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Unbounded Toeplitz operators in the Bargmann—Segal space

by
J. TANAS (Krakow)

Abstract. Toeplitz operators T, in the Bargmann-Segal space with various symbols ¢ are
investigated, In particular, the form of the adjoint of an analytic Toeplitz operator is computed,
and sufficient conditions for the compactness of the resolvent R(Z, T,) are found.

{. Introduction. In recent vears a few works appeared devoted to bounded
Toeplitz operators in the Bargmann-Segal space B of Gaussian square
intergrable entire functions in C" [4], [5] [7], [8]. Unbounded Toeplitz
operators were studied mostly by Berezin [3]. But even earlier Bargmann in his
well known paper [1] considered special unbounded Toeplitz operators: the
creation and the annihilation operators. There is a natural equivalence between
Toeplitz operators in B and pseudodifferential operators in HR" found
explicitly in [7].

Let I#() (p>1) be the Banach space of all f: C"—C such that
[1f17 du < co, where du(z) =n""e” P gy(z) is the Gaussian measure, and
dV(z) is the Lebesgue measure in C". Denote by @ the orthogonal projection
from L?(y) onto B. Given a measurable function ¢ on C" one defines the

» in B by

(0.1} T,/:=Qlef)
What is the domain of T,? The above equality suggests that a “natural”
domain D(T,) of T, should be

D(T) = {feB: of el (@}
However, for certain ¢ it may happen (as we shall sce later) that ¢f does not
belong to I2{y) but one can still define another “Toeplitz” operator T which
has this f in its domain. Namely, we have the {ollowing deﬁmtmn

DEFINITION 0.1, Let ¢ be a measurable function on C". The operator 7,
associated to ¢ has its domain given by

D(Ty={/eB: of =h+r, heB and [rjdu=0, VpeP},
where P is the set of all polynomials, and we put
(0.2) T,f:=h
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Note that T, is well defined. Indeed, suppose that h; +r; = ph = h,+r,, Im“

where b, e B and [rpdu =0 for all peP. Then r,—r, = h,~h, B and is
orthogonal to P. Since P is dense in B we have r; —r, =0 =h,—h,.

It turns out that we still need one more definition of “Toeplitz™ operator
corresponding to a given symbal ¢

Dernrrion (2. Let ¢ be a measurable function in " We define the
operator IT, in B by

(0.3) I, f(2):= ¢(a) f(a)e” dpla),

provided the integral exists and belongs to B as a function of z, where
zd =2z, + ... +z,a,. Then we put

D) = {feB: [p(a)f(a)e dula)e B}.

As we shall see later the above definition appears naturally during our
study of T,,.

Let us describe briefly the content of this paper. The first section contains
some general results on various relations between the above definitions of

. Toeplitz operators. In particelar, it is shown that all the definitions coincide for

entire symbols ¢. The second section deals with subnormal Toeplitz operators
given by entire @. It is proved that 17} = IT, under a certain assumption on ¢.
The third section is devoted to selfadjoint Toeplitz operators. Sufficient
conditions are given in terms of ¢ implying the selfadjointness of T,- The last,
fourth section concerns Toeplitz operators with compact resolvent Two
different conditions on ¢ are found which guarantee the compactness of the
resolvent of T,.

We end th1s introduction by recalling that the canonical orthenormal
basis in B we shall use in this work is formed by

1) = 2/ fkl,

where ¥ = 2§t.._zi», k! = k,!...k,]. The reproducing kernel e, for B is given by
g,(2):=¢€", z,aeC".

The following notation will be used in this paper. Let T be a linear
operator in a Hilbert space H. D(T), Ker T, R(A, T, T* denote the domain, the
null space, the resolvent and the adjoint of 7, respectively. T is closed if D(T)is
complete with respect to the graph norm |x||,:= (| Tx|? - | x| *)/%. We write
LeLdD(T)=D(T)and Tyx = Tyx, xeD(T) T denotes the closure of T,
All othcr notions or notations will be defined in the text.

1. General results. In this section we discuss some general properties of
- Toeplitz operators and relations between the above definitions. They are far
from being complete. Surely much more properties remain to be discovered.
We have collected here only a few simple ones. Let us start with the following

ProposITION 1.1, For any measurable ¢ we have Lell, s Tq,,.

