icm

198 K.-D. Kiirsten

[15} K. Schmiidgen, Unbounded Operator Algebras and Representation Theory, Akademie
~Verlag, Berlin 1990.

{16] J. Taskinen, (FBa)- and {FBB)-spoces, Math. Z. 198 (1988), 339-365.

[17] A. Uhlmann, Uber die Definition der Quenienfelder nuch Wightman und Heag, Wiss, Z,
Karl-Marx-Univ. Leipzig Math-Naturwiss. R, 11 (1962), 213-217.

SEKTION MATHEMATIK
UNIVERSITAT LEIPZIG
Q-7010 Leipzig, Germany

Received September 22, 1988 (2481}
Reuised version August 7, 1990

STUDIA MATHEMATICA 99 (3) (1901}

Bukhvalev type characterizations of Urysohn operators
by

SERGIO SEGURA DE LEON (Valéncia)

Abstract. The aim of this paper is to generalize to nonlinear operaters the criteria of integral
representability for linear operators due to A. V. Bukhvalov. We give Bukhvalov type criteria for
recognizing the order bounded Uryschn operators acting between ideals of measurable functions.

Introduction. The present paper is devoted to obtaining criteria charac-
terizing when a nonlinear operator has an integral rtepresentation as an
Urysohn operator. Roughly speaking, an Urysohn operator T is defined by
(TH(x):= jU(x, y,f(¥))dy, where the kernel U satisfies the Carathéodory
conditions (i.e., the function U(x, y, -} is contineous in R for almost all (x, y)
and the function U(-, -, #) is measurable for all teR).

Integral representation of operators have been of interest for many
mathematicians. Recall the nowadays clagsical results about intagral represen-
tability of continuous linear operators in IF spaces obtained in the thirties by
Dunford-Pettis and Kantorovich-Vulikh (see, for instance, [8]). In that time
John von Neumann [17] raised the problem of finding a characterization of
integral linear operators acting in I2. This problem was solved by A. V.
Bukhvaloy in [2] in the context of ideals of measurable functions; an
independent proof is due to A. R. Schep [22] (see also [3, 297). Let E and F be
ideals of measurable functions. Bukhvalov’s theorem states that for a linear
operator L: E — F a necessary and sufficient condition for L to be an integral
operator is the following:

Given a sequence (f,): in E such that 0< f,<g, f,—0 (x) implies
Lf(x) =0 ae

On the other hand, a large representation theory for nonlinear functionals
was developed in the late sixties [3, 6, 7, 9, 15, 16, 24, 27]. L. Drewnowski and
W. Orlicz [6, 7] obtained criteria similar to Bukhvalov’s for functionals. We
remark that the functionals they consider need not be defined on the whole of
an ideal of measurable functions, For the sake of convenience we shall not
consider this more general case.

1980 Mathematics Subject Classification (1985 Revision): Primary 47H99, 45P03; Secon-
dary 47B38, :



200 S. Segura de Ledn

We are inierested in the following condition for a nomlinear operator
T: E—F to be an Urysohn operator.

Let (f)%, and (g,)%%, be sequences in E such that |f} < g and ig,| < g. If
fi—g,—0 (%), then Tf (x)—Tg,(x)—0 ae

To prove it, the methods of Bukhvalov-Schep and of Drewnowski-Orlicz
are used. The proof of Bukhvalov's theorem is based dn the lattice calculus of
order bounded linear operators developed by Riesz, Kantorovich and Freuden-
thal. We outline briefly the proof. First one shows that the order bounded
linear integral operators form a band. This band is identified with the band
generated by the order o-continuous operators of finite rank. Finally, one sees
that the operators in this band are the only ones satisfying the Bukhvalov
condition. To employ similar ideas to nonlinear operators a calculus for
abstract Urysohn operators have been developed and applied to Urysohn
operators in [14]. However, a difficulty arises now: Order bounded Urysohn
operators do not form a band in the space of all abstract Urysohn operators
{denoted by % (E, F)) because of the continuvity condition on the kernel {14,
Example 5.4]. To overcome this difficulty we have to consider another class of
integral operators without continuity conditions. These operators will be
defined in a suitable sublattice of E. We shall need two steps: First of all, to
represent restrictions of operators on the mentioned sublattice and then to
¢xtend them to the whole of the space E. So we shall divide our condition into
the following two:

(a) Given an order bounded sequence (1 )y, of characteristic functions in E,
1z, =0 (%) implies T(tly )(x}~0 ae for all .

{b) Let (f,);x1 and (g,) 1 be sequences in E such that |f| < g and|g,| < g.If
1) —g,00)— 0 ae, then Tf, (x)—Tg,(x) = 0 ae :

In Section 2, the subspace E, of all simple functions in E with rational
values is considered. We define a concept of integral operator on this sublattice
and we show they form a band in #(E,, F). Later this band is identified with
the band in %(E,, F) generated by the disjointly o-continuous operators of
finite rank. Then the condition (a) allows us to obtain a kernel for an operator
on E,. This kernel U{x, y, t} is just defined for teQ. )

In Section 3 we use the condition (b) to extend the kernel U(x, y, ) to
a function U'(x, y, ¢) defined for all t&R and in such a way that the extension
U’ satisfies the Carathéodory conditions.

Section 4 contains the main results characterizing Urysohn operators.

Throughout this paper we assume that kernels satisfy the condition
U(x, y, 0) = 0 for almost all (x, y) since it is not a restriction. Indeed, an
operator T is an Urysohn operator if and only if so is the operator defined by
8f := Tf—T0 and when § has an integral representation its kernel satisfies the
above property.
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1. Preliminaries. Methods used in this paper proceed from the theory of
Riesz spaces. Standard monographs in this theory are [13, 21, 26, 297 to which
we refer for terminology and basic results. In Section 2 the application of the
lattice calculus of abstract Urysohn operators developed in {14] will be
essential. Let E and F be Riesz spaces. The operator T: E —+ F is called
orthogonally additive if T(f+g) = Tf+ Ty whenever f, g€ E are disjoint (f L ¢
in symbols); T is called order bounded if it maps order bounded sets in E onto
order bounded sets in F. An operator is said to be an abstract Urysohn operator
if it is orthogonally additive and order bounded. We denote by #(E, F) the set
of all abstract Urysohn operators from E into F. The vector space #(E, F) is
partially ordered by the following relation: If S, Te#(E, F), then S<T
means Sf < Tf for all £ E. With this order, a Kantorovich-Freudenthal type
theorem is proved in [14, Theorem 3.2]. So, when the space F is Dedekind
complete, we obtain a lattice calculus for abstract Urysohn operators.

