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Some approximation problems in IP-spaces of matrix-valued functions
by
LUTZ KLOTZ (Leipzig)

Abstract. In [7] some Banach spaces IP(F), 1 < p < co, of equivalence classes of matrix-
valued functions which are p-integrable with respect to a nonnegative Hermitian matrix-valued
measure F were introduced. In the special case p = 2, we obtain the Hilbert space arising from the
theory of vector-valued stationary stochastic processes. Analogously 1o the theory of stationary
processes we introduce the notiens of interpolability, minimality, Fo-regularity, and #-regularity
of the spaces L*(F) and characterize them in terms of F.

Introduction. In the theory of vector-valued stationary stochastic processes
certain Hilbert spaces I*(F) of equivalence classes of matrix-valued functions
which are square-integrable with respect to a nonnegative Hermitian matrix-
valued measure F play an important role. In fact, there exists an isometric
isomorphism between the Hilbert space spanned by the values of the process
and the space I?(F), which can be described explicitly (cf. [147). This makes it
possible to consider the problems of linear extrapolation and interpolation of
the stationary process as approximation problems in the space I*(F).

" In [7] some Banach spaces IF(F), 1 < p < oo, of equivalence classes of
matrix-valued functions which are p-integrable w.r.t. F were introduced. As
a special case one obtains the above-mentioned space IZ(F). Thus it is natural
to study the approximation problems arising from stationary processes in IF(F)
spaces. In our paper we study problems for I?(F) spaces, 1 <p <0,

‘originating in linear interpolation of vector-valued stationary stochastic

processes. We will introduce concepts for IF(F) which are well known for
stationary processes, e.g. interpolability and minimality.

H. Salehi pointed out the significance of Hellinger integrals in relation to
interpolation of vector-valued stationary processes {see [163-[19T). A. Weron
improved Salehi’s method and applied it to processes orn locally compact
abelian (abbreviated to LCA) groups (see [21], compare also {9} and [10]). We
generalize Salehi and Weron’s method to L7 (F) spaces and thus can prove some
of their results for these spaces. We note that Salehi and Scheidt [20] stated
some further results on linear interpolation of vector-valued stationary
processes, But their method uses the existence of an orthogonal projection and
thus seems to be unsuited for IF(F} if p# 2.
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The  first and second sections of our paper are devoted to some
preliminaries on matrix integrals and Banach modules, respectively. In order to
generalize Salehi and Weron's method to IF(F) we need a description of
bounded matrix-linear functionals on IP{F). This description will be obtained
in the third section using the description of bounded linear functionals on IP(F)
given in [7]. The fourth section deals with the definition and properties of
certain Banach spaces H?(F) whose elements are matrix-valued measures. In
particular, we obtain an isometric isomorphism between IF(F) and HP(F),
which allows us to investigate our problem in H7(F) instead of IF{F). The
HP(F) spaces are generalizations of the space H?(F) introduced in [ 16] with the
help of the Hellinger integral. In the fifth section we apply Weron’s method to
I7(F). Using these results we state criteria for interpolability and minimality in
the sixth section of our paper. The seventh section is devoted to #,-regularity,
where _#, is the family of singletons. Finally, in the eighth section we generalize
Avetisyan and Dobrushin’s result [1] on #-regularity, where _# is the family of
nonempty and proper compact subsets. '

Throughout the paper, we use the following notations. By N, Z, R, and
C we denote the sets of positive integers, integers, real numbers, and complex
numbers, respectively. The symbol €% neN, stands for the linear space of
column vectors of length n. The entries of all matrices considered in our paper
are complex numbers. For a matrix X, we denote by X*, X# #(X ), and trX the
adjoint matrix, the Moore-Penrose inverse, the rank, and the trace of X,
respectively. The unit matrix and the zero matrix are denoted by I and 0,
respectively. We will not specify their order in the notations, since no confusion
may occur. By || we denote an arbitrary norm on a linear space of matrices
and by ||z the euclidean norm: |X|g:= (tr(X*X))"> for a matrix X. The
symbols KerU and #(U) stand for the kernel and the range of a linear
operator U, respectively. Finally, supp ¢ denotes the support of a function ¢ on
a topological space.

1. Integration of matrix-valued functions. Let (Q, 4, 1) be a positive
measure space. As usual, all relations between measurable functions on Q are
to be understood as holding almost everywhere w.r.t. the measure g Further-
more, for an integrable function ¢, we will often write {a @ du instead of
fa () mdao),

For neN, we denote by .#, the linear space of all n x ranatrices.
A function ¢: Q- #, §:= (@i j=1, is called measurable (integrable, respec-
tively) if all entries ¢;;, 1, j = 1, ..., n, are measurable {integrable, respectively).
If @ is integrable, we set [ du:= ([ ¢y dul;=,. For an integrable function
P and X, Ye.#,, the functions X® and &Y are-integrable and we have the
cqualities fo X@dp =X [, @dy and [ Y du= [, PdpY,
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For a function &: Q- .#,, we define

D*: P w):=D(w), wel,

& P¥(w)= Plw)*, we,

[P [Pl(w):=Pw), weQ.
Lemma 1.1 (cf. [13, Lemma 3.170). If @ is measurable, then so is d*.
LemMa 1.2, The function @ is integrable if and only if |®| is integrable.

