

Some approximation problems in L^p-spaces of matrix-valued functions

bу

LUTZ KLOTZ (Leipzig)

Abstract. In [7] some Banach spaces $L^p(F)$, 1 , of equivalence classes of matrix-valued functions which are <math>p-integrable with respect to a nonnegative Hermitian matrix-valued measure F were introduced. In the special case p=2, we obtain the Hilbert space arising from the theory of vector-valued stationary stochastic processes. Analogously to the theory of stationary processes we introduce the notions of interpolability, minimality, f_0 -regularity, and f_c -regularity of the spaces $L^p(F)$ and characterize them in terms of F.

Introduction. In the theory of vector-valued stationary stochastic processes certain Hilbert spaces $L^2(F)$ of equivalence classes of matrix-valued functions which are square-integrable with respect to a nonnegative Hermitian matrix-valued measure F play an important role. In fact, there exists an isometric isomorphism between the Hilbert space spanned by the values of the process and the space $L^2(F)$, which can be described explicitly (cf. [14]). This makes it possible to consider the problems of linear extrapolation and interpolation of the stationary process as approximation problems in the space $L^2(F)$.

In [7] some Banach spaces $L^p(F)$, $1 \le p \le \infty$, of equivalence classes of matrix-valued functions which are p-integrable w.r.t. F were introduced. As a special case one obtains the above-mentioned space $L^2(F)$. Thus it is natural to study the approximation problems arising from stationary processes in $L^p(F)$ spaces. In our paper we study problems for $L^p(F)$ spaces, $1 , originating in linear interpolation of vector-valued stationary stochastic processes. We will introduce concepts for <math>L^p(F)$ which are well known for stationary processes, e.g. interpolability and minimality.

H. Salehi pointed out the significance of Hellinger integrals in relation to interpolation of vector-valued stationary processes (see [16]-[19]). A. Weron improved Salehi's method and applied it to processes on locally compact abelian (abbreviated to LCA) groups (see [21], compare also [9] and [10]). We generalize Salehi and Weron's method to $L^p(F)$ spaces and thus can prove some of their results for these spaces. We note that Salehi and Scheidt [20] stated some further results on linear interpolation of vector-valued stationary processes. But their method uses the existence of an orthogonal projection and thus seems to be unsuited for $L^p(F)$ if $p \neq 2$.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision): 43A15, 42A10.

The first and second sections of our paper are devoted to some preliminaries on matrix integrals and Banach modules, respectively. In order to generalize Salehi and Weron's method to $L^p(F)$ we need a description of bounded matrix-linear functionals on $L^p(F)$. This description will be obtained in the third section using the description of bounded linear functionals on $L^p(F)$ given in [7]. The fourth section deals with the definition and properties of certain Banach spaces $H^p(F)$ whose elements are matrix-valued measures. In particular, we obtain an isometric isomorphism between $L^p(F)$ and $H^p(F)$. which allows us to investigate our problem in $H^p(F)$ instead of $L^p(F)$. The $H^p(F)$ spaces are generalizations of the space $H^2(F)$ introduced in [16] with the help of the Hellinger integral. In the fifth section we apply Weron's method to $L^p(F)$. Using these results we state criteria for interpolability and minimality in the sixth section of our paper. The seventh section is devoted to \mathcal{J}_0 -regularity, where \mathcal{J}_0 is the family of singletons. Finally, in the eighth section we generalize Avetisyan and Dobrushin's result [1] on \mathcal{J}_c -regularity, where \mathcal{J}_c is the family of nonempty and proper compact subsets.

Throughout the paper, we use the following notations. By N, Z, R, and C we denote the sets of positive integers, integers, real numbers, and complex numbers, respectively. The symbol \mathbb{C}^n , $n \in \mathbb{N}$, stands for the linear space of column vectors of length n. The entries of all matrices considered in our paper are complex numbers. For a matrix X, we denote by X^* , $X^{\#}$, r(X), and trX the adjoint matrix, the Moore-Penrose inverse, the rank, and the trace of X, respectively. The unit matrix and the zero matrix are denoted by I and 0, respectively. We will not specify their order in the notations, since no confusion may occur. By $|\cdot|$ we denote an arbitrary norm on a linear space of matrices and by $|\cdot|_E$ the euclidean norm: $|X|_E := (\operatorname{tr}(X^*X))^{1/2}$ for a matrix X. The symbols $\operatorname{Ker} U$ and $\operatorname{\mathcal{R}}(U)$ stand for the kernel and the range of a linear operator U, respectively. Finally, $\operatorname{supp} \varphi$ denotes the support of a function φ on a topological space.

1. Integration of matrix-valued functions. Let $(\Omega, \mathcal{B}, \mu)$ be a positive measure space. As usual, all relations between measurable functions on Ω are to be understood as holding almost everywhere w.r.t. the measure μ . Furthermore, for an integrable function φ , we will often write $\int_{\Omega} \varphi \, d\mu$ instead of $\int_{\Omega} \varphi(\omega) \, \mu(d\omega)$.

For $n \in \mathbb{N}$, we denote by \mathcal{M}_n the linear space of all $n \times n$ -matrices. A function $\Phi \colon \Omega \to \mathcal{M}_n$, $\Phi \colon = (\varphi_{ij})_{i,j=1}^n$, is called measurable (integrable, respectively) if all entries φ_{ij} , $i, j = 1, \ldots, n$, are measurable (integrable, respectively). If Φ is integrable, we set $\int_{\Omega} \Phi d\mu := (\int_{\Omega} \varphi_{ij} d\mu)_{i,j=1}^n$. For an integrable function Φ and $X, Y \in \mathcal{M}_n$, the functions $X\Phi$ and ΦY are integrable and we have the equalities $\int_{\Omega} X\Phi d\mu = X \int_{\Omega} \Phi d\mu$ and $\int_{\Omega} \Phi Y d\mu = \int_{\Omega} \Phi d\mu Y$.

For a function $\Phi: \Omega \to \mathcal{M}_n$, we define

 Φ^* : $\Phi^*(\omega) := \Phi(\omega)^*$, $\omega \in \Omega$,

 $\Phi^{\#}$: $\Phi^{\#}(\omega) := \Phi(\omega)^{\#}$, $\omega \in \Omega$,

 $|\Phi|$: $|\Phi|(\omega)$:= $|\Phi(\omega)|$, $\omega \in \Omega$.

LEMMA 1.1 (cf. [13, Lemma 3.1]). If Φ is measurable, then so is $\Phi^{\#}$.

Lemma 1.2. The function Φ is integrable if and only if $|\Phi|$ is integrable.

Proof. Since all norms on \mathcal{M}_n are equivalent, and since the lemma is obvious for the norm $|\cdot|_E$, the result follows immediately.

By \mathcal{M}_n^+ we denote the set of all nonnegative Hermitian $n \times n$ -matrices. For a function $\Phi: \Omega \to \mathcal{M}_n^+$ and a positive real number α , we set

$$\Phi^{\alpha}(\omega) := \Phi(\omega)^{\alpha}, \quad \omega \in \Omega.$$

The function Φ is measurable if and only if Φ^{α} is measurable (cf. [4, p. 391]).

Lemma 1.3. The function Φ^{α} is integrable if and only if $|\Phi|^{\alpha}$ is integrable.

Proof. For the spectral norm $|\cdot|_s$ the result is true because of $|\Phi(\omega)^{\alpha}|_s = |\Phi(\omega)|_s^{\alpha}$, $\omega \in \Omega$, and Lemma 1.2. Since all norms on \mathcal{M}_n are equivalent, the lemma remains true for an arbitrary norm $|\cdot|$.

2. Banach \mathcal{M}_n -modules. In this section we recall some definitions and basic facts from the theory of \mathcal{M}_n -modules, which will be used later on.

DEFINITION 2.1. A linear space \mathscr{F} is called a unitary left \mathscr{M}_n -module if there is defined a map $\mathscr{M}_n \times \mathscr{F} \ni (X, \Phi) \to X \Phi \in \mathscr{F}$ having the following properties:

- 1) $X(\Phi + \Psi) = X\Phi + X\Psi$, $X \in \mathcal{M}_n$, $\Phi, \Psi \in \mathcal{F}$,
- 2) $(X+Y)\Phi = X\Phi + Y\Phi$, $X, Y \in \mathcal{M}_n$, $\Phi \in \mathcal{F}$,
- 3) $X(Y\Phi) = (XY)\Phi$, $X, Y \in \mathcal{M}_n$, $\Phi \in \mathcal{F}$,
- 4) $I\Phi = \Phi$, $\Phi \in \mathcal{F}$,
- 5) $\alpha \Phi = \alpha I \Phi$, $\alpha \in \mathbb{C}$, $\Phi \in \mathcal{F}$.

Furthermore, let \mathscr{F} be a Banach space under the norm $\|\cdot\|$. Then \mathscr{F} is called a unitary left Banach \mathscr{M}_n -module if additionally

6) $||X\Phi|| \le c|X| ||\Phi||$, $X \in \mathcal{M}_n$, $\Phi \in \mathcal{F}$, for some positive constant c.

