T is unitarily equivalent to —T.

Proof. Since (if) = (iii) is trivial and (iii) = (i) was proved in Corollary 2.3,
we need only show that (i) = (il
Let E(-) be the spectral measure of T, and let ¢, = {zeC: Rez> 0 or
Rez=0and Imz >0} and 0, = {zeC: —zeo,}. U T;=T|E(g}H, j=1,2,
then T is unitarily equivalent to T;@T,®0. Since T,®T, is one-to-one,
Lemma 2.7 implics that T, @ 7T, is the sum of two square-zero operators. By
Xll

Lemma 2.8, thel‘e CXlStS an DPEIEtDI
[ 1 }
XZ X22

such that (T,®T)X = —X(T,®T,) and X* = —(T,@T,)?. The former yields
that T, X, =-X T, TXpn=-XT5, TX,=-X7, and
T,X,1 = —X;; 7). Since the spectral measures of T; and —7; are mutually
singular, we obtain X; = O (cf. [3, Proposition 2.47]). Simularly, X,, = 0. Thus
X? = —(T,®T,) yields that X, X,y = —T{ and X,,X,, = —T7#By our
construction, both 7, and T, are one-to-one with dense range. From the above,
the same is true for X, and X,,. Applying [2, Lemma 4.1] to
T X,,=—X,,T, gives the unitary equivalence of T} and —T,. Thus T is
unitarily equivalent to T;@(~T)R0 as asserted. =

Next we consider sums of two square-zero operators on a finite-dimen-

sional space. To separate the “invertible part”, we need the following lemma.

Levma 2.10. Let T = T,@T,, where o(T)no{—T,) =@ Then T is the
sum of two square-zero operators if-and only if T, and T, are.

Proof To prove the necessity part, we proceed as in the proof of Lemma
2.7. Now, instead of T\S,=0, we would obtain T;S,=—5,7,. Thus
o(M)no(-T) =L implie_s'that 8, =0 (cf. [10]). Similarly, R, = 0. Hence

3 — Stndia Mathematica 99.2
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T =8, +R, is the sum of two square-zero operators. The same holds
for T,. m

THaroRreM 2.11. Let T be g finite matrix. Then the following statements are
equivalent: ‘

() T is the sum of two square-zero matrices;

(i) there exists an involution V such that TV = —VT;

(iii) T is similar to —T;

(iv) T is similar to S@{—SYPN, where § is invertible and N is nilpotent.

Proof. (i) = (i)} By the Jordan canonical form, T is similar to T,$ T,
where T, is invertible and T, is nilpotent. Lemma 2.10 then implies that both T;
and T, are sums of square-zero matrices. Theorem 2.4 applied to T, yields an
involution intertwining 7, and —7,. As for T,, we need only consider
a nilpotent Jordan block -

o =

0.

of size, say, k. It is easily seen that

(1 - 0
-1
V= b
—1
L0 (=
is an involution and JV = —V.J. (i) follows immediately.

(i) = (ii). This is trivial
(iif) = (iv). As above, T is similar to T,@T,, where T, is invertible and T,

is uilpote_nt. The similarity of T and — T implies the existence of an invertible
matrix

X = [Xn X,
' KXoz Xy
[Xu X:z:I[T1 0 ]E =T 0 |[ Xy Xi
Xar X ]{0 T 0 —-TN|[X2 X,
Hence we have X, T, = —~ T, X,,. Since (LY no(—~T) =B, usi
- . 2 1) = 3, using [10] we
deduce that X, = (. Similarly, X,y =0. Therefore, X,, is invertible and

such that
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X, T, = —T,X,,. Since both ¢(X?%,) and ¢(T#) do not surround 0, (iv) is
a consequence of Corollary 2.6.
(iv) = (i). For any operator §,

s - 0o]_1s -—S +1 b S
0 -S| 2(s -8} 2{-8 -8
is the sum of two square-zero operators. On the other hand, any k x k nilpotent

Jordan block J can be written as

[0 1 07 [0 07

L0 ol o

the latter two matrices being square-zero. This proves (). =

We end this section with a necessary condition on the spectrum (modulo
J) for sums of two square-zero operators. This condition is useful in Section
3 in characterizing sums of four square-zero operators.