ALprO Upur v e

Proof. The inclusion T, < IT, is obvious by the definitions. Now suppose
that feD(Il,). Then

(1.1) of = H(pf)+r,

where MT{pf}(z):= jcp(a)f(a)éz(a) du(ay and r:= @ f—II{@f). It is clear that
ré, e [*{(y) and

fre.dp=[ofe du—((pf), e) =
We claim that
{r(@a*dp(@)=0, k=0,1,...
In fact, we know that
(1.2) [rl@e®du(@ =0, zeC"

Using the Lebesgue dominated convergence theorem one can differentiate at
zero under the integral sign in (1.2). Hence

0 = D[ 12, di]|om0 = [7(@)2*du(@),
keN". Moreover, by (1.1} we have I f = T »J and the proof is complete.

Remark. The above proof shows that D(JT ) can be described as follows:
D(1,)={feB: ¢f = F+r, where FeB and fre dp =0 for all zeC"}

It turps out that for holomorphic ¢ all the above definitions coincide.
PROPOSITION 1.2. If @ is an entire function and P < D(T,) then T, =T,

Proof Since T, = T we have to show the opposite inclusion. Let
feD(T) Then ¢f = g+r where geB and {rpdu =0 for any peP. Butris
also an entire function and we can write r = ¥ ; a,z". Thus for p = f, we have

0= [rfdu=lim | rfdu=a, seN,

R0 lel <R
which completes the proof.

CoroLLARY 1.3. If ¢ is an entire functzon and P < D(T), then
T,=1,=1,.

Proof Obvious.

Later we shall give an example of ¢ for which 7,5 T,. N
The next result explains more or less natural appearance of the definitions
of T’m and IT,. First denote by E the span of {e,: zeC"},

Proposition 1.4. If P < D(T,) (resp. E=D(T,) and T:=T,p (resp.
T, = T,lgh then T* = T, (resp. T = I1,).
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Proof. (i} Tg, < T* Let yeD(Ta). Then @y=g+r, geB and [rfdu=10 Im“

for all peP. We have

(Tp, W= [ ppidu=(p, @¥)=(p, g) = (p, Tpy).

Thus ye D(T*) and T*y = Ty.

(i) T*<=T,. For geD(T*) and arbitrary peP we have (pp, g) =
(v, @), where PeB. It follows that [(¢pg—®)pdu =0. Since p is arbitrary
¢ must be in D(T;) and T*g=® = T,4. Both (i) and (i) give the desired
equality. By a similar reasoning one proves that T/ = II; and the proof is
complete.

CoROLLARY 15. If P < D(T,), then

(@) T; is closed,
(b) TF = T (the closure),

@ Ty~ Ty =T, ]
dif T=T, ond Tf = T,, then T, = [T} = T*.

Proof (a) is obvious by Proposition 1.4.

{bj Obvious. - . ~ .
(¢} Since T <= T,, by (b) we have Tp = T* o T} = T,
D T=T,=TFo0foT*=T

In the next section we shall sce a similar relation between TS and 17,

Remarks. I) If ¢ is an entire function, then T, = ’Tw and so T, must be
closed. On the other harnd, if D(T,) is dense in B then T, is closable, Indeed,
since D(T,) <= D{T¥) this is obvious.

2) If yel’(0,2n) and if we define the symbol J(re®):= i (e™), then
applying the Lemma of [8] we see that 1y is bounded in B {for n=1),
However, for 2 homogeneous symbol ¢ > 0, ie. oAz} = Fo(z), keN, & #0,
A > 0, one can check that T, » 18 unbounded in B (because the Berezin transform
@ of ¢ is unbounded, see [8]).