Proof Since all norms on .#, are equivalent, and since the lemma is
obvious for the norm |'|g, the result follows immediately.

By .#, we denote the set of all nonnegative Hermitian n x n-matrices. For
a function &: Q— .#;} and a positive real number o, we set

P w) = Plw), well.
The function & is measurable if and only if &* is measurable (cf. [4, p. 3917).
Lemma 1.3. The function ©° is integrable if and only if |@ is integrable.

Proof For the spectral norm |-{, the result is true because of |®(w),
= |P(w)*, we, and Lemma 1.2. Since all norms on .#, are equivalent, the
lemma remains true for an arbitrary norm |-|.

2. Banach .#,-modules. In this section we recall some definitions and basic
facts from the theory of .# -modules, which will be used later on.

DEFINITION 2.1. A linear space #is called a unitary left 4 -module if there
is defined a map #,x F2(X, #}»XPeF having the following properties:

1) X(+V)=XP+ XY, Xec#,, D.VYeF,
CDX+VNND=XP+ YD, X, YeH,, PcF,
3) X(YO) = (XY)®, X, Yed, ®PcF,
4 Ib =], Pe¥F,
5Ya® =old, acC, deF.
Furthermore, let # be a Banach space under the norm |- |. Then & is called
a unitary left Banach # -module if additionally

6) | XP| < ciX||®l, Xk, ¢eF, for some positive constant c.

Let & be a unitary left Banach . ,-module. A (not necessarily closed)
linear subspace &, of & is called a left 4 -submodule of # if X €4, and
PeF, imply X0e#F,. If the left 4 -submodule is closed, it is called a left
Banach # -submodule of .

Amap L: & —.4#, is called a bounded left A -linear functional on & if
L is a continuous map from % to the normed linear space .#, and if
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LXO+ YW= XL(®)+YL(¥), X, Ye#,, ¢, PeF If % is a subset of &,
then & denotes the closure of % and \/Sf denotes the left # -submodule of
& generated by &, ie.

\/ %= {X®+Y¥: X, Yedk,, & Ve Z).

Clearly, if % is a left .4 -submodule of
M -submodule of #.

In the sequel we need the following two facts on .4 -modules, which were
proved in [2] even for a more general situation.

Lemma 2.1 (cf. [2, Theorem 4]). Let % be o unitary left Banach .# ~module.
The map L —trL is a one-to-one correspondence between the set of bounded left
M linear functionals on F and the set of bounded C-linear functionals on #.

F, then & is a left Banach

The fact that the correspondence L~»trL is one-to-one can be formulated
in the following form.

Lemma, 2.2 (cf. [2, Lemma 17). Let L be a bounded left 4 -linear functional
on F. If (@) =0 for all PeF, then L(®) =0 for all PcF.

3. The spaces [F(F)

3.1. By an  #, valued measure on the c¢-algebra # we will mean
a c-additive function M from £ into the normed space JA,. Obviously,
M= (my) =1 1s an 4 ,-valued measure if and only if cach my; is a finite
complex measure on #. If ¢: Q- Cis a function integrable w.r.t. all m;;, we set
fapdM:= (lo @ dmylt =1

By (DS) we will denote the set of all nonnegative measures on 4 having

the direct sum property (for the definition see [3, p. 179]). We recall that every

o-finite measure has the direct sum property (cf. [3, p. 179]), and that for an
arbitrary complex measure v on 4 absolutely continuous w.rt g the
Radon-Nikodym derivative dv/du exists if 4 e(DS) (cf. [3, p. 1827). Moreover, it
can be easily proved that g, ve(DS) implies u+ve(DS). We will say that the
M -valued measure M is absolutely continuous w.rt, we(DS) and write M <<
if all entries m;; of M are absolutely continuous w.r.t. 4. In this case we set
AMdy:= (dmy,fdyy, -,
Let F:=(fi)l;=1 be a nonnegative Hermitian .4 -valued measure on 4.
In the sequel we will call such measures .# -valued measures on %. Consider
a measure p&(DS} such that F << s

For 1 <p < o0, let @ Q~.#, be a function with the following pro-
pertics

(i) D(dF/dp)''? is measurable,

@) 121l,:= (ol @@F/du o duf < co. -
Two #,-valued functions ¢ and ¥ with the properties (i) and (i) are called
equivalent if ®(dF/dp} = V(dF/dy) u-a.e.

icm
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DermiTION 3.1 (cf. [7, Section 37]). Let 1 < p < oo. The set of equivalence
classes of functions ¢ with the properties (i} and (i) is denoted by IP(F).

As usual, we will work with representatives, i.e. with functions instead of
equivalence classes. Of course, the definition of || - ||, depends on the norm |- |.
But since all results of our paper are independent of the choice of |-|, we will
omit the dependence on | -| in the notations. Similarly, the dimension n will not
be shown in the notations, since no confusion may occur. On the other hand, it
is not hard to see that | - ||, and I7(F) do not depend on the choice of p, ie.,
4 can be replaced by any measure v such that ve(DS) and F << v (cf. [21,
Lemma 2.1] for the case p =2). In the sequel, we will often use the finite
measure = toF,
which has the property F < .

The results of [7, Section 3] yield the following theorem.

THEOREM 3.2. Let 1 < p < o and let F be an .#, -valued measure. Then
IP(F) is a unitary left Banach #,-module under the norm |-{,.