THEOREM 2.12. If T is the sum of two square-zere operators on an
infinite-dimensional space, then ¢(T) = o(—T) and o,(T) = ¢,(—T).
Proof Let T=T,+T,, where T? = T2 =0.If § = T, - T, and 1 is any
complex number, then
(T—AD(S —~T—Al) = TS —AS — T? 4+ AT— AT+ 421
= (T, + T,0(T, — Tp)—AS — T2+ 221
= —ST—AS—T*+ 2]
=(§+T—AI—T—2AI).

It is easily seen that (S— T)? = (S+ T)* = 0. If 2 # 0, then both S—T—Al and
S+ T— Al are invertible. We deduce from the above that T—AI is inver-
tible (resp. invertible modulo J) if and only if —T-AI is. Thus
a(TWNO0} = a(~TN{0} and o,(T\{0} = o,(— TI\{0}. Therefore o(T) = 6(—T)
and a,(T)=0a,{—T). =

3, Three or more square-zero operators. For sums of three square-zero
operators, we confine ourselves to the finite-dimensional case and start with the
following necessary condition. '

TaeoreM 3.1. If the nxn matrix T is a sum of three square-zero mairices,
then dimker{T—Af) < 2n for any AeC, 1 £0.



122 J-H. Wang and P. Y. Wu

Proof Let T=T,+T,+7T;, where T#=0 for j = 1,2, 3, Note that
dimker T; 2 /2 for all j. Indeed, if dim ker T, < n/2, then 1anT < ker T, implies
that rankT < n/2, whence n = dimker 7} +rankT < n/2+n/2 =, whlch 1s
impossible.

Let K = ker(T—AI)n kerT; and m = dim ker{7— AI). Then

dim K = dim ker(T—AI)+dim ker T, —dim{ker (T— AJ) + ker T})
=m+nf2—n=m—n/2.

Since K is invariant for both T and T, it is invariant for T —]-T2 and
(i +T)K =TIK—TK = I, I, being the identity matrix on K. Hence
K < ker(T, +T,—Al), which unphes that dimker(T} + T, —Al} = dimK
2z m—n/2. By Theorem 2.11, T, + T, is similar to —(T} + T}) whence we also
have dimker(T, + T, +Al) = m—n/2.

Let L = ker(T—AI) nker (T, + T, + Al Wc repeat the above arguments:

dimL = dim ker{T—Al)+ dimker(T, + T, +Al)
—dim (ker(T—AI)+ker(T, + T, + iDy)

Z m+(m—n/2)—n = 2m—3n.

Since L is invariant for both T and 7,47, it is invariant for T; and
TIL=T|L—(T,+ T) L= Al — (A1) = ZML, where I, is the identity matrix
on L Thus Lc ker(f[; 2A1), which implies that dimker(T, —241) > dim L
= 2m-3n. Since T¢ =0, T,—24I is invertible for any A # 0. Therefore
dim ker(T, —2AI) = 0. From the above, we infer that m < n as asserted B

Next we consider sufficient condltlons for sums of three square Zero
matrices. Qur main tool js the following lemma. Recall that a matrix T on H is
cyclic if there exists a vector x e H such that H is the span of the vectors T%x,
k=0,1,2,...; trT denotes the trace of T

Lemma 3.2, If T is an nxn cyclic matrix and Ags ., A, are complex
numbers satisfying ¥ - 1A; =tr T, then there exist malrlces A and B such that
T=A4+B, A*=0 and B is cyclic with ¢(B) = {A,, ..., A}

Proof. Since T is similar to a companion matrix of the form

0 ‘ ag
C= 1 N ’
] Qp-2
0 T 1a.,

we need only prove the lemma for C. For j=0,1, ..., n—2, let b; be the
coefﬁcnent of 7 in the expansion of (z—-4).. (z— r,). Let
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' 0 ao + bo 0 - - bO
! . 1 7. Do
. — : R o T
4 a’n—2°}'bn~«2 0 _bnﬂl
0 ) 0 0 1 a,,

It is easily seen that C = A+ B, A>=0 and B is cyclic with characteristic
polynomial (z—1,)...(z—4,) {noting that a,_,=trT=3"%-,2) Hence
oB)={l, .., 4,}. m :

ProposiTION 3.3. Let T be an nxn matrix with T =0 If
T=T®...®T,, where each T,is cyclic with size at least 2, then T is the sum of
three square-zero matrices. ‘