Let \mathscr{F} be a unitary left Banach \mathscr{M}_n -module. A (not necessarily closed) linear subspace \mathscr{F}_1 of \mathscr{F} is called a *left* \mathscr{M}_n -submodule of \mathscr{F} if $X \in \mathscr{M}_n$ and $\Phi \in \mathscr{F}_1$ imply $X\Phi \in \mathscr{F}_1$. If the left \mathscr{M}_n -submodule is closed, it is called a *left Banach* \mathscr{M}_n -submodule of \mathscr{F} .

A map $L: \mathcal{F} \to \mathcal{M}_n$ is called a bounded left \mathcal{M}_n -linear functional on \mathcal{F} if L is a continuous map from \mathcal{F} to the normed linear space \mathcal{M}_n and if

 $L(X\Phi + Y\Psi) = XL(\Phi) + YL(\Psi), X, Y \in \mathcal{M}_n, \Phi, \Psi \in \mathcal{F}.$ If \mathcal{L} is a subset of \mathcal{F} , then $\widehat{\mathcal{L}}$ denotes the closure of \mathcal{L} and $\bigvee \mathcal{L}$ denotes the left \mathcal{M}_n -submodule of \mathcal{F} generated by \mathcal{L} , i.e.

$$\bigvee \mathcal{L} := \{ X \Phi + Y \Psi \colon X, Y \in \mathcal{M}_n, \Phi, \Psi \in \mathcal{L} \}.$$

Clearly, if $\mathcal L$ is a left $\mathcal M_n$ -submodule of $\mathcal F$, then $\bar{\mathcal L}$ is a left Banach $\mathcal M_n$ -submodule of $\mathcal F$.

In the sequel we need the following two facts on \mathcal{M}_n -modules, which were proved in [2] even for a more general situation.

Lemma 2.1 (cf. [2, Theorem 4]). Let $\mathcal F$ be a unitary left Banach $\mathcal M_n$ -module. The map $L \to \operatorname{tr} L$ is a one-to-one correspondence between the set of bounded left $\mathcal M_n$ -linear functionals on $\mathcal F$ and the set of bounded $\mathbf C$ -linear functionals on $\mathcal F$.

The fact that the correspondence $L \rightarrow \text{tr} L$ is one-to-one can be formulated in the following form.

LEMMA 2.2 (cf. [2, Lemma 1]). Let L be a bounded left \mathcal{M}_n -linear functional on \mathcal{F} . If $\operatorname{tr} L(\Phi) = 0$ for all $\Phi \in \mathcal{F}$, then $L(\Phi) = 0$ for all $\Phi \in \mathcal{F}$.

3. The spaces $L^p(F)$

3.1. By an \mathcal{M}_n -valued measure on the σ -algebra \mathcal{B} we will mean a σ -additive function M from \mathcal{B} into the normed space \mathcal{M}_n . Obviously, $M:=(m_{ij})_{i,j=1}^n$ is an \mathcal{M}_n -valued measure if and only if each m_{ij} is a finite complex measure on \mathcal{B} . If $\varphi\colon \Omega \to \mathbf{C}$ is a function integrable w.r.t. all m_{ij} , we set $\int_{\Omega} \varphi \, dM := \left(\int_{\Omega} \varphi \, dm_{ij}\right)_{i,j=1}^n$.

By (DS) we will denote the set of all nonnegative measures on \mathcal{B} having the direct sum property (for the definition see [3, p. 179]). We recall that every σ -finite measure has the direct sum property (cf. [3, p. 179]), and that for an arbitrary complex measure ν on \mathcal{B} absolutely continuous w.r.t. μ the Radon-Nikodym derivative $d\nu/d\mu$ exists if $\mu \in (DS)$ (cf. [3, p. 182]). Moreover, it can be easily proved that μ , $\nu \in (DS)$ implies $\mu + \nu \in (DS)$. We will say that the \mathcal{M}_n -valued measure M is absolutely continuous w.r.t. $\mu \in (DS)$ and write $M \ll \mu$ if all entries m_{ij} of M are absolutely continuous w.r.t. μ . In this case we set $dM/d\mu := (dm_{ij}/d\mu)_{i,j=1}^n$.

Let $F := (f_{ij})_{i,j=1}^n$ be a nonnegative Hermitian \mathcal{M}_n -valued measure on \mathcal{B} . In the sequel we will call such measures \mathcal{M}_n^+ -valued measures on \mathcal{B} . Consider a measure $\mu \in (DS)$ such that $F \ll \mu$.

For $1 \le p < \infty$, let $\Phi: \Omega \to \mathcal{M}_n$ be a function with the following properties:

- (i) $\Phi(dF/d\mu)^{1/p}$ is measurable,
- (ii) $\|\Phi\|_p := (\int_{\Omega} |\Phi(dF/d\mu)^{1/p}|^p d\mu)^{1/p} < \infty$.

Two \mathcal{M}_n -valued functions Φ and Ψ with the properties (i) and (ii) are called equivalent if $\Phi(dF/d\mu) = \Psi(dF/d\mu)$ μ -a.e.

DEFINITION 3.1 (cf. [7, Section 3]). Let $1 \le p < \infty$. The set of equivalence classes of functions Φ with the properties (i) and (ii) is denoted by $L^p(F)$.

As usual, we will work with representatives, i.e. with functions instead of equivalence classes. Of course, the definition of $\|\cdot\|_p$ depends on the norm $|\cdot|$. But since all results of our paper are independent of the choice of $|\cdot|$, we will omit the dependence on $|\cdot|$ in the notations. Similarly, the dimension n will not be shown in the notations, since no confusion may occur. On the other hand, it is not hard to see that $\|\cdot\|_p$ and $L^p(F)$ do not depend on the choice of μ , i.e., μ can be replaced by any measure ν such that $\nu \in (DS)$ and $F \ll \nu$ (cf. [21, Lemma 2.1] for the case p=2). In the sequel, we will often use the finite measure $\tau := \operatorname{tr} F$.

which has the property $F \ll \tau$.

The results of [7, Section 3] yield the following theorem.

THEOREM 3.2. Let $1 \leq p < \infty$ and let F be an \mathcal{M}_n^+ -valued measure. Then $L^p(F)$ is a unitary left Banach \mathcal{M}_n -module under the norm $\|\cdot\|_p$.

3.2. Using Lemma 2.1 and the description of all bounded C-linear functionals on $L^p(F)$ (see [7, Theorem 9]) we will obtain the form of the bounded left \mathcal{M}_r -linear functionals on $L^p(F)$.

From now on, let 1 and let q be defined by <math>1/p + 1/q = 1.

Lemma 3.3. Let $1 . Let <math>\Phi \in L^p(F)$ and $\Psi \in L^q(F)$. Let $\mu \in (DS)$ be such that $F \ll \mu$. Then the function $\Phi(dF/d\mu)\Psi^*$ is integrable and the integral $\int_{\Omega} \Phi(dF/d\mu)\Psi^* d\mu$ does not depend on the choice of μ .

Proof. The inequality

$$(3.1) \int_{\Omega} \left| \Phi \frac{dF}{d\mu} \Psi^* \right|_{E} d\mu \leqslant \int_{\Omega} \left| \Phi \left(\frac{dF}{d\mu} \right)^{1/p} \right|_{E} \left| \Psi \left(\frac{dF}{d\mu} \right)^{1/q} \right|_{E} d\mu$$

$$\leqslant \left(\int_{\Omega} \left| \Phi \left(\frac{dF}{d\mu} \right)^{1/p} \right|_{E}^{p} d\mu \right)^{1/p} \left(\int_{\Omega} \left| \Psi \left(\frac{dF}{d\mu} \right)^{1/q} \right|_{E} d\mu \right)^{1/q} < \infty$$

and Lemma 1.2 imply the integrability of $\Phi(dF/d\mu)\Psi^*$. The independence of the choice of μ can be proved as in [21, Lemma 2.1].

For $\Phi \in L^p(F)$, $\Psi \in L^q(F)$, we define the $n \times n$ -matrix

$$\langle \Phi, \Psi \rangle := \int_{\Omega} \Phi \frac{dF}{d\mu} \Psi^* d\mu.$$

LEMMA 3.4. Let $\Phi \in L^p(F)$, $\Psi \in L^q(F)$, Then

- (a) $\langle \Phi, \Psi \rangle = \langle \Psi, \Phi \rangle^*$,
- (b) $|\langle \Phi, \Psi \rangle| \le c \|\Phi\|_p \|\Psi\|_q$ for some positive constant c not depending on Φ and Ψ .

If $X, Y \in \mathcal{M}_n$, $\Phi, \Theta \in L^p(F)$, $\Psi \in L^q(F)$, then

(c)
$$\langle X\Phi + Y\Theta, \Psi \rangle = X \langle \Phi, \Psi \rangle + Y \langle \Theta, \Psi \rangle$$
.

Proof. (b) follows from the inequality

$$|\langle \Phi, \Psi \rangle| \leqslant \int_{\Omega} \left| \Phi \frac{dF}{d\mu} \Psi^* \right| d\mu \leqslant c_1 \int_{\Omega} \left| \Phi \frac{dF}{d\mu} \Psi^* \right|_{E} d\mu$$

with some positive constant c_1 and from (3.1). The other statements of the lemma are trivial.