32. Using Lemma 2.1 and the description of all bounded C-linear
functionals on IP(F) (see [7, Theorem 9]} we will obtain the form of the
bounded left .# -linear functionals on IF(F).

From now on, let 1 <p < oo and let g be defined by 1/p-+1/g = 1.

Lemma 3.3. Let 1 < p < co. Let @elP(F) and ¥eli(F). Let pne(DS) be
such that F << . Then the function ®(dF/dp)¥* is integrable and the integral
[o P(dF/dp)P™ du does not depend on the choice of u.

dF\Ve| | [dF\Ye
% f‘l’(a;z) *’(a) ,

dFN\elp 1jp dFE\1/?
<(gfe(E) o) (] (&)
, 2 du) |z a du
and Lemma 1.2 imply the integrability of ®(dF/dy)¥*. The independence of
the choice of i can be proved as in [21, Lemma 2.17.

For ®elIf(F), ¥ e IXF), we define the nx n-matrix

dF
O, = [ P— P dp.
< ? sjzdu

Proof The inequality

@———W*

du

3. 1) §
Q

q 1/q .
d,u) <

E

Lemva 3.4, Let ®cIF(F), ¥YeIA(F), Then

(a) <P, V) =W, PO

(B) K@, ¥ < cli®l,II¥, for some positive constant ¢ not depending on
& and V.
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If X, Yed,, &, @clIP(F), Wecli(F), then
() (XO+YQ,V>=X{(P, ¥)+Y({@, V>
Proof. (b) follows from the inequality

dF dF
O, VK ViP—P*du<e | |P—P¥ du
I Jz dpt 15! dp E

with some positive constant ¢, and from (3.1). The other statements of the
lemma are trivial

Using [7, Theorem 97, Lemma 3.3, and the equivalence of all norms on the
finite-dimensional space .#, we obtain the following result.

Lemma 3.5. Let 1 < p< 0. Then for each ¥eli(F)
(3.2) D)=t P, ¥y, delF(F),

defines a bounded C-linear functional on IP(F). Conversely, for each bounded
C-linear functional | on IP(F), there exists a unique ¥ € I*(F) such that (3.2) holds.

Combining Lemma 3.5 and Lemma 2.1 we can give a description of the
bounded left .#,-linear functionals on I2(F).

THEOREM 3.6. Let 1 <p < . Then for each ¥el!(F)
(3.3) L(®):=<P, ¥>, declI’F),

defines a bounded left .  linear functional on IP(F). Conversely, for each

bounded left 4 -linear functional L on IP(F), there exists a unique ¥ & I4(F) such
that (3.3) holds.

33. We will say that @ e IP(F) and ¥ e IXF) are orthogonal if (&, ¥> = 0.
If # is a subset of I7(F), then %" will denote the orthogonal complement of
Z, le, Fri= {Vel!F): (B, ¥> =0 for each PeF}.

LemMA 3.7. Let 1 <p < co and let & be a left Banach M ,-submodule of
IP(F). Then £* is a left Banach #,-submodule of I5(F) and

(3.4) (PY = 2.

FProof. Using Lemma 3.4 it is not hard to see that %+ is a left Banach
# ~submodule of I4(F). Obviously (#Y' = #. Consider b, ¢ L. By the
Hahn-Banach theorem and Lemma 3.5, there exists ¥eld (F) such that
w{Py, P> #£0and tr (P, ¥) =0if H = #. Bui Lemma 2.2 implies (&, ¥> =0
for all e, hence, P& ¥*. From {(®,, ¥) # 0 it follows that &, ¢ (L)

LeMMA 3.8. Let {Z,: ie A} be a family of left Banach 4 -submodules of
I?(F). Then

(3.5). | V&L = (n AR

icm
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Proof It is easy to prove the equality (\/es L) = (Vaea Zi Since

(\/AEA gl)l = (\/).e.d 557,1 )-L, we obtain
(3.6)

(A\E{iéﬁ = QAEAL.

Applying (3.6) to the set { ;" leA} of left Banach .# -submodules of Lf(F}

and using (3.4) we obtain (\/ i L) =) 24 %,. Now take the orthogonal
complements of both sides and use (3.4) again.

4, The space HP(F)

4.1. Following [13, Section 5], we say that an .#,-valued measure M on
@ is strongly absolutely continuous w.rt. the .#F-valued measure F on
A (M < F) if and only if there exists a measure u such that pe(DS), M << p,
F < i, and KerdM/dy = KerdF/du p-a.e. Note that the definition of absolute
continuity does not depend on the choice of p, ie., if v is another measure such
that ve(DS), M < v, and F < v, then KerdM/dv = KerdF/dv v-ae. if and
ouly if KerdM/du = KerdFjdy p-ae. (cf [13, Section 5]). - :

Because of Lemma 1.1 we can define '

dM ((dF)#)”"
a E dy

[l 2= (I'

Lemma 4.1 (cf. [16, Lemma 17). [[[M[}}, does not depend on the choice of u.

r 1p l
(4.1) dn> , l<p<oe,

Proof Let v be another measure such that ve(DS), M << v, F << v, and
KerdM/dv = KerdF/dv v-ae. Consider ¢:= u+v. We have oe(DS) and
r

f () oG TG (2
) ‘J; %%«%g)#)w p(%)# dp = !jg ‘;_A:((%;)#)ifq

In the same way we obtain
dM [ {dF\#* 1/q J
&)

dM [ {dF\#\'"
(%))
hence, the lemma is proved.