Proof Lett;=trTj,j=1,...,mand ¢ > )7y [t]. ByLemma32 there
exist, for each j, matrlces A; and B such that T; = 4;+B;, A} =0 and

r J
oB)={e=F 1, T t—,0, ..., 0},
i=1 =1

f A= A,®...®4,, and B=B ®...®B,, then T=A4+B, A* =0 and
a(B) = {bl, eees bams O, ..., O}, wheré b/’s are distinct nonzero numbers which
are pairwise negatwe to each other. In paxtmular B is similar to B{@®B5,, where

, by ¢ b, 0
Bi:[ﬂ —“b'_J(_B @l: *b;,,:}
and B, is nilpotent. By Theorem 2.11, B is the sum of two square-zero matrices,

whence T is the sum of three such matrices. @

Here are two corollaries of the preceding proposition, the second of which
chiaracterizes sums of three nxn square-zero matrices for n up to 5.

COROLLARY 34. If the nxn matrix T is such that ttT =0 and

dimker(T—AI) <3 for any A+#0, then T is the sum of three square-zero

matrices.

Proof Using Proposition 3.3 and the rational form for matrices, we are
reduced to considering T in one of the following forms:

T, 0 0 T, 0 0
T, 0
(1)[1],@06:0,(3)07‘20,
0 a 0 0 a 0 0 a

where a # 0 and T, and T, are cyclic with size at least 2 and respective
characteristic polynomials p, and p, satisfying p,ip, and p,{a) = p,(a) = 0. All
these cases can be handled by judiciously choosmg the matrices 4 and B in

Lemma 3.2:



124 J-H. Wang and P. Y. Wu

(1) Let A and B be such that T, = A+B, A4* =0 and B is cyclic with
G(ff) ={—a, 0, ..., 0}. Then Bis similar to [ "4 §], where N is nilpotent. Hence
T is the sum of [§8] and a matrix similar to

—~a 0 0
0 N C},
0 0 a

the latter being a sum of two square-zero matrices by Theorem 2.11. This
proves our assertion for T

(2) Let the matrices 4 and B be as above except that this time ¢(B)
={—a, —a,0,..., 0}. Then B is similar to ["4 _}]@®N, where N is nilpotent.
+Hence T is the sum of A®[§4] and a matrix similar to [§ -J1@N®[; 11
Again, the latter matrix is a sun of two square-zero ones by Theorem 2.11.
(3) Let ¢ =trT,. We consider three subcases:
(i) t = —2a Apply Lemma 3.2 to obtain A; B, j=1,2, such that
T,=A;+B;, A} =0 and B, is cyclic with o(B,)={—24,0,...,0} and
¢(B;) = {2a, —a,0, ..., 0}. Then B, and B, are similar to

[~2a 0 ; 2¢ 0 0
0 N, an 0 —a 0 ,
: 0 0 N,
respectively, where N, and N, are nilp.otent. Hence T is the sum of
A, 0 0
0 A4, 0
00 0

and a matrix simj_lar to [F 31005 -21®& N, ®N,. The latter is a sum of two
square-zero matrices by Theorem 2.11,
(i) t = —a. Applying Lemma 3.2 yiclds 4,, B,, j = 1
. p» B j=1,2, as above except
that o(B,) = {~a,0,....,0} and o(B,)={0,...,0}. Then B, is similar to

—— 0 . - .
o~:] and B, is itself nilpotent. Hence 7T is the sum of three square-zero

matrices as above. ~

(iii) z# —2a, —a. Obtain A By, j=1,2, as above except that
o(B,) = {t+a3- —4a,0,...,0} and o(B,) = {—t—a,0, ..., 0}. In this case, B
and B, are similar to Y

t+a 0 0
0 —a 0 | and [“‘_“ 0 }
i 0 N,

respectively, vith nilpotent N, and N,. Our assertion on T then follows
as above. ® :

icm
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COROLLARY 3.5.(1) 4 2% 2 matrix T is the sum of two square-zero matrices
if and only if rT =0.

(2) A 3% 3 or 4x 4 matrix T is the sum of three square-zero matrices if and
only if trT =0 '

(3) A 5% 5 matrix T is the sum of three square-zero matrices if and only if
T =0 and dimker(T—AI) < 3 for any A #0.