‘We next consider a o-finite and complete measure space (Y, Z, v). To
simplify notations the o-algebra X will not be indicated explicitly. We shall
consider v-measurable functions from Y into the extended system of real
numbers. The characteristic function of a v-measurable set B will be denoted by
1. We shall denote by M(Y, v) the set of all v-measurable and v-almost
everywhere finite functions on Y with the usual identification of v-almost equal
functions. Note that, since the measure is s-finite, given f'e M(y, ¥), the space
Y can be decomposed in an increasing sequence of v-measurable sets such that
f is vintegrable over each of them. It is enocugh to consider the sets
Y,u {ye Y|if )| < n} for neN, where ¥ = | Ji1, ¥, and v(¥,) < co. Evidently,
the sequence can also be chosen disjoint instead of increasing.

In our considerations, the space M(y, v) will occur endowed with a metric
and an order. We define the following metric [8, Section IIL2]:

d,(f, g):= jx:%arctan(a—kv{ye Y|if (y)—g)| > a})

for f,geM(y,v). The convergence with respect to this metric is called
convergence in measure. To characterize it, consider a sequence (fJ),-; in
M(y,v) and feM(y, v), and define the v-measurable set

Bi:={yeYIIA—f ) > ¢}

for & > 0 and for neN. Then (f,)%, converges in measure to f if and only if '
lim, ., v(B) = 0 for every & > 0. In addition, (f,};>, converges in measure to

2 — Studia Mathematica 99.3



202 S. Segura de Lebdn

f on every B< Y of finite measure if and only if each subsequence (f, )%,
contains a subsequence U’,,k‘_)g‘il such that lim; . f,,ki(y) = f(v) v-a.e. We shall
often apply the dominated convergence theorem for convergence in measure
[8, IIL3, Theorem 7].

We introduce the following order in M(Y, v): f < g means f()) < g(v) v-ae.
Recall that convergence with respect to this order is convergence v-a.e. It is said
that a sequence (f,);L; in M(Y, v) (%)-converges to [ {denoted by f, — f (+)) if
every subsequence (f,, )i-, contains a subsequence (fnk,)s”i1 which converges in
order to f. It follows that convergence in measure coincides with (s)-conver-
gence on every B < Y such that v(B) < co. With the considered order the set
M(Y, v) becomes a Dedekind complete and order separable Riesz space.
For every feM(Y,v), its support is defined as usual by supp(f)
i={yeY|f(y) #0}. Evidently f, geM(Y, V) are disjoint whenever supp(f)
A supp(g) is v-null.

Let E be an order ideal in M(Y, v). Consider the set {Jgupp(r) | £ € E} which is
bounded above by 1y. 8o g:=sup {Lupepn| f€E} exists in M(Y, v). The set
supp(g) is said to be the support or carrier of the ideal E. Without restriction of
generality we shall assume throughout this paper that the carrier of E is ¥,
Thus, given a v-measurable set B = ¥ with v(B) > 0 it is possible to find B’ < B
with v(B') > 0 and 15 € E. Tt follows that there exists an increasing sequence
(Y= of v-measurable sets such that ¥ = | Ji%, ¥,, v(¥,) < o0 and 1, eE for
all neN [29, Theorem 86.2].

Now we introduce a set which will be of importance in our study. We shall
denote by P(Y,v) the set of all nonnegative v-measurable functions on Y
identifying v-almost equal functions. We remark that a function in P(Y, v) may
be infinite in a non-v-null set. The set P(Y, v) is ordered with the same relation
as above: f <g whenever f(y) < g(y) v-a.e. Then P(Y,v) becomes a lattice
satisfying the following property ‘(see [22] or-[29, Lemma 94.4]).

PROPOSITION A. Let {f|ae{u}} be a set of nommegative functions in
M(Y, v). Then f:=sup, f, exists in P(Y, v) and there is a sequence o, & {a} such
that f = sup, f, .

Consider two o-finite and complete measure spaces (X, 0y and (Y, v). We
define the product measure space as vsual and denote by (X x ¥, pxv) its
completion. We recall that every px v-measurable set can be approximated by
{inite unions of generalized rectangles [11, p- 56]. To be more precise, for every
i x y-measurable set Z, given & > 0 one can find g x v-measurable sets A, % B,
for k=1,...,n such that px v(ZA(UZ=1Akak)) <.

Let U: XxYxR—R be a function satisfying the following conditions.

{Co) Ulx, y,0)=0 for uxv-almost all (x, VeXxY
C,) U(. ) is ,uxv-measuraBle for all teR.
(C2)  Utlx, y,:} is continuous in R for ux v-almost all (x, VeX x Y.
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By (C;) and (C,) (the Carathéodory conditions) the function (x, )
= U(x, y, £ () is p % v-measurable and p % v-a.e. finite for all feM(Y, v). Then
the function x~ [, |U(x, y,f (y))|dv is well defined and p-measurable by
Fubini's theorem. We define

Dom,(U):= {f e M(Y, v}| the function
x = [|U(x, y, f (¥)|dv is p-ae. finite}.
LY

Throughout the paper, £ and F will denote order ideals in M(Y, v) and
M(X, y) respectively. An operator T: E— F is called an Urysohn operator
with kernel U if

(1) E = Dom, (1),

(2) (Tf)x) = [ Ulx, y, f(M)dv p-ae. for all feE.

Mote that the above operators are orthogonally additive by condition (C,).
A more detailed discussion and conditions for order boundedness of these
operators are given in [14]. Conditions for continuity and compactness in 17
spaces are deeply studied in [12]. _

2. Integral operators on E. As before, let E and F be order ideals in
M(Y, v} and M(X, u) respectively and assume that Y is the carrier of E. We
denote by E, the set of all simple functions in E with rational values. That is,

E;:={p= Y 11, €E|B, < Y v-measurable and t;,€Q for i=1, ..., n}.
i=1

We may assame, as usual, that the sets (B)f., are pairwise disjoint.

DesiNITION 2,1. An operator T: E, — F is said to be an integral operator if
there is a function U: X x ¥Yx Q — R satisfying

(@) Ulx, y,0) =0 for uxv-almost ali (x, e X x ¥,

(b) U(-, -, t) is px v-measurable for all teQ

and such that for every peE,

(1) x — [y|U(x, y, p()|dv is p-a.e. finite,

) (Tp)ex) = [y U(x, v, py)dv p-ace.

The condition (b) on the kernel U implies that T is well defined while
orthogonal additivity of T is a consequence of (a).

Our goal in this section is to characterize integral operators on E, as those
belonging to the band in % (E,, F) generated by operators of finite rank and by
the following condition.

(1) Given an order bounded sequence (1y)m-. in E, 1z — 0 () implies
T(tlp)(x) =0 p-ae. for all teQ. _

To prove that, the steps of Bukhvalov’s and Schep’s proofs are followed and

the lattice calculus developed in [147 is applied. Note that E, is not a Riesz
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space since it is not a vector space over R. However, it is a vector lattice over Q.
We point out that if abstract Urysohn operators acting from a vector lattice
over Q into a Dedekind complete Riesz space are considered, then.the abstract
framework of [14], in particular Theorem 3.2, still holds. We state it for further
reference.