DEFINITION 4.2 (cf. [9, Definition (2.10)]). Let 1 < p < co and let F be an
M T -yalued measure on . By HP(F) we denote the class of all .4 ,-valued
‘measures M on # such that M <« F and the integral (4.1) is finite.

r

do.

P

dv={
2

ad,

Clearly, HP(F) is a unitary left 4 -module. Furthermore, it is not hard to
see that [|i-]]|, defines a norm on HP{E),

4 — Studia Mathematica 99,2
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Let ¢ e IP(F). Because of Lemma 3.3 we can define an .# -valued measure
My by

d

(4.2) _ M¢(B):=j"€b—Fdfc, BeA,
4t

We set

(4.3) U,8:=M,, ®el¥(F).

The following result plays a central role in our investigations.

Tueorem 4.3. Let 1 <p <oo. The map U, is an isometric isomorphism
between IP(F) and H?(F). |

Proof The definition of M, implies M, << © and dMy/dt = DdF/dx,
hence, KerdM,/dt =2 KerdF/dr t-ae., ie. M, << F. Moreover, since

dM g, { (dF\* )\ dF {(dF\*\' dF\UP
| — G—|{— | —
al dz dt dr \\ dr dt
we see that U, is an isometry from IP(F) into H?(F). Obviously, U, is
M ,linear. Now consider an arbitrary element M of HYF). pSet
®:=(dM/dp)(dF/dp)*, where u is 2 measure such that ue(DS), M << g, and
F << u. The equality
L AFN\E AM [dFN\* (dF\‘ie|e #3\ 1/
o T () () T2
2 H oldu \du/) \du 2l du \\du
implies that & is an element of IP(F). Finally, since KerdM/dp = KerdF/dy
p-a.e., we have

P

d'c=_[

Q

r

dt:_f

.2

14
dr < oo,

44

du

My(B) = [ 0F dM(dF)* dF
B

dr={—(—] =
dt Jjadu du) an*

aM
= j"—aT_d,u = M(B) for BedA.
B &
Hence, U, & = M and #(U,) = H?(F).

CorOLLARY 44. The space H*(F) is a unitary left Banach .#,-module,
COROLLARY 4.5. The elements of H?(F) are absolutely continuous w.rt. <.

.4.2. With the aid of Theorem 4.3 we can transfer the results on LP(F) of
Section 3 to the space HP(F). -

 Let MeH?(F), NeHI(F). We set

_ A (R e
<o = [ ( dr) (d—) i,
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THEOREM 4.6. Let 1 < p < co. Then for each NeH3(F) the map
4.4) L(M):= (XM, N>, MeH*F),

defines a bounded . -linear functional on H?(F). Conversely, for each bounded
A linear functional L on HP(F), there exists a unique N € H(F) such that (4.4)
holds.

Proof Consider MeH?(F) and NeHYF). Set &:=U,'M and
¥:=U;'N. We obtain

dM [dF\* [dN\*
(M, N> = ,{:;;(z;) (E> &
dF

dF (dF\* dF
=S — — —'}’* = | P — # = .
}f?@ dr(dr) I dr ‘{[z = YEdr = (@, V>

Now use Theorem 3.6.

We say that M e H?(F) and N € H%(F) are orthogonal if ({M, N> =0.1f
&% is a subset of HP(F), then %* will denote the set #*:= {NeH!(F):
(M, N>y =0 for al Me#}.

5. The space M,

51. Let G be an LCA group. In order to avoid trivialities we will assume
throughout this paper that G contains more than one element. Let I” be the dual
group of G. The value of a character y & I' on an element g e C will be denoted by
{g, v). By A and 2 we denote Haar measures of G and I, respectively. We
assume that 1 and 1 are normalized in such a way that the inversion formula
for the Fourier transform holds (cf. [15, p. 22]). By I!(4) and I} (1) we denote
the linear space of .# -valued functions on G and I', respectively, which are
integrable w.r.t. 4 and 1, respectively. For Sel*{i) and TelIl(f), we set

S(y):= g(g, W*S(g)Adg), vel,

T(g):= ‘l(g, NTOYIdy), geG,

ie., §is the Fourier transform of § and T is the inverse Fourier transform of T

Let @ be the g-algebra of Borel subsets of I'. A nonnegative measure  on
4 is called regular if pu(B) = infu(V) = sup u(K), Be %, where the infimum is
taken over all open sets V' 2 B and the supremum is taken over all compact
sets K < B. A complex measure on & is called regular if its total variation is
regular, An . -valued measurc on # is called regular if all its entries are
regular measures. Note that the Haar measure A of T is regular if and omly if
I' is discrete or eg-compact (cf. [6, (16.14)]).