Using [7, Theorem 9], Lemma 3.3, and the equivalence of all norms on the finite-dimensional space \mathcal{M}_n we obtain the following result.

LEMMA 3.5. Let $1 . Then for each <math>\Psi \in L^q(F)$

(3.2)
$$l(\Phi) := \operatorname{tr}\langle \Phi, \Psi \rangle, \quad \Phi \in L^p(F),$$

defines a bounded C-linear functional on $L^p(F)$. Conversely, for each bounded C-linear functional l on $L^p(F)$, there exists a unique $\Psi \in L^q(F)$ such that (3.2) holds.

Combining Lemma 3.5 and Lemma 2.1 we can give a description of the bounded left \mathcal{M}_n -linear functionals on $L^p(F)$.

THEOREM 3.6. Let $1 . Then for each <math>\Psi \in L^q(F)$

(3.3)
$$L(\Phi) := \langle \Phi, \Psi \rangle, \quad \Phi \in L^p(F),$$

defines a bounded left \mathcal{M}_n -linear functional on $L^p(F)$. Conversely, for each bounded left \mathcal{M}_n -linear functional L on $L^p(F)$, there exists a unique $\Psi \in L^p(F)$ such that (3.3) holds.

3.3. We will say that $\Phi \in L^p(F)$ and $\Psi \in L^q(F)$ are orthogonal if $\langle \Phi, \Psi \rangle = 0$. If $\mathscr L$ is a subset of $L^p(F)$, then $\mathscr L^\perp$ will denote the orthogonal complement of $\mathscr L$, i.e., $\mathscr L^\perp := \{ \Psi \in L^q(F) \colon \langle \Phi, \Psi \rangle = 0 \text{ for each } \Phi \in \mathscr L \}.$

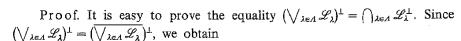
LEMMA 3.7. Let $1 and let <math>\mathcal{L}$ be a left Banach \mathcal{M}_n -submodule of $L^p(F)$. Then \mathcal{L}^{\perp} is a left Banach \mathcal{M}_n -submodule of $L^q(F)$ and

$$(\mathcal{L}^{\perp})^{\perp} = \mathcal{L}.$$

Proof. Using Lemma 3.4 it is not hard to see that \mathscr{L}^{\perp} is a left Banach \mathscr{M}_n -submodule of $L^q(F)$. Obviously $(\mathscr{L}^{\perp})^{\perp} \supseteq \mathscr{L}$. Consider $\Phi_0 \notin \mathscr{L}$. By the Hahn–Banach theorem and Lemma 3.5, there exists $\Psi \in L^q(F)$ such that $\operatorname{tr}\langle \Phi_0, \Psi \rangle \neq 0$ and $\operatorname{tr}\langle \Phi, \Psi \rangle = 0$ if $\Phi \in \mathscr{L}$. But Lemma 2.2 implies $\langle \Phi, \Psi \rangle = 0$ for all $\Phi \in \mathscr{L}$, hence, $\Psi \in \mathscr{L}^{\perp}$. From $\langle \Phi_0, \Psi \rangle \neq 0$ it follows that $\Phi_0 \notin (\mathscr{L}^{\perp})^{\perp}$.

LEMMA 3.8. Let $\{\mathcal{L}_{\lambda}: \lambda \in \Lambda\}$ be a family of left Banach \mathcal{M}_n -submodules of $L^p(F)$. Then

$$(3.5) \qquad \qquad \overline{\bigvee_{\lambda \in \Lambda} \mathscr{L}_{\lambda}^{\perp}} = (\bigcap_{\lambda \in \Lambda} \mathscr{L}_{\lambda})^{\perp}.$$



$$(3.6) \qquad (\overline{\bigvee_{\lambda \in \Lambda}})^{\perp} = \bigcap_{\lambda \in \Lambda} \mathscr{L}_{\lambda}^{\perp}.$$

Applying (3.6) to the set $\{\mathscr{L}_{\lambda}^{\perp}: \lambda \in A\}$ of left Banach \mathscr{M}_n -submodules of $L^q(F)$ and using (3.4) we obtain $(\bigvee_{\lambda \in A} \mathscr{L}_{\lambda}^{\perp})^{\perp} = \bigcap_{\lambda \in A} \mathscr{L}_{\lambda}$. Now take the orthogonal complements of both sides and use (3.4) again.

4. The space $H^p(F)$

4.1. Following [13, Section 5], we say that an \mathcal{M}_n -valued measure M on \mathcal{B} is strongly absolutely continuous w.r.t. the \mathcal{M}_n^+ -valued measure F on \mathcal{B} $(M \ll F)$ if and only if there exists a measure μ such that $\mu \in (DS)$, $M \ll \mu$, $F \ll \mu$, and $\operatorname{Ker} dM/d\mu \supseteq \operatorname{Ker} dF/d\mu$ μ -a.e. Note that the definition of absolute continuity does not depend on the choice of μ , i.e., if ν is another measure such that $\nu \in (DS)$, $M \ll \nu$, and $F \ll \nu$, then $\operatorname{Ker} dM/d\nu \supseteq \operatorname{Ker} dF/d\nu \nu$ -a.e. if and only if $\operatorname{Ker} dM/d\mu \supseteq \operatorname{Ker} dF/d\mu \mu$ -a.e. (cf. [13, Section 5]).

Because of Lemma 1.1 we can define

$$(4.1) \qquad \qquad |||M|||_p := \left(\int\limits_{\Omega} \left|\frac{dM}{d\mu} \left(\left(\frac{dF}{d\mu}\right)^{\#}\right)^{1/q}\right|^p d\mu\right)^{1/p}, \qquad 1$$

LEMMA 4.1 (cf. [16, Lemma 1]). $|||M|||_p$ does not depend on the choice of μ .

Proof. Let ν be another measure such that $\nu \in (DS)$, $M \ll \nu$, $F \ll \nu$, and $\operatorname{Ker} dM/d\nu \supseteq \operatorname{Ker} dF/d\nu \ \nu$ -a.e. Consider $\sigma := \mu + \nu$. We have $\sigma \in (DS)$ and

$$\int_{\Omega} \left| \frac{dM}{d\mu} \left(\left(\frac{dF}{d\mu} \right)^{\#} \right)^{1/q} \right|^{p} d\mu = \int_{\Omega} \left| \frac{dM}{d\sigma} \left(\left(\frac{dF}{d\sigma} \right)^{\#} \right)^{1/q} \right|^{p} \left(\left(\frac{d\mu}{d\sigma} \right)^{\#} \left(\frac{d\mu}{d\sigma} \right)^{1/q} \right)^{p} d\mu$$

$$= \int_{\Omega} \left| \frac{dM}{d\sigma} \left(\left(\frac{dF}{d\sigma} \right)^{\#} \right)^{1/q} \right|^{p} \left(\frac{d\mu}{d\sigma} \right)^{\#} d\mu = \int_{\Omega} \left| \frac{dM}{d\sigma} \left(\left(\frac{dF}{d\sigma} \right)^{\#} \right)^{1/q} \right|^{p} d\sigma.$$

In the same way we obtain

$$\int_{\Omega} \left| \frac{dM}{dv} \left(\left(\frac{dF}{dv} \right)^{\#} \right)^{1/q} \right|^{p} dv = \int_{\Omega} \left| \frac{dM}{d\sigma} \left(\left(\frac{dF}{d\sigma} \right)^{\#} \right)^{1/q} \right|^{p} d\sigma,$$

hence, the lemma is proved.

DEFINITION 4.2 (cf. [9, Definition (2.10)]). Let 1 and let <math>F be an \mathcal{M}_n^+ -valued measure on \mathcal{B} . By $H^p(F)$ we denote the class of all \mathcal{M}_n -valued measures M on \mathcal{B} such that $M \lll F$ and the integral (4.1) is finite.

Clearly, $H^p(F)$ is a unitary left \mathcal{M}_n -module. Furthermore, it is not hard to see that $|||\cdot|||_p$ defines a norm on $H^p(F)$.

Let $\Phi \in L^p(F)$. Because of Lemma 3.3 we can define an \mathcal{M}_n -valued measure M_{Φ} by

(4.2)
$$M_{\phi}(B) := \int_{B} \Phi \frac{dF}{d\tau} d\tau, \quad B \in \mathcal{B}.$$

We set

$$(4.3) U_p \Phi := M_{\Phi}, \quad \Phi \in L^p(F).$$

The following result plays a central role in our investigations.

Theorem 4.3. Let $1 . The map <math>U_p$ is an isometric isomorphism between $L^p(F)$ and $H^p(F)$.