2. Subnormal Toeplitz operators. One of the main testing cxamples in the
theory of bounded subnormal operators are analytic Toeplitz operators. It
scerns that similar role in the theory of unbounded subnormal operators should
be played by T, with entire . Recall that a densely defined operator 5 in H is
said to be subnermal if there exists a normal operator N in a larger Hilbert
space K = H such that S = N, It is obvious that Toeplitz operators with
nonconstant entire symbols are unbounded and subnormal, By Corollary 1.3
we know that T, =T, =T, provided P D(T)). It turns out that for
polynomial symbols ¢ we have TLip=T,

PROPOSITION 2.1. If o P and n =1, then m =T,
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Proof (induction on dege). Without any loss of generality we may
assume that @{0) = 0. If deg¢ = 1 then the assertion can be checked directly by
the definition. Suppose that it holds for all polynomials of deg < N - 1. Let
@eP and dego = N. We have ¢(z) = zg(z), wherf__: degg = N—1. Let feD(T))
Then zf e D(T). Choose a sequence of polynomials p, such that p,—~zf z.md
T, — T,2f. Since p,—zf we have p,(0)—0 and the sequence of polynomials
Pe = p,—p(0) also satisfies

py=1zr,, neP, p—zf, Tp-Tzf =e¢f

By the definition of T, we have |zg| = 8lg|, for seme é > 0, Henoe r, must be
convergent to f and T,r, = Tzr, = T,5,—¢f The proof is gomplete.

If @ is a bounded holomorphic function in the unit disc, thm? the classical
Toeplitz operator in the Hardy space is bounded and Tf = T;,. Sl_nce ther'e are
no nontrivial bounded entire functions, the problem of computing T is far
more nontrivial in our case. Nevertheless, we have the following result.

THEOREM 2.2. Let ¢ be an entire function for which I1,, is densely defined.
Suppose that for any heD(Il,) there exists € > 0 such that

l®nl? -
(+) L (1+g¥ < oo,

where ¥ (z) = D3, ... Do(z). Then II = II;.
Proof Let heD(IT,) and feD{ll;). We have |
(ph, f) = [ @(a)h(a) () dula) = | | p(@)h(z)e™ f(a)du(z) dula).

If we knew that p(a)h(z) f (@)e* belongs to I (u® u), ‘then we could change the
order of integration (by Fubini’s theorem) and write

(@h, ) = [ h(2) [ pla)e™ Fla)du(@) du(z) = (h, T3 f).

i ; i g desired equality.
Since heD(I1,) and [ eD(ll;) are arbitrary, we get the e
What is left is to show that @(a)h(z)e® f(a)e L' {(u®u). Writing a = z4+w
we have

lp(@h(2)e,(@) F @ ipen = | [R@weE+w) T2+ w)e ™ dulz) dp(w);

we used here the equality du(z+w)/dp(w) = e~ ¥~ 2I°_ The last integral is (by
the Schwarz inequality) less than

F IRy +wh - | F(-+we™™0] du(w):= 1.
But f|f(z+w)e ™ |? du(z) = P FII% (see [5] or [1]). Thus
I=[fifiR()p(+w) e ™72 avw). |
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Note that by (+) we know that

hiz)p(z+w) = Z)z gom(z)w €B,

for every we(C".
Applying the Schwarz inequality we have

haprme < T g P

|2§

It follows that

IR o (4 w? < MelPiss, (1“

M = Z e hl?.

Hence I < 0. The proof is complete.

ExampLE 2.3, Let @(2) = ) #=1p(2)e**, where p,eP and 4 eC" If
feD(T,), then (+) holds for f.
Indeed, for [s| = max, ¢;<ydegp, = K we have

qo(s)(z 2 z( ) ’:‘)(Z)Ai_tezlk_

k=1t=s
Hence for any ¢>0

o 112
Z st

§

(1+ 8 < ( max (- yel ¥ (- Y

I<k€EN

N[ K 2 Is|
<5 5[ 5 (8 [0
s k=1L]t|=0 5

251 28y
< C z z |’11k|+1 (Mnkl +T1)

k=1 s 8,

(1+e) < oo,
for some finite C > 0.
CorOLLARY 2.4. For any polynomial p we have ;= ’T’-.

Proof. Combining Propositions 1.4 and 2.1 we know that (T pf* =
and T, |P = T,. Applying Theorem 2.2 we get the desired equality.
COROLLARY 2.5. If an entire function ¢ satisfies the condition (+), then

(1) T iE - (p:
(ii) Hmz is selfadjoint provided P — D(T).