Let %(G) denote the set of inverse Fourier—Stielijes transforms of all
M -valned measures on &, ie., ®e2(G) if and only if @(g) = g, Y Mdy),
ge G, for some 4 -valued measure M.
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Let " denote the set of all proper and nonempty compact subsets of G. -
Lef[ F be an .#, -valued measure on 4, and I7(F) and H?(F), 1 < p < oo, the
unitary left Banach .#,-modules introduced in Sections 3 and 4, respectively.
Let Cesf’. We define

Moo=\ {9, )1},

geG\C

where the closure is taken in IF(F). Obviously. Mee, Is a left Banach
«#,-submodule of I(F} and .

k
Mercp =1{ Y, Xjlgy, " Xje M, g,€G\C, j=1,..., k, keN).
i=1

Finally, we set
Regi=Maicp

By Lemma 3.7, %, is a left Banach Jﬁr’Z,,~submodule of I(F).

5.2. Now we give a characterization of the set U, % ,:= {U &:
' cri=1 D PeRe ),
where U, is the map defined in (4.3), 1 <p < oop. Wz foHova the met%gh

developed by A. Weron [21] in the case p = i
; P = 2 (see also [9] and .
mtroduce some notations. ‘ ( o [P and L10D. Firstwe

DermviTION 5.1. For Ce#, we denote by %

! ; y “c the set of all .4 ,-valued
functions § on G such that Se ' (1) » 2(G) and supps = C, and by 7. tltw set
of the Fourier transforms of functions from F.

The functions in 7. belong to L (1). Hence, f
. , for Te 7, ¢
A ~valued measure M? by e e can define &

5.1) MT(B):=[TdI, Be#.
B .

Since the entries of M7, Te 9, are finite méasures, we conclude that M7 is
a regular .#,-valued measure on 4 (cf. [6, (11.12) and (11.32)]). The set of all
measures M7, Ted,, is denoted by AL.

Let 1 <p<oo. Let Cex” and dcM,,. Since ! i
» el (F), i
(g, )B(-)eL'(F) for all geG. We set o (1 we obtein

. dF
Salg):= l[(g, r)ﬁv)d—r(v)r(dw), geG.

LEMMA 5.2 (of. [21, Lemma 4.2]). The Junction 8, belongs to ..

Proof. From the definition of S, it &
_ o it follows that S,(g) = 2 ) My (dy
where My = U, & is the measure defined in {4.2). Hence,dfg@ € @{I("}(}gTyh)us ¢S€;i)s’

continuous (cf. [15, p. 15]). Since from the definition of N, . i :
; it foll
that suppS € C, we conclude that S,e I (j) e 1t 1oKows caslly
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 Let Tp:= Sy and let MT® be the measure defined from T according
to (5.1).

LemMa 5.3 (cf. [21, Lemma 4.5(b)]). For R ,, we have MT® = M,
=U,&. :

Proof. Since dMT*/d% = T,, we obtain

So(g) = Tolg) = [ (9. V) To@) 1dy) = [ (g, NMT=(dy), gG.
r r
On the other hand, S4(g) = (9, ¥) Mg(dy), g G, and the uniqueness of the
inverse Fourier transform (cf. [15, p. 17]) yields M7® = M,

Now we can characterize the set U, M,.

THEOREM 5.4 (cf. [21, Theorem 4.9] for p=2). Let 1 <p < o and let
CeX'. Then U, M, = A H(F).

Proof, Lemma 5.3 and Theorem 43 imply the inclusion U, M,
€ A4, HP(F). On the other hand, let M"e 4~ H?(F), where M" is defined
by (5.1) and T e J,. According to Theorem 4.3 there exists a e L7 (F) such that
Uyd=My=M T where M, is defined by (4.2). It only remains to prove that .
@ is an element of Y ,. But for ge G\C,

dF
(P, (g, VI = [ (g, n®K) o M) = [(g, ) Mgldy) = [ (g, V) M (dy)
- I

r

r
=g, NTH dyy = T(@ =0
Ir

because Te .. Hence, e N,

5.3. The Haar measure 1 is regular if and only if " is discrete or g-compact
(cf. [6, (16.14)]); note that the o-compactness of I' is equivalent to the
o-finiteness of 4, But if £ is regular, then Te(DS) (cf. [3, p. 337]). In this case we
can give another useful characterization of U,Mc,,.

Let F be an 4, -valued measure on # and let F' be the Radon-Nikodym
derivative of the absolutely continuous part of F w.r.t. Z. It is well known that
F' is an .#,f-valued measurable function.’

Now we can state the following result. Since its proof is analogous to the
proof of Corollary 3.16 in [10], we omit it.

THEOREM 3.5. Let T’ be discrete or o-compact. Let 1 < p << o0 and Ce .
A measure MT defined by (5.1} belongs to U, N, if and only if the following three
conditions hold:
i) Ted,,
(i) KerT = KerF' i-ae.,
Qi) {|T(EYPdf < co.
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Remark 5.6. In the already mentioned Corollary 3.16 of [10] the authors
assumed that I is s-compact. Using the concept of the direct sum property of
a measure we obtain the result for discrete groups I, too. However, this

generalization does not seem to' be very useful (cf: Remark 8.3 and The-
crem 8.5).

6. Interpolability and minimality

6.1. Let G be an LCA group containing more than one element. Let F be
an 4, -valued measure on the o-algebra 2 of Borel sets of the dual group I'.

DEerFINITION 6.1, Let 1 < p < 0 and Ce X", The set C is called interpolable
in IP(F) if Mg\, = IP(F). The space IP(F) is called interpolable if each set
Ce " is interpolable in IP(F). The space IP(F) is called minimal if for each ge G
the set {g} is not interpolable in LP(F).