Proof. The definition of M_{Φ} implies $M_{\Phi} \ll \tau$ and $dM_{\Phi}/d\tau = \Phi dF/d\tau$, hence, $\operatorname{Ker} dM_{\Phi}/d\tau \supseteq \operatorname{Ker} dF/d\tau$ τ -a.e., i.e. $M_{\Phi} \lll F$. Moreover, since

$$\int_{\Omega} \left| \frac{dM_{\Phi}}{d\tau} \left(\left(\frac{dF}{d\tau} \right)^{\#} \right)^{1/q} \right|^{p} d\tau = \int_{\Omega} \left| \Phi \frac{dF}{d\tau} \left(\left(\frac{dF}{d\tau} \right)^{\#} \right)^{1/q} \right|^{p} d\tau = \int_{\Omega} \left| \Phi \left(\frac{dF}{d\tau} \right)^{1/p} \right|^{p} d\tau < \infty,$$

we see that U_p is an isometry from $L^p(F)$ into $H^p(F)$. Obviously, U_p is \mathcal{M}_n -linear. Now consider an arbitrary element M of $H^p(F)$. Set $\Phi:=(dM/d\mu)(dF/d\mu)^\#$, where μ is a measure such that $\mu\in(\mathrm{DS})$, $M\ll\mu$, and $F\ll\mu$. The equality

$$\int\limits_{\Omega} \left| \Phi \left(\frac{dF}{d\mu} \right)^{1/p} \right|^p d\mu = \int\limits_{\Omega} \left| \frac{dM}{d\mu} \left(\frac{dF}{d\mu} \right)^{\#} \left(\frac{dF}{d\mu} \right)^{1/p} \right|^p d\mu = \int\limits_{\Omega} \left| \frac{dM}{d\mu} \left(\left(\frac{dF}{d\mu} \right)^{\#} \right)^{1/q} \right|^p d\mu$$

implies that Φ is an element of $L^p(F)$. Finally, since $\operatorname{Ker} dM/d\mu \supseteq \operatorname{Ker} dF/d\mu$ μ -a.e., we have

$$M_{\Phi}(B) = \int_{B} \Phi \frac{dF}{d\tau} d\tau = \int_{B} \frac{dM}{d\mu} \left(\frac{dF}{d\mu} \right)^{\#} \frac{dF}{d\mu} d\mu$$
$$= \int_{B} \frac{dM}{d\mu} d\mu = M(B) \quad \text{for } B \in \mathcal{B}.$$

Hence, $U_p \Phi = M$ and $\mathcal{R}(U_p) = H^p(F)$.

COROLLARY 4.4. The space $H^p(F)$ is a unitary left Banach \mathcal{M}_n -module.

COROLLARY 4.5. The elements of $H^p(F)$ are absolutely continuous w.r.t. τ .

4.2. With the aid of Theorem 4.3 we can transfer the results on $L^p(F)$ of Section 3 to the space $H^p(F)$.

Let $M \in H^p(F)$, $N \in H^q(F)$. We set

$$\langle\langle M, N \rangle\rangle := \int_{\Omega} \frac{dM}{d\tau} \left(\frac{dF}{d\tau}\right)^{\#} \left(\frac{dN}{d\tau}\right)^{*} d\tau.$$

THEOREM 4.6. Let $1 . Then for each <math>N \in H^q(F)$ the map

(4.4)
$$L(M) := \langle \langle M, N \rangle \rangle, \quad M \in H^p(F),$$

defines a bounded \mathcal{M}_n -linear functional on $H^p(F)$. Conversely, for each bounded \mathcal{M}_n -linear functional L on $H^p(F)$, there exists a unique $N \in H^q(F)$ such that (4.4) holds.

Proof. Consider $M \in H^p(F)$ and $N \in H^q(F)$. Set $\Phi := U_p^{-1}M$ and $\Psi := U_q^{-1}N$. We obtain

$$\langle \langle M, N \rangle \rangle = \int_{\Omega} \frac{dM}{d\tau} \left(\frac{dF}{d\tau} \right)^{*} \left(\frac{dN}{d\tau} \right)^{*} d\tau$$

$$= \int_{\Omega} \Phi \frac{dF}{d\tau} \left(\frac{dF}{d\tau} \right)^{*} \frac{dF}{d\tau} \Psi^{*} d\tau = \int_{\Omega} \Phi \frac{dF}{d\tau} \Psi^{*} d\tau = \langle \Phi, \Psi \rangle.$$

Now use Theorem 3.6.

We say that $M \in H^p(F)$ and $N \in H^q(F)$ are orthogonal if $\langle \langle M, N \rangle \rangle = 0$. If \mathscr{L} is a subset of $H^p(F)$, then \mathscr{L}^{\perp} will denote the set $\mathscr{L}^{\perp} := \{N \in H^q(F): \langle \langle M, N \rangle \rangle = 0 \text{ for all } M \in \mathscr{L} \}$.

5. The space $\mathfrak{N}_{C,a}$

5.1. Let G be an LCA group. In order to avoid trivialities we will assume throughout this paper that G contains more than one element. Let Γ be the dual group of G. The value of a character $\gamma \in \Gamma$ on an element $g \in C$ will be denoted by (g, γ) . By λ and $\widetilde{\lambda}$ we denote Haar measures of G and Γ , respectively. We assume that λ and $\widetilde{\lambda}$ are normalized in such a way that the inversion formula for the Fourier transform holds (cf. [15, p. 22]). By $L^1(\lambda)$ and $L^1(\widetilde{\lambda})$ we denote the linear space of \mathcal{M}_n -valued functions on G and Γ , respectively, which are integrable w.r.t. λ and $\widetilde{\lambda}$, respectively. For $S \in L^1(\lambda)$ and $T \in L^1(\widetilde{\lambda})$, we set

$$\begin{split} \widehat{S}(\gamma) &:= \int_{G} (g, \gamma) * S(g) \, \lambda(dg), \quad \gamma \in \Gamma, \\ \widecheck{T}(g) &:= \int_{\Gamma} (g, \gamma) \, T(\gamma) \, \widecheck{\lambda}(d\gamma), \quad g \in G, \end{split}$$

i.e., S is the Fourier transform of S and T is the inverse Fourier transform of T. Let B be the σ -algebra of Borel subsets of Γ . A nonnegative measure μ on B is called regular if $\mu(B) = \inf \mu(V) = \sup \mu(K)$, $B \in B$, where the infimum is taken over all open sets $V \supseteq B$ and the supremum is taken over all compact sets $K \subseteq B$. A complex measure on B is called regular if its total variation is regular. An M_n -valued measure on B is called regular if all its entries are regular measures. Note that the Haar measure $\tilde{\lambda}$ of Γ is regular if and only if Γ is discrete or σ -compact (cf. [6, (16.14)]).

Let $\mathscr{D}(G)$ denote the set of inverse Fourier-Stieltjes transforms of all \mathscr{M}_n -valued measures on \mathscr{B} , i.e., $\Phi \in \mathscr{D}(G)$ if and only if $\Phi(g) = \int_{\Gamma} (g, \gamma) M(d\gamma)$, $g \in G$, for some \mathscr{M}_n -valued measure M.

Let \mathcal{K} denote the set of all proper and nonempty compact subsets of G. Let F be an \mathcal{M}_n^+ -valued measure on \mathcal{B} , and $L^p(F)$ and $H^p(F)$, $1 , the unitary left Banach <math>\mathcal{M}_n$ -modules introduced in Sections 3 and 4, respectively.

Let $C \in \mathcal{K}$. We define

$$\mathfrak{M}_{G\setminus C,p}:=\bigvee_{g\in G\setminus C}\{(g,\,\cdot\,)^*I\},$$

where the closure is taken in $L^p(F)$. Obviously. $\mathfrak{M}_{G \setminus C,p}$ is a left Banach \mathcal{M}_n -submodule of $L^p(F)$ and

$$\mathfrak{M}_{G\backslash C,p} = \big\{ \sum_{j=1}^k X_j(g_j,\cdot)^* \colon X_j \in \mathcal{M}_n, \ g_j \in G\backslash C, \ j=1,\ldots,k, \ k \in \mathbb{N} \big\}.$$

Finally, we set

$$\mathfrak{N}_{C,q} := \mathfrak{M}_{G \setminus C,p}^{\perp}$$

By Lemma 3.7, $\mathfrak{R}_{C,q}$ is a left Banach \mathcal{M}_n -submodule of $L^q(F)$.

5.2. Now we give a characterization of the set $U_p\mathfrak{N}_{C,p}:=\{U_p\Phi\colon \Phi\in\mathfrak{N}_{C,p}\}$, where U_p is the map defined in (4.3), $1< p<\infty$. We follow the method developed by A. Weron [21] in the case p=2 (see also [9] and [10]). First we introduce some notations.

DEFINITION 5.1. For $C \in \mathcal{H}$, we denote by \mathscr{S}_C the set of all \mathscr{M}_n -valued functions S on G such that $S \in L^1(\lambda) \cap \mathscr{D}(G)$ and $\operatorname{supp} S \subseteq C$, and by \mathscr{T}_C the set of the Fourier transforms of functions from \mathscr{S}_C .

The functions in \mathscr{T}_C belong to $L^1(\widetilde{\lambda})$. Hence, for $T \in \mathscr{T}_C$, we can define an \mathscr{M}_n -valued measure M^T by

(5.1)
$$M^{T}(B) := \int_{R} T d\tilde{\lambda}, \quad B \in \mathcal{B}.$$

Since the entries of M^T , $T \in \mathcal{T}_C$, are finite measures, we conclude that M^T is a regular \mathcal{M}_n -valued measure on \mathcal{B} (cf. [6, (11.12) and (11.32)]). The set of all measures M^T , $T \in \mathcal{T}_C$, is denoted by \mathcal{N}_C .