Proof () If tr T =0, then 7 is similar to [§ 4] or [§ -1 In either case,
T is the sum of two square-zero matrices by Theorem 2.11.
(2) and (3) follow immediately from Theorem 3.1 and Corollary 34. =

The next theorem says that matrices with trace zero can always be written
as a sum of four square-zero ones.

THEOREM 3.6. An nxn matrix T is the sum of finitely many square-zero
matrices if and only if tr T = 0. In this case, the minimal number of square-zero
matrices required is n if n=1o0r 2;3 if n=3 or 4; and 4 if n=35.

Proof. If tr T = 0, then T is unitarily equivalent to a matrix [t;;] with zero
diagonals t;; = 0 (cf. [47). The latter matrix is the sum of two nilpotent ones:

0t B (0 0
0 tin .'12 . :1 ¢ .
- _ t + |t
. n—1,m : - .
4 0 . ’ : . .
“nl 0 0 fyg « o bpmey ©

That T is the sum of four square-zero matrices follows from Theorem 2.11. It
n = 5, then

—(n—1) 0

1 -
T= .
0 "1

cannot be writien as a sum of three square-zero matrices by Theorem 3.1.
Other assertions on the minimal number follow from Theorem 2.11 and
Corollary 3.5. =

We conclude this section with a characterization of sums of four
square-zero operators on an infinite-dimensional space. We start with

LeMMA 3.7. Let T = A+ K on an infinite-dimensional space H, where AeC
and K belongs to J, the maximal ideal of #(H). Then T is the sum of four
square-zero operators if and only if 4 =0.

Proof. If T=T,+T,, where each T is the sum of two square-zero
operators, and a&o,(T;), then Theorem 2.12 implies that aeo,(—T,) =
0,(T,~ A —K) = 6,{T,— A}, whence a4+ Aeo,(T,). Using Theorem 2.12 again,
we have a+Aea(—Ty) = o {T,—AI—K) =0T, —il). Thus o+2deo,(T).
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Repeating this process, we see that a+nieo,(T}) for any even n. The
boundedness of ¢,(T;) then implies that 1= 0.

Conversely, if T is in J, we may follow the arguments in the proof of [9,
Theorem 2], using the fact that operators in J are commutators [1, Theorem
4], to conclude that T is the sum of four square-zero operafors. m

Finally, our promised characterization of sums of four square-zero
operators on an infinite-dimensional space. Such operators coincide with sums
of two guasinilpotent operators [5].

THEOREM 3.8. On an infinite-dimensional space, an operator is the sum of four
square-zero operators if and only if it is a commutator.

Proof. This is an easy consequence of Lemma 3.7, [9, Theorem 2] and the
characterization of commutators [1]. =

4. Open problems. On an infinite-dimensional space, which operator is the
sum of two square-zero operators? This problem seems difficult to answer. For
invertible operators, it may become manageable. We conjecture that if T is
tnvertible then T is the sum of two square-zero operators if and only if T is similar
to —T As demonstrated in Section 2, the necessity always holds and the
sufficiency is true under various extra conditions: the similarity of T and — T is
implemented by an invertible operator X with o(X?) not surrounding 0; T is
unitarily equivalent to —T; T is normal; or T acts on a finite-dimensional
space. .
As for sums of three square-zero operators, a complete characterization is
beyond reach at present. For finite matrices, the following might be true: an
nxnmatrix T is the sum of three square-zero matrices if and only if tr'T = 0 and
dimker(T—Al) < 3n for any A # 0. As proved in Corollary 3.5, this is the case
for 1 <n<35; note that the necessity is always true by Theorem 3.1. For
infinite-dimensional spaces, it might be worthwhile to find an operator which is
expressible as a sum of four square-zero operators, but not of three. Such an
operator must be searched for among those not of the form Al + K, where A is
a nonzero scalar and K is in J, or, in other words, among commutaters (by
Theorem 3.8).

We conclude this paper by bringing attention to the close resemblance
between the theory of sums of square-zero operators developed here and that
of sums of idempotents. This is already evident in Pearcy and Topping’s paper
[9] (cf. also [7], [8] and [13] for the finite-dimensional case). These additive
theories are also parallel to the multiplicative ones of products of Hermitian
operators, involutions and unipotents of index 2 (cf. [12] for references in these
latter theories). We will explore these and other related topics in subsequent
papers.
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