By Theorem 3.6, Lemmas 2.1 and 2.2, and the Hahn-Banach theorem, the
set Ce s is not interpolable in IF(F) if and only if 9, = {0}. Thus, using
Theorem 5.4 we immediately obtain criteria for interpolability.

TruoREm 6.2 (cf. [21, Theorem 5.2] for p = 2). Let 1< p<ooand Cel
Then C is interpolable in IP(F) if and only if Npn HI(F) = {0},

CoROLLARY 6.3 (cf. [21, Corollary 547 for p = 2 and [22, Corollary 3.2]

for n=1). The space IF(F) is interpoluble if and only if (UCEM"/VC)
N HI(F) = {0}.

If G is discrete, then a subset C < G is compact if and only if it is finite, say
C={gy,-... gy}, keN.

Lemma 6.4 [21, Lemma 4.7(b)]. The set T, consists of all M volued
trigonometric polynomials of the form Y. X (g, )% X,el,, j=1,... k

From this observation and Corollary 6.3 we can easily deduce the
following result, whose proof will be omitted.

COROLLARY 6.5 (cf. [21, Theorem 5.5 for p = 2). Let G be discrete and let
F << A The space IF(F) is interpolable if and only if for any M ,-valued
trigonometric polynomial W the integral | |W (F'y*)/|t a ¥ is equal to 0 or to co.

6.2. X G is not discrete, then using the uniform continuity of the
Fourier-Stieltjes transform (cf. [15, p. 15]), it can easily be shown that IF(F)
cannot be minimal. Thus, we will assume that G is discrete. Since for geG the
operator of multiplication by (g, +) is an isometry in IP(F), we conclude that
I¥(F) is minimal if and only if the set {e} consisting of the unit e of G is not
interpolable in IP(F). By Theorem 3.6, Lemmas 2.1 and 22, and the
Hahn—Banach theorem, it follows that the space IF(F) is minimal if and onl}i if

Mgy, = {0}. Combining this fact with Theorems 5.4, 5.5, and Lemma 6.4 we
obtain the following criterion for minimality. -
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THEOREM 6.6. Let 1 < p < oo and let G be discrete, Let F be an 4, -valued
measure on & and F' the Radon-Nikodym derivative of its absolutely continuous
part wr.t. 1. The space IP(F) is minimal if and only if there exists an X € .4, such
that KerX 2 KerF' Xae. and 0 < Jp|X((F)?)/72dl < 0.

If p = 2 and |+| is the euclidean norm, I*(F) becomes a Hilbert space. In
this case one can derive several conditions equivalent to the minirnalit)_f of I}(F)
(see [9, Theorem 4.6], compare also [5, Ch. IIL6]). In the scalar case, ie. n = 1,
M. Pourahmadi [12, Proof of Theorem 3.3] and A. Weron [22, Corollary 3.1§
proved explicit formulas for the distance of the function (g, ) from the space
Meiorp in I7(F), 1 < p < 2 (see also 11, Corollary 3.2]). From these formulas
one immediately deduces the minimality conditions of Theorem 6.(?, 1 <p< 2
(cf. [12, Theorem 3.3] and [22, Theorem 3.1]). In the general situation it seems
difficult to obtain deeper results on the distance of {e,*) from Mg,
However, we still have the following fact.

COROLLARY 6.7 (cf. [9, Theorem 4.6] for p = 2). The space IF(F) is minimal
if and only if there exists an orthoprojector P .#, such that KerP = Ker F'
F-ae and 0 < [ [P((F))"]2dl < oo.

Proof The sufficiency is clear from Theorem 6.6. Assume, conversely,
that IP(F) is minimal. Then by Theorem 6.6 there exists an X .4, such that
KerX = KerF' Jae. and 0 < [ |X((Fy)7ffdl < oo. Let Pr=X*X. Then
P is the orthoprojector onto #(X*) and we have [, |P((F’)#)“PE df < w. The
last integral is not zero, sinee otherwise [r|X((F)*)""|tdi=0 because
XP=2X. :

7. #-tegularity. Let G be an LCA group containing more than one
¢lement.

DermaTionN 7.1. Let 1 < p < oo and let # be a family of nonempty subsets
of G. Let F be an .4, -valued measure on the o-algebra # of Borel sets of the
dual group I'. The space IP(F) is called #-regular if ()aes Maap, = {0}, and
F-singular if Mg, 4,, = LP(F) for each Ae .

LemMa 7.2. Let ¢ < A", The space IF(F) is #-regular if and only if
\/ U Rey= HY(F}.
Cef
Proof. By (3.5), Theorem 3.6, Lemmas 2.1 and 2.2, and the Hahn-Banach
theorem, IP{F) is #-regular if and omly if
V e, =V Mer = () Mare,)' = {0} = H(E).
Cef Cef Cef
Now use Theorem 4.3.

In our paper we consider two families of subsets of G:

For={{g}: ge G}‘, S A
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Comparing Definitions 6.1 and 7.1 we see that IF(F} is #,-singular or
F-singular if and only if it is not minimal or interpolable, respectively. Thus,
we can use the results of Section 6 to obtain conditions for the #,-singularity
and the #-singularity of I7(F). The details are left to the reader. In this section
we study _#,-regularity and Section 8 is devoted to f-regularity.