Let $1 . Let <math>C \in \mathcal{K}$ and $\Phi \in \mathfrak{N}_{c,p}$. Since $\Phi \in L^1(F)$, we obtain $(g,\cdot)\Phi(\cdot) \in L^1(F)$ for all $g \in G$. We set

$$S_{\Phi}(g) := \int_{\Gamma} (g, \gamma) \Phi(\gamma) \frac{dF}{d\tau}(\gamma) \tau(d\gamma), \quad g \in G.$$

LEMMA 5.2 (cf. [21, Lemma 4.2]). The function S_{Φ} belongs to \mathscr{S}_{C} .

Proof. From the definition of S_{Φ} it follows that $S_{\Phi}(g) = \int_{\Gamma}(g, \gamma) M_{\Phi}(d\gamma)$, where $M_{\Phi} = U_p \Phi$ is the measure defined in (4.2). Hence, $S_{\Phi} \in \mathcal{D}(G)$. Thus, S_{Φ} is continuous (cf. [15, p. 15]). Since from the definition of $\mathfrak{N}_{C,p}$ it follows easily that $\sup S_{\Phi} \subseteq C$, we conclude that $S_{\Phi} \in L^1(\lambda)$.

Let $T_{\sigma} := \hat{S}_{\sigma}$ and let $M^{T_{\sigma}}$ be the measure defined from T_{σ} according to (5.1).

Lemma 5.3 (cf. [21, Lemma 4.5(b)]). For $\Phi \in \mathfrak{N}_{C,p}$, we have $M^{T_\Phi} = M_\Phi = U_p \Phi$.

Proof. Since $dM^{T_{\Phi}}/d\tilde{\lambda} = T_{\Phi}$, we obtain

$$S_{\Phi}(g) = \check{T}_{\Phi}(g) = \int_{\Gamma} (g, \gamma) T_{\Phi}(\gamma) \, \check{\lambda}(d\gamma) = \int_{\Gamma} (g, \gamma) M^{T_{\Phi}}(d\gamma), \quad g \in G.$$

On the other hand, $S_{\Phi}(g) = \int_{\Gamma} (g, \gamma) M_{\Phi}(d\gamma)$, $g \in G$, and the uniqueness of the inverse Fourier transform (cf. [15, p. 17]) yields $M^{T_{\Phi}} = M_{\Phi}$.

Now we can characterize the set $U_p \mathfrak{R}_{C,p}$.

Theorem 5.4 (cf. [21, Theorem 4.9] for p=2). Let $1 and let <math>C \in \mathcal{K}$. Then $U_n \mathfrak{N}_{C,p} = \mathcal{N}_C \cap H^p(F)$.

Proof. Lemma 5.3 and Theorem 4.3 imply the inclusion $U_p \mathfrak{N}_{C,p} \subseteq \mathscr{N}_C \cap H^p(F)$. On the other hand, let $M^T \in \mathscr{N}_C \cap H^p(F)$, where M^T is defined by (5.1) and $T \in \mathscr{T}_C$. According to Theorem 4.3 there exists a $\Phi \in L^p(F)$ such that $U_p \Phi = M_\Phi = M^T$, where M_Φ is defined by (4.2). It only remains to prove that Φ is an element of $\mathfrak{N}_{C,p}$. But for $g \in G \setminus C$,

$$\begin{split} \langle \Phi, (g, \cdot)^* I \rangle &= \int_{\Gamma} (g, \gamma) \Phi(\gamma) \frac{dF}{d\tau} (\gamma) \tau(d\gamma) = \int_{\Gamma} (g, \gamma) M_{\Phi}(d\gamma) = \int_{\Gamma} (g, \gamma) M^{T}(d\gamma) \\ &= \int_{\Gamma} (g, \gamma) T(\gamma) \tilde{\lambda}(d\gamma) = \check{T}(g) = 0 \end{split}$$

because $\check{T} \in \mathscr{S}_{\mathcal{C}}$. Hence, $\Phi \in \mathfrak{N}_{\mathcal{C}, p}$.

5.3. The Haar measure $\tilde{\lambda}$ is regular if and only if Γ is discrete or σ -compact (cf. [6, (16.14)]); note that the σ -compactness of Γ is equivalent to the σ -finiteness of $\tilde{\lambda}$. But if $\tilde{\lambda}$ is regular, then $\tilde{\lambda} \in (DS)$ (cf. [3, p. 337]). In this case we can give another useful characterization of $U_p \mathfrak{N}_{c,p}$.

Let F be an \mathcal{M}_n^+ -valued measure on \mathcal{B} and let F' be the Radon-Nikodym derivative of the absolutely continuous part of F w.r.t. $\tilde{\lambda}$. It is well known that F' is an \mathcal{M}_n^+ -valued measurable function.

Now we can state the following result. Since its proof is analogous to the proof of Corollary 3.16 in [10], we omit it.

THEOREM 5.5. Let Γ be discrete or σ -compact. Let $1 and <math>C \in \mathcal{H}$. A measure M^T defined by (5.1) belongs to $U_p \mathfrak{N}_{C,p}$ if and only if the following three conditions hold:

- (i) $T \in \mathcal{T}_C$,
- (ii) $\operatorname{Ker} T \supseteq \operatorname{Ker} F' \tilde{\lambda}$ -a.e.,
- (iii) $\int_{\Gamma} |T((F')^{\#})^{1/q}|^p d\tilde{\lambda} < \infty$.

Remark 5.6. In the already mentioned Corollary 3.16 of [10] the authors assumed that Γ is σ -compact. Using the concept of the direct sum property of a measure we obtain the result for discrete groups Γ , too. However, this generalization does not seem to be very useful (cf. Remark 8.3 and Theorem 8.5).

6. Interpolability and minimality

6.1. Let G be an LCA group containing more than one element. Let F be an \mathcal{M}_n^+ -valued measure on the σ -algebra \mathcal{B} of Borel sets of the dual group Γ .

DEFINITION 6.1. Let $1 and <math>C \in \mathcal{K}$. The set C is called *interpolable* in $L^p(F)$ if $\mathfrak{M}_{G \setminus C, p} = L^p(F)$. The space $L^p(F)$ is called *interpolable* if each set $C \in \mathcal{K}$ is interpolable in $L^p(F)$. The space $L^p(F)$ is called *minimal* if for each $g \in G$ the set $\{g\}$ is not interpolable in $L^p(F)$.

By Theorem 3.6, Lemmas 2.1 and 2.2, and the Hahn-Banach theorem, the set $C \in \mathcal{K}$ is not interpolable in $L^p(F)$ if and only if $\mathfrak{N}_{C,q} = \{0\}$. Thus, using Theorem 5.4 we immediately obtain criteria for interpolability.

THEOREM 6.2 (cf. [21, Theorem 5.2] for p=2). Let $1 and <math>C \in \mathcal{K}$. Then C is interpolable in $L^p(F)$ if and only if $\mathcal{N}_C \cap H^q(F) = \{0\}$.

COROLLARY 6.3 (cf. [21, Corollary 5.4] for p=2 and [22, Corollary 3.2] for n=1). The space $L^p(F)$ is interpolable if and only if $(\bigcup_{C \in \mathscr{K}} \mathscr{N}_C) \cap H^q(F) = \{0\}$.

If G is discrete, then a subset $C \subseteq G$ is compact if and only if it is finite, say $C = \{g_1, \ldots, g_k\}, k \in \mathbb{N}$.

Lemma 6.4 [21, Lemma 4.7(b)]. The set \mathcal{T}_C consists of all \mathcal{M}_n -valued trigonometric polynomials of the form $\sum_{j=1}^k X_j(g_j,\cdot)^*$, $X_j \in \mathcal{M}_n$, $j=1,\ldots,k$.

From this observation and Corollary 6.3 we can easily deduce the following result, whose proof will be omitted.

COROLLARY 6.5 (cf. [21, Theorem 5.5] for p=2). Let G be discrete and let $F \ll \tilde{\lambda}$. The space $L^p(F)$ is interpolable if and only if for any \mathcal{M}_n -valued trigonometric polynomial W the integral $\int_{\Gamma} |W((F')^*)^{1/p}|^q d\tilde{\lambda}$ is equal to 0 or to ∞ .

6.2. If G is not discrete, then using the uniform continuity of the Fourier-Stieltjes transform (cf. [15, p. 15]), it can easily be shown that $L^p(F)$ cannot be minimal. Thus, we will assume that G is discrete. Since for $g \in G$ the operator of multiplication by (g, \cdot) is an isometry in $L^p(F)$, we conclude that $L^p(F)$ is minimal if and only if the set $\{e\}$ consisting of the unit e of G is not interpolable in $L^p(F)$. By Theorem 3.6, Lemmas 2.1 and 2.2, and the Hahn-Banach theorem, it follows that the space $L^p(F)$ is minimal if and only if $\mathfrak{N}_{\{e\},q} = \{0\}$. Combining this fact with Theorems 5.4, 5.5, and Lemma 6.4 we obtain the following criterion for minimality.