Pr ?Of' M As we know (T,|p)* = I, = T¥. Hence (taking adjoints)
Llze=T,=T,
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(i) Since IT, = T,, we have T} T, = II;Ii , = I}, and the result follows
from the general theory [9] because T, is closed.

COROLLARY 2.6. If @ satisfies the condition (+) and W = {feB: f/¢ is
entire}, then W nKerll; = {0}. '

Proof If feWnKerll, then f=¢h Hence [ph|>=(k Tf)
= I,f)=0

K Selfad]omt Toeplitz operators. The question whether a given Toeplitz
operator T, is selfadjoint, for a real-valued function g, is in general not an easy
one. We are going to show that for special real symbols Toeplitz operators are
indeed selfadjoini. We start with the following general result.

ProrosITION 3.1. Let ¢ be a real-valued measurable ﬁmction. Suppose that
D(T)) is dense in B. Then T, has equal deficiency indices provided that

@(2) = @(2).

Proof Let C: I*(u)—I*{u) be given by Cf(z) = f(2. By direct com-
putation we check that CT, = T, C. Since T, is symmetric the result follows by
a general theorem of I. von Neumann‘[9].

COROLLARY 3.2. If ¢ is real-valued and D(T,) is dense in B then T, has
a selfadjoint extension provided that ¢(z) = @(2).

It is well known that for ¢(z) = Rez (n = 1), T, is selfadjoint [11. Therefore
one could ask whether for any polynomial p the operator T, is selfadjoint in
B. However, this turns out to be true only for polynomials of degree not
exceeding 2. As we shall see later Tg,,s is not selfadjoint in B.

Prorosition 3.3, If q is a polynomial, then T, is closed.
Proof Direct computation.

TrEOREM 34. Let p be a polynomial in C of degree two. Then Tge, is
a selfadjoint operator in B.

Proof. The idea of the proof is to apply the theorem of Nelson on analytlc
vectors of symmetric operators [9]. Namely, we claim that every f, is an
analytic vector for Tgep.

Let p(z) = a,z+a,z% Surely we may and do assume that p(O) 0. Set
ipl:= max(la,|, |a,|) and A:= T, We have

3.0 45 Sl < 2Pl +1)...(n+ 2R, k=1,2,...

One can check (3.1) easily by induction on k. Hence the series ) [|4* f,|£/k! is
convergent for 0 <t < 1/(4[p) and the proof is complete.

COROLLARY 3.5. Let p(zy, ..., 2 = Py (2} + ... +Dp,(2,) where degp, < 2.
Then Tre, is selfadjoint on D(TRep)® o+ @D{The )

n=0,1,...;
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Proof Combining Th. VIIL33 from [9] and the last theorem we obtain
the desired conclusion.

ExampLe 3.6, Now we shall prove that despite the above result the
operator T = Tg..: is not selfadjoint. Namely, we shall see that the equation
(3.2) ' - (T—Hhu=0
has a nontrivial solution in B.

Suppose that u = ¥, u, fi,. Assume that all the coefficients of 1 of the form

Uzgr1s Mag4q vanish for k=0,1,... Then (3.2) is equivalent to the infinite
system of linear equations

(3.3}  [Bk~2)Bk—13kF" 2ty _»
+Bk+1DBE+2)(3k+ 3] ugpp5 = iy, k=1,2,...
Set v, = uy, and a, = [(3p+ D)(3p+2)(3p+3)]""% Then by (3.3) we have

(3.4) By Vgt Vg =0, k=1,2,...
However, now (34) is equivalent to the equation
3.9 {(A—i)p =0,
where 4 is the operator corresponding to the Jacobi type matrix
0 a 0 ... 0
a, 0 a ... 0

0 a 0 ... 0

Since )0r ' < 0 and a;_;ay.; < af, applying Th. 1.5, VII from [2] we
conclude that (3.5) has a nontrivial solution in /% This gives us the desired
conclusion,

Remark. The last example also shows that Trest § Tress zlnd
Trezs & Igoos. This is clear by Proposition 1.4.

We end this section with the next result concerning selfadjoint T,. Ttis
related to Hankel operators. Recall that for a measurable function ¢ the

Hankel operator H,: B—I*(y) is given by Hou=(I-QM_u, ueB, where
M_q,u = Q.