If G is not discrete, then IP{F) cannot be #;-regular (cf. the beginning of
Section 6.2). Hence, we will assume in the remaining part of this section that
G is discrete.

THEOREM 7.3 (cf. [10, Theorem 5.3 for p = 2). Let 1 < p < 0 and let G be
discrete. Let F be an 4, -valued measure on % and F' the Radon-Nikodym
derivative of its absolutely continuous part w.r.t. I. The space LF(F) is Jy-regular
if and only if the following three conditions hold:

i F <l .
(i) There exists a subspace sf of C" such that #(F") = o H-ae.
{iti) ((F)*Y® is integrable wr.t. 1.

In the proof of Theorem 7.3 we need the following fact.

LeMMA 74, Let {M;} ¥, be a sequence of measures in HP(F) which tends to
a measure M in H*(F) as j—co. Then lim;., M,(B) = M(B) for each BeZ.

Proof. Set @;:= U M, jeN, and &:= U;'M. By Theorem 4.3 we
have lim,.,, &, = ¢ in I7(F). Since F is finite, lim,.,,, &, = & in L'(F) (cf. [8,
Lemma 5]). Hence, the inequality

- dF dF
M (B)— = gt — [P
IM,(B)- M(B) ‘}g@,drdf stqsder‘

dF
& — et
( ! ?) dt

<J dv<|®,~9|,, Bed,
B

vields the result of the lemma.

Proof of Theorem 7.3. Necessity. Assume that I7(F) is Fo-regular.

Proof of (i) Assume that F is not absolutely continuous w.r.t. £ Then
there exists a nonzero measure M € H(F) whose support is contained in the
support of the singular part of F. But (5.1) and Theorem 5.4 show that the
elements of U M, ., ge G, are absolutely continuous w.r.t, 4 By Lemma 7.2,
this contradicts the #-regularity of IF(F). Thus, F ~< I

The proof of (ii) and (iii) is adapted from the proof of Theorem 5.2 in [107.

Proof of (ii). Since F is a finite measure, we have §rl(F)*12dX < oo by
Lemmas 1.2 and 1.3. Hence,

dF [ {dF\*\ 12
w(&))

q

]

r

s = [P (Y 0leaf = [ (F) 0] < oo,
r I

icm

Approximation problems 143

i.e, FeHY(F). According to Lemma 7.2, there exist a sequence {C;}7L, of finite
subsets of G and a sequence {Y ec, M, ;}5% 1 such that M, ;e U, 9, . geC;,
jeN, and

(7.1) lim >, M,;=F

Fo 9eCy
in HY(F). Without loss of generality we may assume that ecC), jeN. By
Theorems 54 and 5.5, and Lemma 64, M,; is of the form M, ;(B)=
X, 1slg, ¥ Xdy), Bed, where X, is an nxn-matrix. such that

(7.2) KerX,;2 KerF'  Jae.,
(7.3) FIX g (VAT < 00, geC, jeN.
s

Using (7.1), Lemma 7.4, and the equality [.{g, y)* Ady) =0, for yeG, g # e,

we get

(7.4) lim X, = F(I.

Jon
The relations (7.2) and (7.4) yield
KerF(I) = Ker F'

On the other hand, Ker F(I') = Ker({. F' d1) = Ker F' i-a.e. (cf. [13, Lemma 3.2
(3)]). Thus KerF(I") = KerF' J-ae. Since F' is .#; -valued, there is a subspace
& of C" such that #(F) = .« Flac. .

Proofl of (iii). (7.3) and (7.4) yield [ |[F(I)((F)*)"7{4dA < oo, This gives

Tae.

FIF Iy RO dY < oo,

"
Since F{I)*F(I) is the orthoprojector onto #(F(I')*)= A(F(I)) and since
A(F) = R(F(I) T-ae., we finally conclude that [ |((F)*}*#|'dd < . Now
Lemmas 1.2 and 1.3 imply the integrability of ((F)*)¥™.

Sufficiency. Assume (1)~(iii). Let Q be the orthoprojector in C” onto . For
each y&¢ G, the measure M, defined by MB):= Q{s{y, p* Z{dv), Be,
belongs to U,y o T LP(F) were not #-regular, then, by Lemma 7.2, Theorem
4.6, Lemmas 2.1 and 2.2, and the Hahn- Banach theorem, there would exist
a measure N e HP(F) such that N # 0 in HY(F) and {{N, M_>> = 0 for each
ge G, Bul

N MY = [ (g, 2 01 Tl
Iz (l’f
Thus, the uniqueness theorem for the inverse Fourier -Stieltjes transform would
imply (dN/dDYFY* = 0 Fav, and hence, KerdN/di = #(F)) I-ae. On the
other hand, KerdN/dZ 2 KerF' I-a.c., since N e HP(F). Thus, dN/d1 = 0 I-ae.
This means N.=0 in H"{F), a contradiction.
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8. #-regularity. M. G. Avetisyan and R. L. Dobrushin (cf. [1, Theorem 17)
proved a result which in the situation of our paper can be stated in the
following form,

THEOREM 8.1. Let G:=Z) IeN. Let F be an J#, -valued measure on the
a-algebra & of Borel sets of the dual group T, and let F' be the Radon—Nikodym
derivative of the absolutely continuous part of F wr.t. . The space I*(F) is
F-reqular if and only if the following three conditions hold:

i) F <1

(ii) The rank ¥(F") is constant A-ae.