THEOREM 6.6. Let $1 and let G be discrete. Let F be an <math>\mathcal{M}_n^+$ -valued measure on \mathcal{B} and F' the Radon-Nikodym derivative of its absolutely continuous part w.r.t. $\tilde{\lambda}$. The space $L^p(F)$ is minimal if and only if there exists an $X \in \mathcal{M}_n$ such that $\operatorname{Ker} X \supseteq \operatorname{Ker} F' \tilde{\lambda}$ -a.e. and $0 < \int_{\Gamma} |X((F')^{\#})^{1/p}|^q d\tilde{\lambda} < \infty$.

If p=2 and $|\cdot|$ is the euclidean norm, $L^2(F)$ becomes a Hilbert space. In this case one can derive several conditions equivalent to the minimality of $L^2(F)$ (see [9, Theorem 4.6], compare also [5, Ch. III.6]). In the scalar case, i.e. n=1, M. Pourahmadi [12, Proof of Theorem 3.3] and A. Weron [22, Corollary 3.1] proved explicit formulas for the distance of the function (e, \cdot) from the space $\mathfrak{M}_{G\setminus\{e\},p}$ in $L^p(F)$, $1 (see also [11, Corollary 3.2]). From these formulas one immediately deduces the minimality conditions of Theorem 6.6, <math>1 (cf. [12, Theorem 3.3] and [22, Theorem 3.1]). In the general situation it seems difficult to obtain deeper results on the distance of <math>(e, \cdot)$ from $\mathfrak{M}_{G\setminus\{e\},p}$. However, we still have the following fact.

COROLLARY 6.7 (cf. [9, Theorem 4.6] for p=2). The space $L^p(F)$ is minimal if and only if there exists an orthoprojector $P \in \mathcal{M}_n$ such that $\operatorname{Ker} P \supseteq \operatorname{Ker} F'$ $\tilde{\lambda}$ -a.e. and $0 < \lceil_r |P((F')^\#)^{1/p}|^q d\tilde{\lambda} < \infty$.

Proof. The sufficiency is clear from Theorem 6.6. Assume, conversely, that $L^p(F)$ is minimal. Then by Theorem 6.6 there exists an $X \in \mathcal{M}_n$ such that $\ker X \supseteq \ker F'$ $\tilde{\lambda}$ -a.e. and $0 < \int_{\Gamma} |X((F')^{\#})^{1/p}|^q d\tilde{\lambda} < \infty$. Let $P:=X^{\#}X$. Then P is the orthoprojector onto $\mathcal{R}(X^*)$ and we have $\int_{\Gamma} |P((F')^{\#})^{1/p}|^q d\tilde{\lambda} < \infty$. The last integral is not zero, since otherwise $\int_{\Gamma} |X((F')^{\#})^{1/p}|^q d\tilde{\lambda} = 0$ because XP = X.

7. \mathcal{J}_0 -regularity. Let G be an LCA group containing more than one element.

DEFINITION 7.1. Let $1 and let <math>\mathscr{J}$ be a family of nonempty subsets of G. Let F be an \mathscr{M}_n^+ -valued measure on the σ -algebra \mathscr{B} of Borel sets of the dual group Γ . The space $L^p(F)$ is called \mathscr{J} -regular if $\bigcap_{A \in \mathscr{J}} \mathfrak{M}_{G \setminus A, p} = \{0\}$, and \mathscr{J} -singular if $\mathfrak{M}_{G \setminus A, p} = L^p(F)$ for each $A \in \mathscr{J}$.

LEMMA 7.2. Let $\mathcal{J} \subseteq \mathcal{K}$. The space $L^p(F)$ is \mathcal{J} -regular if and only if

$$\bigvee_{C\in\mathscr{I}}U_q\mathfrak{N}_{C,q}=H^q(F).$$

Proof. By (3.5), Theorem 3.6, Lemmas 2.1 and 2.2, and the Hahn-Banach theorem, $L^p(F)$ is \mathcal{J} -regular if and only if

$$\overline{\bigvee_{C\in\mathscr{J}}\mathfrak{N}_{C,q}}=\overline{\bigvee_{C\in\mathscr{J}}\mathfrak{M}_{G\backslash C,p}^{\perp}}=(\bigcap_{C\in\mathscr{J}}\mathfrak{M}_{G\backslash C,p})^{\perp}=\{0\}^{\perp}=L^{q}(F).$$

Now use Theorem 4.3.

In our paper we consider two families of subsets of G:

$$\mathcal{J}_0 := \{\{g\}: g \in G\}, \quad \mathcal{J}_c := \mathcal{K}.$$

Comparing Definitions 6.1 and 7.1 we see that $L^p(F)$ is \mathcal{J}_0 -singular or \mathcal{J}_c -singular if and only if it is not minimal or interpolable, respectively. Thus, we can use the results of Section 6 to obtain conditions for the \mathcal{J}_0 -singularity and the \mathcal{J}_c -singularity of $L^p(F)$. The details are left to the reader. In this section we study \mathcal{J}_0 -regularity and Section 8 is devoted to \mathcal{J}_c -regularity.

If G is not discrete, then $L^p(F)$ cannot be \mathcal{J}_0 -regular (cf. the beginning of Section 6.2). Hence, we will assume in the remaining part of this section that G is discrete.

Theorem 7.3 (cf. [10, Theorem 5.3] for p=2). Let $1 and let G be discrete. Let F be an <math>\mathcal{M}_n^+$ -valued measure on \mathcal{B} and F' the Radon-Nikodym derivative of its absolutely continuous part w.r.t. $\tilde{\lambda}$. The space $L^p(F)$ is \mathcal{J}_0 -regular if and only if the following three conditions hold:

- (i) $F \ll \tilde{\lambda}$.
- (ii) There exists a subspace \mathscr{A} of \mathbb{C}^n such that $\mathscr{R}(F') = \mathscr{A} \tilde{\lambda}$ -a.e.
- (iii) $((F')^{\#})^{q/p}$ is integrable w.r.t. $\tilde{\lambda}$.

In the proof of Theorem 7.3 we need the following fact.

LEMMA 7.4. Let $\{M_j\}_{j=1}^{\infty}$ be a sequence of measures in $H^p(F)$ which tends to a measure M in $H^p(F)$ as $j \to \infty$. Then $\lim_{j \to \infty} M_j(B) = M(B)$ for each $B \in \mathcal{B}$.

Proof. Set $\Phi_j := U_p^{-1} M_j$, $j \in \mathbb{N}$, and $\Phi := U_p^{-1} M$. By Theorem 4.3 we have $\lim_{j \to \infty} \Phi_j = \Phi$ in $L^p(F)$. Since F is finite, $\lim_{j \to \infty} \Phi_j = \Phi$ in $L^1(F)$ (cf. [8, Lemma 5]). Hence, the inequality

$$\begin{split} |M_{j}(B) - M(B)| &= \left| \int_{B} \Phi_{j} \frac{dF}{d\tau} d\tau - \int_{B} \Phi \frac{dF}{d\tau} d\tau \right| \\ &\leq \int_{B} \left| (\Phi_{j} - \Phi) \frac{dF}{d\tau} \right| d\tau \leq \|\Phi_{j} - \Phi\|_{1}, \quad B \in \mathcal{B}, \end{split}$$

yields the result of the lemma.

Proof of Theorem 7.3. Necessity. Assume that $L^p(F)$ is \mathcal{J}_0 -regular. Proof of (i). Assume that F is not absolutely continuous w.r.t. $\tilde{\lambda}$. Then there exists a nonzero measure $M \in H^q(F)$ whose support is contained in the support of the singular part of F. But (5.1) and Theorem 5.4 show that the elements of $U_q \mathfrak{N}_{(g),q}$, $g \in G$, are absolutely continuous w.r.t. $\tilde{\lambda}$. By Lemma 7.2, this contradicts the \mathcal{J}_0 -regularity of $L^p(F)$. Thus, $F \ll \tilde{\lambda}$.