THEOREM 2.2. The partially ordered space %(E,, F) is actually a Dedekind
complete Riesz space and if §, TeU%(E,, F), then for every pekE,

(T v S)(p) = sup{Tq, +5¢,1p = g, +45, ¢; Ly},
(T A 8)(p)=inf{Tg +8q,|p = g, +4q,, q; L g5}
In addition, if T.1T in U(E,, F), then T,ptTp for every pekE,.

2.1. The band of order bounded integral operators. To begin the proof of our
goal we have to see that the order bounded integral operators form a band in
U{E,, F). This subsection is devoted to show this. First we shall prove that
positive operators majorized by integral ones are integral. Two auxiliary results
are needed. By fixing 1€ Q the proofs are similar to those of the linear case'(see
[227 or [29, Chapter 147} and will be omitted.

Lemma 2.3. Let T: E,— F be an integral operator with kernel U. Then

() T2 0 if and only if for all teQ, Ulx,y, )2 0 uxv-ae.,
(2) T=0 if and only if for all teQ, Ulx,y, H =0 pxvae.

Lemma 2.4, Let S: E,— F be a positive orthogorally additive operator and
letteQ. Assume that X' x Y =« XxYisa 1t % v-measurable set such that 1y.€ E

and [ . S(t1y.)(x)dy is finite. If I denotes the semiring of all u x v-measurable sets
AxBcX'x Y, then

MAX B, t):= [ S{E1Hx)du
A

is a finitely additive measure on TI.

PROPOSITION 2.5. Let T: E,— F be a positive integral operator with kernel
U. If §: E,— F is an orthogonally additive operator such that 0 < S < T, then
there is a function V: Xx Yx QR satisfying

(1) Vix, ,00=0 for uxv-almost all (x, )eX x Y,
2 vV, -, r) is puxv-measurable for all teQ,

(3) Sp)x) = [y V(x, y, p())du p-ae. for every pek,,
@OV v, HD<U, y, 1) uxv-ae, Jor all tEQA.

_ _P'roof. Since Y is the carrier of E, there is a sequence (¥,);%; of mutually
disjoint subsets of ¥ such that ¥ = | )&, Y, and 1, €E for all neN. It is
enough to define ¥ on X x ¥, x Q for each neN, so it is'not a restriction to
suppose that 1,.lies in E.
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Fix te Q. Before proving the statement we remark that the following claim
holds, by the same reasoning as in the linear case [29, Theorem 94.2(i)].

Let X' < X be a p-measurable set such that [y, T{t1y)(x)}du < oc. Then there
is a pxv-measurable function V{(-, -, t) such that, for every B< ¥, S(t1p)(x) -
= [y Vix, y, t1z(»)dv prae on X'

Note that if t =0, then V{x, y, 0) = 0 for uxv-almost all (x, yje X'x Y.

Now since the measure p is g-finite, we may consider a disjoint sequence of
p-measurable sets (4,)fZ, such that X = (&, 4, and T(tly) is u-integrable
over each A,. Applying the above claim to A4, x Y for each keN, we get
i xv-measurable functions W(-,-,?) such that for every Bc Y we have
SE1px) = [y Vix, y, t1z(y)dv p-ae. on A, Set V{x, y,t):= Wi(x,y, 1) for
x€ A, and for ye Y. Then for every v-measurable set B we obtain

SE1p)(x) = [V(x, y, riz(»))dv p-ae. on X.
Y

It is evident that the above argument is valid for every t € Q. Consequently,
we have defined a function V: X x Y x Q — R satisfying (1} and (2). Taking
p=24-1t15, the v-measurable sets (B)i—, being pairwise disjoint, the
following equalities hold p-ae.: ‘

(5909 = 3. Slp)) = ¥ Ve, . 11y 0y = [V, v, 2O

-Finally, (4) is a consequence of Lemma 2.3.

The order bounded integral operators from E, inte F form a Riesz subspace
of % (E,, F). This follows from the following result which can be proved as
a consequence of Theorem 2.2 and Proposition 2.5, just as in the linear case
[29, Theorem 94.3].

ProrosiTiON 2.6. Let T: E — F be an integral operator with kernel U. If
T is order bounded, then for every pekE,

[T p(x) = i'U(xa ¥s P()’))idv p-a.e.

Before showing that the order bounded integral operators form a band, we
give a characterization of order boundedness,

ProrosiTioN 2.7. Let T: E,— F be an integral operator with kernel U.
Then T is order bounded if and only if for every ge E, with g = 0, there is
a pxv-measurable and positive function M, X xY — R satisfying

(@) if pe[—q, ql, then |U(x, y, p())| < M,(x, y) uxv-ae,

(b) M (x, *) is v-integrable for p-almost all xe X,

(c) x — [y M,(x, y)dv belongs to F.
In this case, for every function p* = 1_ 11, with Z, « X x Y and t,eQ for
i=1,....n, if [p*| < gly, then [U(x, y, p*(x, )| < M,(x, y) pxv-ae.
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Proof Itisstraightforward that T is order bounded if the above condition
‘holds.
Conversely, suppose that T is order bounded. By Theorem 2.2 the operator
|T| exists and is order bounded. Given ge E, g > 0, it is possible to find ve F
such that for every pe[—q, g], |Tl(p) < v, and then by Proposition 2.6,
§e|UGx, v p()|dv < v(x) p-ae. For simplicity of notation define V(x, y, £)
:=|U(x, y, tq(y))|- Obviously V (x, y, 0).= 0 for ux y-almost all (x, y)e X x ¥
and V(- 1) 18 pxv-measurable for all teQ. Furthermore, if (B)l-, are
pairwise disjoint v-measurable sets and f,eQ, [t <1, for i=1,...,n, then
_[Y V(JC, Y E?=1 tilBg(y))dv = U(x) p-ac.
Let Ef:= {37 ,41,|Z,c XxY and t,eQ for i=1,..., n}. We may
- assume' that for every function Y- #;1,, the sets (Z )~ , are mutually disjoint.
Now define M, (x, y):= sup{V(x, y, p*(x, y)|p* e E¥ and |p*| < Ixxy}, the
supremum being taken in- P(X x ¥, i x v). Then there is a sequence ()5 in
Ey such that M,(x, y) = sup, V{x, y, u,{x, })}. The operator defined by
p* = V(x, y, p*(x, y) for p*eE¥ is projection commuting. Note that E* is
a sublattice of M (X x ¥, ux v) such that P(E¥) = E* for all order projections
Pof M(X x Y, pxv). For each ne N we may apply [7, Lemma 2.17 to the finite
sequences {uy, ..., 4,} and {0, ..., 0}; consequently, there is p¥e E¥ such that

() |p¥| < sup;ey,. alul,

Hence, |p}| < lyxy for all neN and the sequence (V(x, y, p¥(x, y)))::o=1 is
ncreasing with supremum M, (x, y). By the monotone convergence theorem

£V(x, Y. px0x, Y)dv T M (x, Ndv  pae
Y

Thus the result follows from the following claim. If p*eE* with
IP*| < Lxxy, then [,V (x, y, p*(x, Y)dv < v(x) p-ae.