(i) There exists an J -velued trigonometric polynomial W such that
KerW = KerF’ dace. and [ |W((F)* )1 dZ < co.

In [1] the authors also sketch the proof of the corresponding result for
G:=R', Iz N. The present section deals with some generalizations of the result
of Theorem 8.1, yet [ was not able to generalize that result to an arbitrary LCA
group G whose dual group is discrete or g-compact. The main obstacle is the
fact that the rank of a function in ., Ce, is in general not necessarily
constant [-ae. Thus we give the following definition.

DeriniTiON 8.2. We will say that an LCA group G containing more than
one element has the property (%) if for each Ce " an arbitrary function from
F . has constant rank fae.

Remark 8.3. Note that the groups Z' and R, [& N, have the property (%).
If G is compact and hence I' is discrete, then G does not have the property (%).
If G is discrete and can be ordered, then G has the property (%) (cf. [20, Lemma
4.6]). Note further that a discrete group can be ordered if and only if it does not
contain a finite subgroup (cf. [15, p. 194].

Now we will prove a generalization of Theorem 8.1. We start with the
following lemma.

Lemma 84. For 1 <p< o and Cel,

\/ U e, = U U, N,
Cet” Cet”

(8.1)

Proof. The inclusion | Jeexr e, =

V ce M, is obvious. On the other
hand, for C, De X%, we have -

T — _
Ne, v Ny, =Macg v Main.g = Mg O Mot

1 _
E Maycuna = Neun,p

y (3.5). This implies \/cex N,y S | e Me,p- Now use Theorem 4.3,

THEOREM 8.5. Let G be an LCA group with property (%) and whose dual

group I' is g-compact. Let | < p < 0. Let F be an #, -valued measure on &

icm
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and F' the Radon-Nikodym derivative of its absolutely continuous part w.rt. 1.
The space IF(F) is Z-vegular if and only if the following three conditions hold:
(i) F << L
(i) The rank r(F’) is constant l-a.e.
(iti) There exists a Ce X and a function We F . such that Ker W = Ker F'
Jrae. and [p\W((F)*)7)1dE < co.

Proof Necessity. Assume that IF(F) is #-regular. Accordmg to Lemma
7.2 and (8.1), we have

(82)

JU, e, = HF).
et
Now (i) can be proved in the same way as (i) of Theorem 7.3.

Proof of (ii). In the proof of Theorem 7.3 it was shown that Fe H?(F).

From (8.2) follows the existence of sequences {C;}je; =4 and {M;}j%,

< H%F) such that M,;eU N, ,, jeN, and lim;., , M, = F in H*(F). But the )
relation
hm j] (dM Jdi—F)((F)*) 1“’]” di =
-”'m r

implies the existence of a subsequence {M;}i*, such that

lim (d,Mjk/dI__ F){(F)#)H2 = 0
ko ‘
and hence

dM -
(8.3) lim — Jae.

ko d/'{.

Let » be the maximal rank of F’ and let Be & be a Borel set such that I(B) > 0
and r(F’(y)) =r for l-a.e. y&B. Since rank is a lower continuous function, we
conclude from (8.3) that there exist an ieN and a Borel subset B, of B such
that A(B,) > 0 and r((dM/dZ)(y)) > r for f-ae. ye By. Since G has the property
(%), we find that r(dM JdD) =1 X-ae. But from (42) it follows that
AMfdT =(U7 ' M)F T-ae. Hence, r(F') 2 r i-a.e. Since r is the maximal rank
of F', we obtain r([f’) = Jeae,

Proof of (i) It is not hard to see that for the function W:== dM Jdx all
conditions hold. _

Sufficiency. Assume (i)- (111) If LP(F) wore not £ -reguldr there would exist
an NgHP(F) such that N =0 in HP{F) and (N, MT5> =0 for arbitrary
Ced and each T (cl. the proof of Theorem 7.3). Hlere M T denotes the
measure defined in (5.1). Tn particular, we would have

S ()=

V~wwrw) (g, YWy I{dy) =0 - for each geG.

dr
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The uniqueness theorem for the inverse Fourier-Stieltjes transform implies
(AN/ATF)* W* = 0 J-a.e. If P denotes the orthoprojector onto 22(W™), we get

dN
ax

dN

il Jae.,
dA

dN
O =SS (F) W = (F)F P = (F)
hence, KerdN/di2 ®(F) J-a.e. But since KerdN/dl = KerF’ i-a.e. because
N e H?(F), we deduce dN/di = 0 f-a.e. Thus, N = 0 in H?(F), a contradiction.

Remark 8.6 Analyzing the proof of Theorem 8.5 we see that the
conditions (i)—(iii) are sufficient and (i) is necessary for the #-regularity of I/ (F)

even in the case that G does not have the property (%). However, condition (i)

is in gemeral not necessary for the #-regularity of I?(F) if we do not require
that G has the property (%). In fact, consider a group consisting of three
elements. The dual group I also has three elements. Consider a nonnegative
scalar measure u on £ such that ux has positive masses on two elements of
I' and is 0 on the third element. Clearly, (ii) does not hold for . But it is not
hard to see that IP(y) is #-regular.
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