The proof of (ii) and (iii) is adapted from the proof of Theorem 5.2 in [10]. Proof of (ii). Since F is a finite measure, we have $\int_{\Gamma} |(F')^{1/q}|^q d\tilde{\lambda} < \infty$ by Lemmas 1.2 and 1.3. Hence,

$$\int_{\Gamma} \left| \frac{dF}{d\tau} \left(\left(\frac{dF}{d\tau} \right)^{\#} \right)^{1/p} \right|^{q} d\tau = \int_{\Gamma} |F'((F')^{\#})^{1/p}|^{q} d\tilde{\lambda} = \int_{\Gamma} |(F')^{1/q}|^{q} d\tilde{\lambda} < \infty,$$

i.e., $F \in H^q(F)$. According to Lemma 7.2, there exist a sequence $\{C_j\}_{j=1}^{\infty}$ of finite subsets of G and a sequence $\{\sum_{g \in C_j} M_{g,j}\}_{j=1}^{\infty}$ such that $M_{g,j} \in U_q \mathfrak{R}_{\{g\},q}, g \in C_j, j \in \mathbb{N}$, and

(7.1)
$$\lim_{j \to \infty} \sum_{g \in C_j} M_{g,j} = F$$

in $H^q(F)$. Without loss of generality we may assume that $e \in C_j$, $j \in \mathbb{N}$. By Theorems 5.4 and 5.5, and Lemma 6.4, $M_{g,j}$ is of the form $M_{g,j}(B) = X_{g,j} \int_B (g, \gamma)^* \widetilde{\lambda}(d\gamma)$, $B \in \mathcal{B}$, where $X_{g,j}$ is an $n \times n$ -matrix such that

(7.2)
$$\operatorname{Ker} X_{g,j} \supseteq \operatorname{Ker} F' \quad \tilde{\lambda}\text{-a.e.},$$

(7.3)
$$\int_{\Gamma} |X_{g,j}((F')^{\#})^{1/p}|^q d\tilde{\lambda} < \infty, \quad g \in C_j, \ j \in \mathbb{N}.$$

Using (7.1), Lemma 7.4, and the equality $\int_{\Gamma} (g, \gamma)^* \tilde{\lambda}(d\gamma) = 0$, for $g \in G$, $g \neq e$, we get

(7.4)
$$\lim_{i \to \alpha_i} X_{e,j} = F(\Gamma).$$

The relations (7.2) and (7.4) yield

$$\operatorname{Ker} F(\Gamma) \supseteq \operatorname{Ker} F'$$
 $\tilde{\lambda}$ -a.e.

On the other hand, $\operatorname{Ker} F(\Gamma) = \operatorname{Ker} (\int_{\Gamma} F' d\tilde{\lambda}) \subseteq \operatorname{Ker} F' \tilde{\lambda}$ -a.e. (cf. [13, Lemma 3.2 (a)]). Thus $\operatorname{Ker} F(\Gamma) = \operatorname{Ker} F' \tilde{\lambda}$ -a.e. Since F' is \mathcal{M}_n^+ -valued, there is a subspace \mathscr{A} of \mathbb{C}^n such that $\mathscr{R}(F') = \mathscr{A} \tilde{\lambda}$ -a.e.

Proof of (iii). (7.3) and (7.4) yield $\int_{\Gamma} |F(\Gamma)((F')^{\#})^{1/p}|^q d\tilde{\lambda} < \infty$. This gives

$$\int_{\Gamma} \left| F(\Gamma)^{\#} F(\Gamma) ((F')^{\#})^{1/p} \right|^{q} d\tilde{\lambda} < \infty.$$

Since $F(\Gamma)^*F(\Gamma)$ is the orthoprojector onto $\mathscr{R}\big(F(\Gamma)^*\big)=\mathscr{R}\big(F(\Gamma)\big)$ and since $\mathscr{R}(F')=\mathscr{R}\big(F(\Gamma)\big)$ $\widetilde{\lambda}$ -a.e., we finally conclude that $\int_{\Gamma}\big|\big((F')^*\big)^{1/p}\big|^q\,d\widetilde{\lambda}<\infty$. Now Lemmas 1.2 and 1.3 imply the integrability of $((F')^*)^{q/p}$.

Sufficiency. Assume (i)—(iii). Let Q be the orthoprojector in \mathbb{C}^n onto \mathscr{A} . For each $g \in G$, the measure M_g defined by $M_g(B) := Q \int_B (g, \gamma)^* \tilde{\lambda}(d\gamma)$, $B \in \mathscr{B}$, belongs to $U_q \mathfrak{R}_{(g),q}$. If $L^p(F)$ were not \mathscr{I}_0 -regular, then, by Lemma 7.2, Theorem 4.6, Lemmas 2.1 and 2.2, and the Hahn–Banach theorem, there would exist a measure $N \in H^p(F)$ such that $N \neq 0$ in $H^p(F)$ and $\langle \langle N, M_g \rangle \rangle = 0$ for each $g \in G$. But

$$\langle\langle N, M_g \rangle\rangle = \int_{\Gamma} (g, \gamma) \frac{dN}{d\tilde{\lambda}} (\gamma) F'(\gamma)^* \tilde{\lambda}(d\gamma).$$

Thus, the uniqueness theorem for the inverse Fourier Stieltjes transform would imply $(dN/d\tilde{\lambda})(F')^{\#} = 0$ $\tilde{\lambda}$ -a.e., and hence, $\operatorname{Ker} dN/d\tilde{\lambda} \supseteq \mathcal{R}(F')$ $\tilde{\lambda}$ -a.e. On the other hand, $\operatorname{Ker} dN/d\tilde{\lambda} \supseteq \operatorname{Ker} F'$ $\tilde{\lambda}$ -a.e., since $N \in H^p(F)$. Thus, $dN/d\tilde{\lambda} = 0$ $\tilde{\lambda}$ -a.e. This means N = 0 in $H^p(F)$, a contradiction.

8. J_c-regularity. M. G. Avetisyan and R. L. Dobrushin (cf. [1, Theorem 1]) proved a result which in the situation of our paper can be stated in the following form.

Theorem 8.1. Let $G := \mathbb{Z}^l$, $l \in \mathbb{N}$. Let F be an \mathcal{M}_n^+ -valued measure on the σ -algebra \mathcal{B} of Borel sets of the dual group Γ , and let F' be the Radon-Nikodym derivative of the absolutely continuous part of F w.r.t. $\widetilde{\lambda}$. The space $L^2(F)$ is \mathcal{J}_c -regular if and only if the following three conditions hold:

- (i) $F \ll \tilde{\lambda}$.
- (ii) The rank r(F') is constant $\tilde{\lambda}$ -a.e.
- (iii) There exists an \mathcal{M}_n -valued trigonometric polynomial W such that $\operatorname{Ker} W = \operatorname{Ker} F'$ $\tilde{\lambda}$ -a.e. and $\int_{\Gamma} |W((F')^{\#})^{1/2}|^2 d\tilde{\lambda} < \infty$.

In [1] the authors also sketch the proof of the corresponding result for $G:=\mathbf{R}^l, l\in \mathbb{N}$. The present section deals with some generalizations of the result of Theorem 8.1, yet I was not able to generalize that result to an arbitrary LCA group G whose dual group is discrete or σ -compact. The main obstacle is the fact that the rank of a function in \mathscr{T}_C , $C\in\mathscr{K}$, is in general not necessarily constant $\widetilde{\lambda}$ -a.e. Thus we give the following definition.

DEFINITION 8.2. We will say that an LCA group G containing more than one element has the *property* ($\mathscr C$) if for each $C \in \mathscr K$ an arbitrary function from $\mathscr T_C$ has constant rank $\tilde \lambda$ -a.e.

Remark 8.3. Note that the groups \mathbb{Z}^l and \mathbb{R}^l , $l \in \mathbb{N}$, have the property (\mathscr{C}) . If G is compact and hence Γ is discrete, then G does not have the property (\mathscr{C}) . If G is discrete and can be ordered, then G has the property (\mathscr{C}) (cf. [20, Lemma 4.6]). Note further that a discrete group can be ordered if and only if it does not contain a finite subgroup (cf. [15, p. 194].

Now we will prove a generalization of Theorem 8.1. We start with the following lemma.

LEMMA 8.4. For $1 and <math>C \in \mathcal{K}$,

$$(8.1) \qquad \qquad \overline{\bigvee_{C \in \mathscr{K}} U_p \mathfrak{N}_{C,p}} \doteq \overline{\bigcup_{C \in \mathscr{K}} U_p \mathfrak{N}_{C,p}}.$$

Proof. The inclusion $\overline{\bigcup_{C \in \mathscr{K}} \mathfrak{N}_{C,p}} \subseteq \overline{\bigvee_{C \in \mathscr{K}} \mathfrak{N}_{C,p}}$ is obvious. On the other hand, for C, $D \in \mathscr{K}$, we have

$$\begin{split} \overline{\mathfrak{N}_{C,p} \vee \mathfrak{N}_{D,p}} &= \overline{\mathfrak{M}_{G \backslash C,q}^{\perp} \vee \mathfrak{M}_{G \backslash D,q}^{\perp}} = (\mathfrak{M}_{G \backslash C,p} \cap \mathfrak{M}_{G \backslash D,q})^{\perp} \\ &\subseteq \mathfrak{M}_{G \backslash (C \cup D),q}^{\perp} = \mathfrak{N}_{C \cup D,p} \end{split}$$

by (3.5). This implies $\sqrt{\sum_{C \in \mathcal{K}} \mathfrak{N}_{C,p}} \subseteq \sqrt{\sum_{C \in \mathcal{K}} \mathfrak{N}_{C,p}}$. Now use Theorem 4.3.