Indeefi, from it one deduces that fy M o(%, ¥)dv < v(x) p-a.e, and consequently
M (x, ") is v-integrable for p-almost all xeX and x = §y M {x, y)dv lies in F.

Te show that M_ actually mapsin R, i.e., M oX: V) is ¢ x v-a.e. finite, suppose
the contrary. Then the uxvy-measurable set Z:= {(x, MeX xY|M(x, y)
= co} has positive measure. Let Z_:= {yeYlx, yeZ} for all xeX. Since
% v(Z) > 0, there is a g-measurable set 4 such that p{A) > 0and v(Z.) > O for
all xeA. So, for u-almost all xeA4, )

0 =ZJ' M, (x, y)dv < IMq(x, ndv < v(x).
. Y

Henc.c p(x) == 0o in a set of positive measure, which is a contradiction.
Finally, for each peE, with |p| < g, let '

p*_(x: y) = %lx Ksupp(q)(xs _V)
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Then p*eE¥, |p*| <1xxy and |U{x, y, p))| = V(x, v, p*(x, 1)) < M,(x, )
X V-a.8.

Our claim remains to be proved. Firstly, consider p* = >—; ;1 such that
each Z, is a finite union of generalized rectangles, that is, Z, = | J§'¢} 4 x Bj for
i=1,...,n Then one can write p* = 7%_4 3 1% a, 1, «g,, with |a,| <1 for
b=1,...,l(g)and a=1, ..., r, the y-measurable sets (A4,);=, being mutually
disjoint and, for each a=1,...,r, the v-measurable sets (B, i, being
mutually disjoint too. For a=1, ..., r fixed we know that

Ha)
§V (e, p, Y, oglp, (Mdv<v(x) p-ae.
¥ - b=1

So, [y V{x, ¥, THQ 0,14, wm, (%, ¥))dv < 1, (x)0(x) prae. fora=1, ..., r and
consequently

§Vix, p, p*(x, Y)dv S v(x)  prae
Y

Now consider arbitrary p* e E¥ with [p*| < Ixxy; 80 p* = Y 7= 1,15, with
r,eQ, [t] <1 and the sets (Z)}=, pairwise disjoint. By the o-finiteness of p we
get an increasing sequence (X, )w-, of p-measurable sets such that
X= U,‘,’L;Xm and v is p-integrable over each X . It is enough to see that

[ Vix, y, p*(x, y)dv < v(x) p-ae in X,
¥

for every meN, Hence, there is no loss of generality in supposing that v is
g-integrable over X. Since [y V{x, v, t)dv <v(x) p-ae. for i=1,...,m, it
follows that the functions ¥{-,-, t) are uxv-integrable. Consequently, for
every &> {) there is § > 0 such that if W < X x Y is puxv-measurable with
pxv(W) < 8, then [y, V(x, y, t)duxv < g/n for every i = 1, ..., n. Next each
Z, will be approximated by finite unions of generalized rectangles. Given § > 0
one may find a p x v-measurable set W, a finite union of generalized rectangles,
such that px v(W, AZ,) < &/n. Suppose that the sets W;, ..., W, are defined in
such a way that they are mutually disjoint, uxv(WAZ)<ié/n and
uxv(W,~Z)< é/nfori=1,..., k Let W, be a finite union of generalized
rectangles such that puxv(WX,AZy.,)<d/m and let Wiyii= W,
~ | Ji=1 W,. Then
k

px VWit AZy i) S pXv(Wh 1 AZ )+ ) pxv(WAZY

i=1

%
<om+ Y uxv(iWAZ)< (k+1)o/n

. i=1 )
and |

wxy(Wapy ~ Zir1) < g x V(W | A Zgsy) < 8fn
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Thus, we have inductively defined a sequence (W)!-, of pairwise disjoint
sets such that each W, is a finite union of generalized rectangles and
exv(WAZ)< 4§ Consequently,

[ Vix, y, t)duxv <g/n
WAL;
On the other hand, since the function Yoy t; 1y, is of the kind considered

above, we also have [,V (x, y, Yi=1 t;1y (x, ¥))dv < v(x) wae. So, for every
g-measurable set 4 = X,

fori=1,..., n

[ Vix, v, i tily (%, W)dp xv < [o(x)dp.

AxY i=1 A
Therefore,

§ vy, 3 61,0, ) duxy
i=1

AxY

< Vi y, Yoty ix, y)duxv+ Yo) Vix,y, t)duxy
i=1

AXY i=1 WiAZ,
< [v(x)du+e.
A

Since & and A4 are arbitrary, it follows that

[V p, ¥ ey (x, w)dv < o(x)  pae.
¥ i=1
This completes the proof =

PROPOSITION 2.8. The set of all order bounded integral operators from E,
into F is a band in %(E,, F).

Proof. It follows from Propositions 2.6 and 2.5 that it is an ideal. Consider
anet 0 < T,TTin #(E,, F) and assame that each T, is an integral operator
with kernel U, . Let us see that T is also an integral operator. If 1 Q is fixed, by
_Lemma 23, Uylx, y, )T in M(X x Y, ux+). Let Ulx, y, ):=sup,U,(x, y, 1)
in P(XxY, uxv). Then there is a sequence (Unlx, y, h&, such that
Uy, y, )T U(x, y, ) pxv-ae Since Q is countable it is possible to get
a sequence which does not depend on t.

Denote by T, the integral operator generated by U,, neN. Fix peE. By
Theorem 2.2 we know that Tp = sup, T,p and now it is not difficult to see, as in
the linear case [29, Theorem 94.5], that

(To)x) = {U(x, y, pO))dv  p-ae.
Y

. Finally, it remains to see that Ulx, v, t) is u x v-a.e. finite for all te Q. This
15 a consequence of the order boundedness of T. In fact, since Y is the carrier of
E, there is a sequence (¥,)", such that ¥ = U,‘,"’._._l Y, and 1, €E for every neN.
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It is enough to show the u x v-a.e. finiteness of U(-, -, t) in each X x Y,, so we
may suppose that 1,c E,. Now fix teQ and let g:= |f] iy. By Proposition 2.7
there is a i x v-measurable function M ¢ A xY—R such that if |p| < g, then
|U(x, y, b)) < M{x, ¥) pxv-ae. In particular, Ulx, y, ()| € M(x, )
pxv-ae. and consequently U(x, y, ) is ux v-a.e. finite for all te Q. n

2.2. Disjointly a-continuous operators of finite rank. Once it is proved that
the order bounded integral operators form a band, the next step is to identify it
with a band generated by operators of finite rank. We prove that in this
subsection. We show that the suitable operators of finite rank are the disjointly
o-continuous ones (see [14, Definition 3.6 and Proposition 3.7]). An or-
thogonally additive operator T E,— F is disjointly o-continuous if for each
disjoint sequence (p%, in E, Y¥.,p,—p in order in E, implies
>%-1Tp, - Tp in order in F. '

Recall that order convergence in M(X, u) coincides with convergence p-a.e.
and consequently a sequence (g,)% in F order converges to g F if it is order
bounded and lim, - ., g,(x) = g(x) y-a.e. [26, Chap. ITI, § 9]. On the other hand,
it is immediate that order convergence in E, implies convergence v-a.e.