PROPOSITION 3.7. Let ¢ be a real-valued function such that H o 15 @ bounded
operator, Then T, is selfadjoint in B.

Proof. The decomposition I?(u) = B®B* yields the decomposition of
M, as the operator matrix

[T:P H: }
H, [-OM,I-Q)]

icm
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Since ¢ is real M, is selfadjoint. Hence

T, 0 B 0 Hi
[0 (I—Q)M,,,(I—Q)}_M“’_[Hrp 0]

as the difference of a selfadjoint operator and a bounded selfadjoint one must
be selfadjoint. The proof is complete.

Remark. In our previous work [8] we found a sufficient condition on
@ which guaranteed the boundedness of H,,. As noted by I. Peetre (in a letter to
the author) this condition is equivalent to |p(z)—~@ W) < C(1+|z—w|).

4. Spectral properties of some Toeplitz operators. In this section, we discuss
some spectral properties of T, for special symbols ¢. In case ¢ is a bounded
continaous function in € such that

lim sup |e(z)—eW)| =0,
L P |
lzlzR

it was shown in [5] that the essential spectrum of T, is
o (T,)= [\ closure{p(): |z > R}.
R>0
We do not have so precise a result for unbounded T, but nevertheless the
essential spectrum of T, is contained in the above intersection, under certain

assumptions on ¢. _
First let us recall what we mean by the essential spectrum o (T) of a closed

densely defined operator T in a Hilbert space H.

DEerFmNITION 4.1.
0,(T) = {4 eC: there exists a sequence u,eD(T) with
| = 1, u,—~0 and (T—Al)u,—0 in H}

(see [61) N ‘

Before we proceed further let us recall the definition of the Berezin
transform ¢ of ¢ [3]:

@) =" [p(e " dV ().

Let I' = {¢ measurable: H, is compact}.

ProposiTiON 4.2. If el nLi,, then .

o (T) < () closure{p(2): |z = R}.
R>0

Proof. First note that T, is closed. This is obvious by the equality M
=T, f+H,f feB. If A¢ ﬂpoclosurc{v..} then there exist R >0 such
that

A—e() =e for |z = R. .
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Let .
_flo—+e, <R,
Vile):= {0, iz| > R.
Put @p(z):= @(z)—A+Yrz(2). Then |@g(z)] > ¢ for all zeC". Since pel],, it
follows that yrg(a)—0 as |a| - co. Hence T, is compact (see [5] or [8]). Thus

GE(TIF““JT) = Ue(beﬂ)'
Now we have

To Ton—1 = QM2 (@1t Mo, 0,

where I stands for the identity operator in B or I*{u) respectively.
It is.easy to see that &, eI and the operator on the right hand side of the
last equality is compact. Therefore O0¢o,(Tp,) and this completes the proof.

The next result concerns the point spectrum of T, for a certain class of
symbols. Namely, suppose that ¢ can be written as

(4.1 p(2)= Y alz)= ¥ A0
PR3 Ikl < b
Assume that
(%) P= [\ D(T,)=D(T).
k| <M
Let f = 3,b,f,eD(T,). Define the sequence F, = Yti<mby fi- By (+) and direct
computation one can check that T,F, is weakly convergent to T,.

PROPOSITION 4.3. Let ¢ be given by (4.1). If ¢ satisfies the assumption (x)
then .

JP(I;) IS U {Ac)ss},
where ’
Aap = @) faylry, ..., p)fathte by 1),
dplry, o ry=n""e " e L dr, . dr,, kI peN".

Proofi{for n = 2 but the same method works in general). If T, f = Afthen

(Tof, e = Af (), ze C2. Let f = 3\b, f;. Using the polar coordinates an easy
computation shows that

20 Y bdw) £, =AYb, 1)

P kti=p

- If bog # 0 it follows that A = Aogo. If boo = ( but le # 0 then 4 = AO(I,O)(I,Q)‘
In case bop = byp =0 but by, #0 we have 1 = Aow,130,1)- Repeating this
reasoning we get the desired inclusion. '

Remark. The above inclusion gives no information on whether o, (T) is
not empty. i

icm
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In the theory of partial differential operators the ones with compact
resolvent play an essential role [10]. Now we shall prove two results
concerning Toeplitz operators in B with that property. In: fact, the second result
deals with a general closed operator 4 in B.