THEOREM 8.5. Let G be an LCA group with property (C) and whose dual group Γ is σ -compact. Let $1 . Let F be an <math>\mathcal{M}_n^+$ -valued measure on B

and F' the Radon-Nikodym derivative of its absolutely continuous part w.r.t. $\tilde{\lambda}$. The space $L^p(F)$ is \mathscr{J}_c -regular if and only if the following three conditions hold:

- (i) $F \ll \tilde{\lambda}$.
- (ii) The rank r(F') is constant $\tilde{\lambda}$ -a.e.
- (iii) There exists a $C \in \mathcal{K}$ and a function $W \in \mathcal{T}_C$ such that $\operatorname{Ker} W = \operatorname{Ker} F'$ $\tilde{\lambda}$ -a.e. and $\int_{\Gamma} |W((F')^{\#})^{1/p}|^q d\tilde{\lambda} < \infty$.

Proof. Necessity. Assume that $L^p(F)$ is \mathscr{J}_c -regular. According to Lemma 7.2 and (8.1), we have

$$(8.2) \qquad \qquad \overline{\bigcup_{G \in \mathcal{K}} U_q \mathfrak{N}_{C,q}} = H^q(F).$$

Now (i) can be proved in the same way as (i) of Theorem 7.3.

Proof of (ii). In the proof of Theorem 7.3 it was shown that $F \in H^q(F)$. From (8.2) follows the existence of sequences $\{C_j\}_{j=1}^{\infty} \subseteq \mathcal{K}$ and $\{M_j\}_{j=1}^{\infty} \subseteq H^q(F)$ such that $M_j \in U_q \Re_{C_j,q}$, $j \in \mathbb{N}$, and $\lim_{j \to \infty} M_j = F$ in $H^q(F)$. But the relation

$$\lim_{j \to \infty} \int_{\Gamma} \left| (dM_j / d\tilde{\lambda} - F') ((F')^{\#})^{1/p} \right|^q d\tilde{\lambda} = 0$$

implies the existence of a subsequence $\{M_{j_k}\}_{k=1}^{\infty}$ such that

$$\lim_{k\to\infty} (dM_{j_k}/d\tilde{\lambda} - F') ((F')^{\#})^{1/p} = 0$$

and hence

(8.3)
$$\lim_{k \to \infty} \frac{dM_{j_k}}{d\tilde{\lambda}} ((F')^{\#})^{1/p'} = (F')^{1/q} \qquad \tilde{\lambda} \text{-a.e.}$$

Let r be the maximal rank of F' and let $B \in \mathcal{B}$ be a Borel set such that $\tilde{\lambda}(B) > 0$ and $r(F'(\gamma)) = r$ for $\tilde{\lambda}$ -a.e. $\gamma \in B$. Since rank is a lower continuous function, we conclude from (8.3) that there exist an $i \in \mathbb{N}$ and a Borel subset B_1 of B such that $\tilde{\lambda}(B_1) > 0$ and $r((dM_i/d\tilde{\lambda})(\gamma)) \ge r$ for $\tilde{\lambda}$ -a.e. $\gamma \in B_1$. Since G has the property (G), we find that $r(dM_i/d\tilde{\lambda}) \ge r$ $\tilde{\lambda}$ -a.e. But from (4.2) it follows that $dM_i/d\tilde{\lambda} = (U_q^{-1}M_i)F'$ $\tilde{\lambda}$ -a.e. Hence, $r(F') \ge r$ $\tilde{\lambda}$ -a.e. Since r is the maximal rank of F', we obtain r(F') = r $\tilde{\lambda}$ -a.e.

Proof of (iii). It is not hard to see that for the function $W := dM_1/d\lambda$ all conditions hold.

Sufficiency. Assume (i)-(iii). If $L^p(F)$ were not \mathcal{J}_c -regular, there would exist an $N \in H^p(F)$ such that $N \neq 0$ in $H^p(F)$ and $\langle \langle N, M^T \rangle \rangle = 0$ for arbitrary $C \in \mathcal{K}$ and each $T \in \mathcal{J}_C$ (cf. the proof of Theorem 7.3). Here M^T denotes the measure defined in (5.1). In particular, we would have

$$\int_{\gamma} \frac{dN}{d\tilde{\lambda}} (\gamma) F'(\gamma)^* (g, \gamma) W(\gamma)^* \tilde{\lambda}(d\gamma) = 0 \quad \text{for each } g \in G.$$

146

The uniqueness theorem for the inverse Fourier-Stieltjes transform implies $(dN/d\tilde{\lambda})(F')^*W^*=0$ $\tilde{\lambda}$ -a.e. If P denotes the orthoprojector onto $\mathcal{R}(W^*)$, we get

$$0 = \frac{dN}{d\tilde{\lambda}} (F')^{\#} W^*(W^{\#})^* = \frac{dN}{d\tilde{\lambda}} (F')^{\#} P = \frac{dN}{d\tilde{\lambda}} (F')^{\#} \qquad \tilde{\lambda} \text{-a.e.},$$

hence, $\operatorname{Ker} dN/d\tilde{\lambda} \supseteq \Re(F')$ $\tilde{\lambda}$ -a.e. But since $\operatorname{Ker} dN/d\tilde{\lambda} \supseteq \operatorname{Ker} F'$ $\tilde{\lambda}$ -a.e. because $N \in H^p(F)$, we deduce $dN/d\tilde{\lambda} = 0$ $\tilde{\lambda}$ -a.e. Thus, N = 0 in $H^p(F)$, a contradiction.

Remark 8.6. Analyzing the proof of Theorem 8.5 we see that the conditions (i)-(iii) are sufficient and (i) is necessary for the \mathscr{J}_c -regularity of $L^p(F)$ even in the case that G does not have the property (\mathscr{C}). However, condition (ii) is in general not necessary for the \mathscr{J}_c -regularity of $L^p(F)$ if we do not require that G has the property (\mathscr{C}). In fact, consider a group consisting of three elements. The dual group Γ also has three elements. Consider a nonnegative scalar measure μ on \mathscr{B} such that μ has positive masses on two elements of Γ and is 0 on the third element. Clearly, (ii) does not hold for μ . But it is not hard to see that $L^p(\mu)$ is \mathscr{J}_c -regular.

References

- [1] M. G. Avetisyan and R. L. Dobrushin, A condition for the linear regularity of vector-valued stochastic fields, Problemy Peredachi Informatsii 21 (4) (1985), 76-82 (in Russian).
- [2] R. Delanghe, On the extension of linear functionals in modules over an H*-algebra, Simon Stevin 53 (1979), 201-209.
- [3] N. Dinculeanu, Vector Measures, Deutscher Verlag der Wiss., Berlin 1966.
- [4] W. Fieger, Die Anwendung einiger maß- und integrationstheoretischer Sätze auf matrizielle Riemann-Stieltjes-Integrale, Math. Ann. 150 (1963), 387-410.
- [5] E. J. Hannan, Multiple Time Series, Wiley, New York 1970.
- [6] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. 1, Springer, Berlin 1963.
- [7] L. Klotz, Some Banach spaces of measurable operator-valued functions, Probab. Math. Statist., to appear.
- [8] -, Inclusion relations for some L^p-spaces of operator-valued functions, Math. Nachr., to appear.
- [9] A. Makagon and A. Weron, q-variate minimal stationary processes, Studia Math. 59 (1976), 41-52.
- [10] -, -, Wold-Cramér concordance theorems for interpolation of q-variate stationary processes over locally compact abelian groups. J. Multivariate Anal. 6 (1976), 123-137.
- [11] A. G. Miamee and M. Pourahmadi, Best approximations in L^p(dµ) and prediction problems of Szegő, Kolmogorov, Yaglom, and Nakazi, J. London Math. Soc. (2) 38 (1988), 133-145.
- [12] M. Pourahmadi, On minimality and interpolation of harmonizable stable processes, SIAM J. Appl. Math. 44 (1984), 1023-1030.
- [13] J. B. Robertson and M. Rosenberg, The decomposition of matrix-valued measures, Michigan Math. J. 15 (1968), 353-368.
- [14] M. Rosenberg, The square-integrability of matrix-valued functions with respect to a non-negative hermitian measure, Duke Math. J. 31 (1964), 291-298.
- [15] W. Rudin, Fourier Analysis on Groups, Wiley, New York 1962,

- [16] H. Salchi, The Hellinger square-integrability of matrix-valued measures with respect to a non-negative Hermitian measure, Ark. Mat. 7 (1967), 299-303.
- [17] -, Application of the Hellinger integrals to q-variate stationary stochastic processes, ibid. 7 (1967), 305-311.
- [18] —, On the Hellinger integrals and interpolation of q-variate stationary stochastic processes, ibid. 8 (1968), 1–6.
- [19] -, Interpolation of q-variate homogeneous random fields, J. Math. Anal. Appl. 25 (1969), 653-662.
- [20] H. Salehi and J. K. Scheidt, Interpolation of q-variate weakly stationary stochastic processes over a locally compact abelian group, J. Multivariate Anal. 2 (1972), 307-331.
- [21] A. Weron, On characterizations of interpolable and minimal stationary processes, Studia Math. 49 (1974), 165-183.
- [22] —, Harmonizable stable processes on groups: Spectral, ergodic and interpolation properties, Z. Wahrsch. Verw. Gebiete 68 (1985), 473-491.

SEKTION MATHEMATIK KARL-MARX-UNIVERSITÄT O-7010 Leipzig, Germany

Received April 19, 1990

(2677)