ProrosiTiON 2.9. (1} Every integral operator from E, into M(X, p) is
disjointly o-contintous.

(2} Every order bounded integral operator from E, into F is disjointly
o-CORLINUOUS.,

Proof. Itisenough to prove (1) since (2) is an easy consequence of it by the
above remark and Proposition 2.7. But (1) follows from the countable
additivity of u m

Prorosimion 2.10. Let ¢: E - R be a disjointly o-continuous orthogonally
additive functional, Then there exists a function U: Y=< Q - R satisfying

(@) U(y, 0) =0 for v-glmost all ye?Y,

(b) U(-, 1) is v-measurable for all t €Q

and such that ®(p) = [, U(y, p(y))dv for every peE,.

Proof. Since Y is the carrier of E, there is a sequence (Y,);%; of pairwise
disjoint v-measurable sets such that ¥ = | J;2, ¥, and 1, €E for all neN. We
may define U on each ¥, x Q, so there is no loss of generality in assuming that
1;€E,. Fix teQ. For every v-measurable set B <= Y, define A(B, t):= ®(t1,).
Since ¢ is disjointly o-continuous, A(-,f) is a countably additive signed
measure on the v-measurable subsets of Y. Moreover, if v(B) =0, then 1, =0
and so A(B, t) = &(tlg) = 0. Thus A(-, t) is absolutely continuous with respect
to v. By Radon-Nikodym’s theorem there is a v-measurable function U(-, 1)
such that @(t1) = A(B, 1) = [, U(y, t)dv. Since the above procedure is valid for
all te Q there is a function U: Y xQ — R satisfying (a) and (b) and such that

®(tly) = [ Uy, )dv = [ U(y, t1z(»)dv
B ¥
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for every t = and for every v—measurable set B < ¥ Now it is straightforward
that if peE,, then ¥(p) = f, U(y, p(y))dv. =

We shall denote by EY the set of all disjointly g-continuous abstract
Urysohn functionals defined on E,. For every @< Ej and for every geF, we
shall denote by #®g: E,— F the operator defined by #®@g(p):= (p)g,
peE,. One deduces, by applying Proposition 2.10, that for every operator
P®g there is a function U: ¥YxQ - R such that if peE, then ¢#®g(p)
= fyg()U(y, p(¥))dv and obviously the function x— [y lg(x)U(y, p(y))|dv
= |g(x) {¢ U (v, p()|dv is p-ae. finite.

DermaTioN 2.11. An operator T: E,— F is called an integral operator of
Sinite rank if T = Y }=; $,®g, where ¢ E¢ and g,e Ffor i = 1, ..., n. We shall
denote by E*®@F the set of all integral operators of finite rank.

THEOREM 2.12. The band of order bounded integral operators from E, into
F is the band in WU(E,, F) generated by E:®F.

Preoof. Since every element of E{ @ F is an integral operator, by Theorem
2.8 every element of (E*® F)* is so.

Conversely, assume that T: E,— F is an order bounded integral operator
and let U be its kernel. We have to show that T e(E*® F)* and to do this there
is no restriction in assuming that T is positive.

Denote by A the carrier of F. Since T(p)eF for all pe E,, T(p)lx-, = O for
all peE,, Consequently, U(x, p, )1y 4(x) =0 px v-a.e. for all t& Q. Hence we
may assume that X is the carrier of F. The carrier of E is ¥ by hypothesis, so
there are mcreasmg sequences (X, );L; and (¥} such that X ={ J2., X,

Y=Y, 1;,€F, 1; €E and v(¥,)) < o for all neN. For each neN we
define the operator

(S,P)(x):= [ n{|n(

Y

W A n)lxﬂxy"(x ydv  for peE,,
It is immediate that §,eEf®@F for all neN. Define Z.:= {(x, )
eX, xY|U(x, y,8) <n(t| A n} forneN and teQ. Let us see that X x ¥ = Z°
except for a u x v-null set, keeping t € Q fixed. Consider (x, y)e X x ¥ such that
U(x, y, 1) is finite. On the one hand, there is n, €N such that U(x, y, ¢}
< #y(ll A n,); on the other hand, there is n,eN such that (x, y)e X, x ¥,
since X x Y = | J7., X, x Y,. Hence, if n = max{n,, n,}, then (x, y)eZ,
Defme U, (x, y, = U(x, y, )Lz (x, Y +nltl A )y, xy,—pe(x, y)  for
(x,y, e X x ¥YxQ and ne N. It follows that

(@) U,x, y. 01 Ulx, v, t) pxv-ae for all teQ,
(b) U,(x, ¥, 1) < n(t] A W), ar,(x, 3) for all neN,
For each neN, let T,: E, > F be the operator defined by -

(Tp)x):= fU,(x, ¥y, p(y))dv for peE,.
¥
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Applying (a) we deduce that T,1T in #(E,, F}). It follows from (b} that
0< T, < 5,and so T, e(Ef @ F)" for all neN. Therefore, Te(E'® FY* and the
result is completely proved. s

2.3. Characterizations of order bounded integral operators by sequences.
After Theorem 2.12, we are ready to prove the other main result of this section.
Theorem 2.13 gives a BuKhvalov type criterion characterizing general order
bounded integral operators acting on E,. Ft is the first stage to obtain
a condition for general Urysohn operators acting on E.

Taeorem 2.13. Let T: E,—»F be an abstract Urysohn oberator. The
Jollowing statements are equivalent.

(1) T is an integral operator.
(2) Let (B,)n=1 be a sequence of v-measurable subsets of Y such that 1, € E
for all neN. If the sequence (1) is order bounded and 1, — 0 (), then

T(tly)(x) =0 p-ae for all tEQ
(3) (i) Let (B).1 be a sequence of v-measurable subsets of Y such that
vl B) <o and 1 €E for all neN. If v(B,)—>0, then

T(tlg)(x)— 0 p-ae for all teQ.
() T is disjointly o-continuous.

Proof (1)=(2). Let U be the kernel of T. Consider an order bounded
sequence (1, )i, of characteristic functions in E such that 1; — 0 (%) and fix
teQ. Let 1,€E such that I, <1, for all neN. Fix xeX. It follows from
13 =0 (%) that Ulx, y, tly (y)) =15, (WU(x, y, 1) - 0 (). On the other hand,
|U( L iy )< U, - tlB ))| for all neN.