THEOREM 4.4. Let ¢ 2 ¢> —o0 be a real function such that TF = T,.
Suppose that lim,...,¢(z) = 0. If e,e D(T,) for all zeC", then the resolvent
R(4, T,) is compact.

Proof We may and do assume that ¢ > 0. By Th. XIIL64 from [10] it is
enough to show that uy(T,)—~c as N—co. Here

py(Ty) = sup nf
Flosers BN -1 Jeb(Tq)
IF =1, reipsenpn - 11+

(T, 1. S).

Let & > 0 be an arbitrary number. Choose R so large that |@(z)| = b for |z] = R.
Fix 1> &> 0. Note that the set

Z = {f entire: || flxo.r:= sup |f (@) < exz,a}

lz] €R

is compact in the space Hol(C") of all entire functions in C" Hence it is also
compact in the space C(K(0, R)) of all continuous fonctions on the bali
K(, R). It follows that Z is an equicontinzous family of functions in
C(K{O, R)). Therefore there exists 6 > 0 such that for the above ¢ we have

[f)—=f )l <e

[x—y| < & implies that

for all feZ. ‘
Now for this & we find a set of points z,, ..., zy—1 € K(C, R} such that
every point of K(0,R) is within & of some z. Put yla)=e.(a),
=1,,.., N—1, in the definition of uy(T,). Note that feD(T,), |fl =1,
felyy, ..., yy—1]" implies that feZ and ||f]xo,m < & Hence (everywhere
below the infimum is taken over the same set)

(TN =inf[ [ olffdut ]

K(0.R) K(G,R)

MN(T@) = inf |17 di]
(1= LfeD(T )

Sz =03= 1L, N—1

olfFdu>binf(l— | |f1*du) > b2,

K(O,R)

zinl |
I emED,R)

Since b is arbitrary the proof is complete.

The above result combined with the results of the previous section gives us
some examples of Toeplitz operators with compact rcso}v§nt. However, t]qe
assumption T = T, puts a severe restriction on ¢. That it is not necessary is
the content of our last result of this paper.
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LeMMA 4.5. Let A be a closed operator in B which satisfies the inequality

B Re(4f, f) = clgrad f|*, feD(4), ¢ >0,

where |grad f[* =37, (18f/0z)* du. Then R(A, A) is compact.

Proof. For the sake of simplicity we shall give the proof only for n = 1.
However, the same method works for n > 1. It suffices to show that the
canonical injection of (D(A), ||| ,) considered with the graph norm inte B is
compact. Let S = {heD(A4): [hl, < 1}. We have to show that § is compact in
B. Take a sequence {f,} « S. Applying (E}) we deduce that

(i) |dfjdz||* < 1/(2¢), . k=1,2,..

Without loosing any generality we may assume that f,—f (weakly) in
B {passing to a convergent subsequence if necessary). Write fi(z) = ¥ a7,
flzy=%,a,2 Then a,—aq, for all s=0,1,... Now (i) implies that

1/20) = |dfifdz|? = Y laa)*s* (- 1!, k=1,2,...
Hence

Jdm AP -1 < lim 2. Dagl*—la)*]s!

s=0

oo

+lim Y

kE s=n+1

lagl” 2 ! 3 241
~Eg =1+ Y Jal?s!
§ §=N+1

1 .

=]
S — Zs1 .
\ZC(N+1}+ Y laf*s!—=0  as Now

s=N+1

Thus lim, || f.| = I f| and we conclude that f,—f The proof is com-
plete. ‘ )

Note (November 1990). After this work had been accepted for publication
Professor Harold Shapiro informed us about his two joint papers with
D. J. Newman:

L. Certain Hilbert spaces of entire functions, Bull. Amer. Math. Soc. 72
(1966), 971-977.

IL. Fischer spaces of entire functions, in: Entire Functions and Related
Parts of Analysis, J. Korevar (ed.), Proc. Sympos. Pure Math. 11, Amer. Math.
Soc, Providence 1968, '

The second work (II) contains a result (see point 5, p. 367) which is exactly
our Example after Theorem 2.2.

We thank him for making these papers available to us.
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