Define A:= {xeX|U(x, -, t1,(-}) is not v-integrable}. Clearly u(4) =
the dominated convergence theorem, for every x¢A4

T{tlp )(x) = jU(x ¥, ran(y))dv—>0

0. By

(2)=(3). This is straightforward. '

(3)=(1). Let Te#%(E,, F). Then as a consequence of Theorem 2.2,
T = T,+ T, where T, e(F*® F)! and T, c(Ef ® F)*. Assume that 7T satisfies (3).
The result follows from T, = 0 by applying Theorem 2.12. Since the disjointly
o-continuous operators form a band [14, Theorem 3.8], T; and T, are both
disjointly o-continuous. On the other hand, T, is an integral operator by
Theorem 2.12 and so satisfies (3)(). Hence so does T, = T—T;. Thus, it is
enough to prove that if Te(E!® F)' and T satisfies (3), then T = 0. To do this,
we shall see that T(tly) = O for all v-measurable sets B < Y such that 1€ E
and for all teQ. We may assume 0 < v(B) < oo because of the disjoint

o-continuity of T

Let 4 be a y-measurable set such that 1, e F. Define the operator 8t E,— F

by (Sp)(x):= 1,(x) (»ip(¥)dv. Since SeE{®F, one has |T] A § = 0. Applying
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Theorem 2.2 and following the steps of the linear case (see [3] and [29,
Theorem 94.5]) vields that T (i1,}(x) = 0 p-a.e. on A. Since 4 is an arbitrary set
such that 1, & F it follows that T'(t1;)(x) = 0 p-a.e. on the carrier of F. Now it is
obvious that T{15)(x) =0 p-ae on X since T(tly)eF. m

‘We remark that A. V. Bukhvalov has used in [4] another method to prove
a similar result to Theorem 2.13. His smart approach characterizes nonlinear
integral operators on the set of simple functions applying the corresponding
characterization for linear operators. Unfortunately, this direct proof gives
little information about the lattice structure of the order bounded integral
operators and Theorem 2.12 cannot be derived.

3. Extension of kermels defined on E_,. In this section we consider an
abstract Urysohn operator T: E—+ F such that the restriction Tz is an
integral operator. That is, there is a function U: X x ¥ x Q@ — R satisfying

{a) U(x, y, 0)=10 for uxv-almost all (x, y)e X x ¥,
{b) U(-, -, £) is px v-measurable for all teQ,
and such that for every peE,

@ x— [y|U(x, y, pOy)|dv is p-ae. finite,
(i) Tp(x) = fyU(x, y, p(»))dv p-ae.

The purpose of this section is to extend U to a function U": X x Y xR — R
satisfying the Carathéodory conditions. To be more precise, we shall show that
Ul(x, y, *) is uniformly continuous on bounded subsets of Q for j x v-almost all
(x, eX =Y. This will be deduced from the following condition.

Let (f)5=, and {g,)i=, be order bounded sequences in E. If f M-—g,n—0

v-a.e., then Tf(x)—Tg,(x) =0 p-ae

THEOREM 3.1. Let T: E — F be an abstract Urysohn operator such that the
restriction T\p_is an integral operator with kernel U. Assume that for any order
bounded sequences (f,)7%, and (g,)i- in E, it follows from f,(»)~g,(y) — 0 v-a.e.
that Tf,(x}—Tg,(x) - 0 p-a.e. Then, for pu x v-almost all {x, y)eX x Y, U(x, y,)
is uniformly continuous on bounded subsets of Q.

Proof. Since Y is the carrier of £ and the measures are o-finite, we may
suppose without loss of generality that v(Y) < oo, lyek and p(X) < co.

We shall see that given seQ with s> 0, a gxv-null set Z, can be found
such that if (x, y)¢ Z, then U(x, y, *) is uniformly continuous on [ —s, 5]. The
desired result follows by defining Z:= | ) {ZlseQ} since uxv(Z) = 0 and if
(x, y}¢ Z, then U(x, y, -) is uniformly continuous on every bounded subset of

Fix seQ with sz 0. Since TIE E,— F is order bounded and since

sly¢E, by Proposition 2.7 there is a positive ux v-measurable function
M XxY —R satisfying
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() if pe[—sly, s1,]1NE,, then [U(Gx, v, pO0Y)| <€ M,ix, y) pxv-ae,
(i) M,(x, -} is v-integrable for almost all xe X,

(i) k(-}:= [y M,(-, y)dv lies in F.

There is an increasing sequence (X, )%~ such that X = Ure_y X, and his
p-integrable over each X,,. It is enough to prove that for each me N, U(x, v, *)
is uniformly continuous on [—s, s] for ux v-almost all (x, y)e X,, x ¥. So we
shall assume that h is u-integrable and consequently M, is u x v-integrable by
Tonelli-Hobsen’s theorem.

The proof will be divided into several stages.

1. Consider the space E, endowed with the norm
n
L 5tale = o
and define a map ¢ by
§ Ulx, y, pO))dp xv
. XxY

for peE, with |p| < sl,. This map is well defined since |U{x, y, p(»)]
< M (x, y) pxv-ae '

‘We shall show that @ is uniformly continuous. To do this, we have to prove
that for any sequences (p,);~, and (g,);% ( in E; with |p], |g,} < 51, for all neN,
it follows from lim, - |p,—~4.l, =0 that lim,. ., (®p,—Pg,) = 0.

Obviously, |Tp,(x)— Tg,{x)| < 2h(x) p-a.e. for all neN. On the other hand,

-it is evident that |p,—g,| ., — 0 implies p,(y)—g,{y) — 0 v-a.e. and consequently

Tp,(x)-- Tg,{x} -0 p-ae. By the dominated convergence theorem
T [Tp,(e}— Tq,(x)] dpu — 0.
X

Hence, &p,— Pg, — 0.

2. Let E¥:= 3% 41, |Z,c XxY and ,eQ for i=1,...,
sider the norm

n} and con-

n
|2, ilad = max I

on it. Recall that in Proposition 2.7 it was proved that if p*eE¥ and
|p*| < slyxxy, then |U(x, y, p*(x, W € M(x, y) pxv-ae So the map & may
be extended to
P*rp*i= [ Ulx, y, p*(x, »))duxvy
xxYy
for p*e E¥ with |p* < slyxy.

We shall follow the same procedure as in Proposition 2.7 to prove that ¢*
is uniformly continuous. By the above, for every & > O there is § > 0 such that
p, g€k, |pl, lg| < s1y and |p—ql, < 6 imply |Pp—Pg| < & We shall see that
if p*, g* e E¥ with [p*|, |¢*| < slyxy and |p*—g*[, <4, then [®*p*—&*q¥|
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<& We may assume that p* = Z;-’El tl, and g% =37, til;, with the
o y-measurable sets (Z))!-, pairwise disjoint.

First assume that each Z; is a finite union of generalized rectangles. Then
P*=Yaet D iy, xp, and ¢* = 3ho1 31D BT, x5, WIth [0, 1Bl < s
for b=1,...,1(a) and a=1,...,r, the p-measurable sets (4);-, being
mutually disjoint and, for each a=1,...,r, the v-measurable sets (B, )\,
being mutually disjoint. So, ‘

i(a) I(a)b

“521 ‘xablﬂab"‘ b§1 ﬁablﬂnh

for every a=1, ..., r. It follows that, for each a,
a) Ha)

|X£Y [U (>, ¥, bgl U Lg,, (1)) — Ulx, y, b§1 Basls,, (J’))] dux V’

w <0

Ha) :

Ha)
= |¢(bzl mﬂblﬂﬂb)_q)( Z ﬁﬂblBab) se.
= b=1

Hence,

@ — % gt =| [ [T 1 04]

XxY a=1
l(a) i(a)

x [U(X, ¥, bgl rxabIBab(y))—U(x, ¥, bZ ﬁablﬂab(y))] dit >’<v| £e.

Now consider arbitrary sets (Z)..,. Since M 4 18 % v-integrable, for every
1> O there is { > 0 such that if W is p x v-measurable with gz x W(W) < {, then
{w M (x, y)dp x v < 5/(2n). Given {> 0, one may inductively define a finite
sequence (Wi~ of pairwise disjoint sets such that each W, is a finite union of
generalized rectangles and pxv(W,AZ) <& It follows that '

I UG, p, t)duxv < n/(2n)
WinZ;
fori=1,..., n and consequently |#* (3, 1,1, )~ &% (Y5, 1,1 )| < imi
yeaes f=1 51, =151y )| < /2. Simi-
larly [@*(}%., g1 )—- ¥ 0, tily)| < 7/2. On the other heimd, we have
already  proved  that  |®*(}7 1, )— P*(3 -1ty ) <e.  Thus,
|@*p* —®*q*| < e+n. Since 1 > ¢ is arbitrary, |d*p* — D*g*| < & as desired.
3. For every uxv-measurable set Z< X' %Y and every & > ( define -

(2, 8, 8):=sup{[[Ulx, y, )~ Ulx, y, t)duxlt, ¢ eQ,
z

_ t—t} < & and |f, |t] < s}
and for ‘every 4> 0 define

w(d, s):=sup{ ) w(Z, 6, NZnZ, =0

i=1

n
whenever i #j, and Xx Y= |) Z}.
. i=1
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Now the proof can follow the arguments nsed by Drewnowski and Orlicz in
the case of functionals. By [5, 2.1.2] lim;_ o+ @(8, s) = 0 and then the required
result follows from [5, 2.1.3]. =

4. Theorems on integral representation. In this section we show conditions
for integral representation. We begin by establishing a condition for Urysohn
operators in ierms of sequences. In Theorem 4.2 we establish another
characterization, which is not intrinsic with respect to the operator. We remark
that, on account of [14, Proposition 5.3], the representation is essentially
unique. We conclude by noting how to apply the main results to the problem of
replacing nonmeasurable kernels by measurable ones.

Teeorem 4.1. Let T: E— F be an abstract Urysohn operator. The fol-
lowing conditions are egquivalent. :

{1) T is an Urysohn operator.
(2) Let (f)n=1 and (g, )% be order bounded sequences in E. If f,—g, — 0 (%),
then Tf(x)— Ty {x)— 0 p-ae. _
(3) (a) For every order bounded sequence (1 )7 1 of characteristic functions
in E, 1z =0 () implies T(tly )(x) =0 w-ae. for all teQ.
0y If (f )iz, and {g,)i%, are order bounded sequences in E such that-
5N —g,00) 0 veae., then Tf(x)—Tg,(x) >0 p-ae.

Proof (1)=>(2). Assume that T is an Urysohn operator and let U be its
kernel. Consider sequences (f i, and (g %, in [—g.g]l < E such that
f,—39,— 0 («). We shall take 0 < g(y) < co for all ye ¥. The operator T is
order bounded, so given ge E* and applying [14, Theorem 6.2] we can find
a pux v-measurable function M X x ¥ —R satisfying

@) if fe[—g, g], then |U(x, y,/ ()| < My{x, y) uxv-ae,
(i) M (x, ‘} is v-integrable for p-almost all xeX,
(iii) x ~» [y M, (x, y)dv belongs to F.

Define the following g-null sets:
A= {xeX|M(x,-) is not v-integrable},
A':= {xeX|the set {yeY|U(x, y,") is not continuous in R}
has positive v-measure},
A,:={xeX|the set {ye ¥ |cither|U(x, y, £,()) > M,(x, ) or
|U(x, y, 9.} > M,(x, )} bas positive v-measure}.

The result follows from

lim [{U(x, y, £,0)—Ulx. v, 6,0))dv = 0

nrw oy

Fix such an x. Firstly we shall see that U(x, -, f,{-))— U(x, -, g,(-)) = 0 (»); that

for alt xg Au A u(|] 4,).
B=1
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is, Ulx,-f,()—Ux,",9,))=0 in v-measure on every Y' < ¥ with
W) < co. Let £>0 and consider Bj:={ye ¥'||[U(x, y, () = U(x, y, g,))
= e}. We bhave to prove that lim,.., v(Bi) = 0. For every ke N, put

Yo={veY|t,se[—g(), 91, li—s| < 1/k
mmply |U(x, y, 8}=Ul(x, y, s)| <sg}.

We have defined an increasing sequence (¥)2 | of v-measurable sets such that
Y' = [ Ji, Y, modulo a y-null set. Indeed, define B:= {ye ¥'|U(x, y, ) is not
continuous in R}. Since x¢ A', B is v-null. For every ye Y’ ~ B, Ulx, y,*) is
uniformly continuous on [—g(y), g(3)]. So, given s > 0 it is possible to find

0 > 0 such that if ¢, se[—g()), g(»)], |t—s| < 4, then |Ulx, y, }—~Ulx, y,5)|

<& Let keN such that 1/k < ; then ye ¥,. Hence, Y' ~ B= (i, ;) ~ B
and consequently v(Y") = limy-., v(¥,).

For every n > 0 there is k, e N such that v(%,) > v(Y)—n/2. For each ne N
let B,:= {ye Y'||f,(0)—g.()| = 1/k,}. It follows from f,—g, — 0 in v-measure
that lim, ., v(B,) = 0. So, there is n,e N such that v(B,) < #/2 for all n > g
Since ye B, Y, implies yeB,, it follows that

V(B € (Y ~ Y )+v(B,) <y for all nz .

, Thus, lim,,, , v(B}) = 0 and U(x, -, f,(*))—- Ufx, -, g.(*)) ~ 0 in v-measure on
Y. On the other hand, it follows from S 9n€[—g. 9] and x¢ A, that
U, y, [N =Ulx, y, g.(¥)| € M, (x, y) v-ae. Since x¢ 4, M,(x, ) is v-inte-
grable. As a consequence of the dominated convergence theorem we get

lim (UG, v, 400 =T (x. v, ,0))dv = 0.

(2)=(3). This is evident.
(3)=(1). Consider the restriction T|g,; by Theorem 2.13, it is an integral
operator. Then there is a function U: X x YxQ R satisfying

(1) Ulx, y,0) =0 for puxv-almost all (x, y)eX x Y,
(i) U(-, -, ?) is pxv-measurable for all teQ,

and such that for every pek,

(i) x — [y |U(x, y, pO)|dv is pae. finite,
(v} Tp(x) = [y Ul(x, y, p(y))dv p-ae.

By_ (3)(b) and Theorem 3.1, for ux v-almost all (X, )eX XY, Ulx,y, ) is
uniformly continnous on bounded subsets of Q. So it may be extended to
a function U'(x, y, -) which is defined and continnous in R. Thus, an extension
U XxY xR — R has been defined satisfying (C,) and (C,). To see that (C)
also ho!ds let zeR. Then there is a sequence (z,), of rational numbers
converging to t, Evidentl\y Ulx, y, t)— U'(x, y, 1) u x v-a.e. and it follows from
the pxv-measurability of U(,-,t) for all neN that U'(-, -, 1) is
KX v-measurable.
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Next it will be seen that the function x — [, |U"(x, y, f ())|dv belongs to
F for every fek. Since Tlg, is order bounded, |T|; | is an integral operator
with kernel [U| by Proposition 2.6. Note that {T |, | = |T||, as a consequence of
Theorem 2.2. On the other hand, |T| is order bounded, so given f € E one can
find heF such that |T{[—|f], |f[) = [—h, K]. Let (p, )% be a sequence in
[=Ifl, 1fJn E, such that im,..p,()) = f () for v-almost all ye Y. Then

lim UG, v, pa)| = U (%, v, S )|

WX v-a.e.,

and

1[ [U(x. v, p0))fdv = |TIp,(x) < h(x)  p-ae.

By Fatou’s lemma

£|U’(x, v, S O)dv < ]i:gi;]f (UG, v, p)|dv € h(x) p-ae.

Hence, the function x — [, {U"(x, y, f (y)|dv lies in F.

Now define the operator S: E - F by §f (x):= [, U'{x, y, f())dv for f€E.
By the above claim the operator § is well defined and order bounded and by
the implications already proved it satisfies (3)(b). So T and § both satisfy (3)(b)
and T|g = S|g,. Therefore, T=2S and T is an Urysohn operator. =

We next characterize the class of order bounded integral operators in terms
of operators of finite rank. We show a similar result to Theorem 2.12 but for
operators defined on the whole of E. In the linear case an analogue was proved
by Bukhvalev in [2] assuming a condition on the space of order continuous
linear functionals. Recently, B. de Pagter [18] has obtained the result without
additional hypothesis. Before setting the statement we need some notation. We
shall denote by E* the space of all disjointly o-continuous abstract Urysohn
functionals. Note that @ & E* implies @|g € E;. An abstract Urysohn operator
T: E - F is said to be a disjointly a-continuous operator of finite rank if there
are ®,€E" and g;eF for i =1, ..., n such that Tf = Y7, $,(f}g; for every
feE. The space of all disjointly o-continuous operators of finite rank will be
denoted by E*® F.

THEOREM 4.2. Let T: E— F be an abstract Urysohn operator. The fol-
lowing assertions are equivalent.

(1} T is an Urysohn operator.
(2) (a) T lies in the band in %(E, F) generated by E"®F.
) If (f)&, and (g, are order bounded sequences in E, then
5 —g,00) = 0 v-ae. implies Tf,(x)—Tg,(x) >0 p-ae.

Proof. (1})=(2). The argument of Theorem 2.12 shows that (a) holds. (b) is
already proved in Theorem 4.1.

3 — Studia Mathematica 99.3
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(2)=(1). Let T satisfy (2){b). We need two simple facts.

() If TeE*®F, then T is an Urysohn operator.
(i) Iy O<T<S in %, F) and § is an Urysohn operator, then so is T

.Indeed, by Proposition 2.10 in (i) and by Proposition 2.5 in (ii), it is immediate
that T'|;_is an integral operator in both cases. Thus T is an Urysobn operator
by Theorem 4.1.

Now let Te(E*® F)*. Since T is order bounded and hence is the difference
of two positive operators, we may assume that T > 0. Then there is an
ingreasing net (7,) of positive operators in the ideal generated by E*@ F such
that T=sup, T,. As a consequence of (i) and (ii) each T, is an Urysohn
operator. On the other hand, T,p T Tp for every pe E, and so T[p TT|; in
%(E,, F). Since each T,|; is an integral operator, so is T'|;_ by Proposition 2.8.
Once again by Theorem 4.1, T is an Urysohn operator. e

Finally, we consider operators generated by nonmeasurable kernels. Yu. L.
Guobanov in [107] proved that under the assumption-of separability on the
measure space, nonmeasurable kernels can be replaced in the case of linear
operators by measurable ones. In [2], A. V. Bukhvalov obtained the full
general theorem as an easy consequence of his criterion for integral represen-
tation, The same result has been proved with different technigues by
W. Schachermayer in [20]. Following Bukhvalov, we might give similar
theorems for Urysohn operators. We just state the result corresponding to
integral functionals for the sake of convenience. We point out that for
functionals the condition of Theorem 4.1 was improved in [7].

THEOREM 4.3. Let &: E—R and let Q: YxR—-R be a function with

Q(y, 0) = O for v-almost all ye Y (but probably not satisfying the Carathéodory
conditions). Assume that

(1) for every feE, Q(-,f (") is v-integrable,

(2) for every order bounded sequence (), in E, f — f (%) implies
(- £,0)) ~ a(:, f{)) (*)

@) &f = [y Q. f () dv.

Then ® is an integral functional, that is, there is a function satisfying the
Carathéodory conditions which is the kernel of ®.

Proof Recall that every integral functional is order bounded (sec [7,
Lemma 2.2] or [14, Corollary 6.4]). We remark that in the proof of this fact the
Carathéodory conditions are only used to make sure that (1) and (2) hold. So
the same argument can be applied now. It follows that ¢ is order bounded,

Meoreover, the proof shows that for every geE" there is a v-integrable function

M,: Y — R (actually, M,(y) = [Q(y, h())| v-a:e. for some he[—g, g]) such that
f€l—g, 4] implies 20, f O] < M,(y) v-ae.

Consider a sequence (f,);; in E such that |f| <

" f (*) It follows from {2) that Q( fi()—

g for all neN and
Q(-, () (%). By the dominated
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convergence theorem

lim £ 2y, f,(0))dv = £ Q. f (W)dv

and so lim,., @f, = ¢f Hence, by [7, Theorem 3.2], ¢ is an integral
functional, m

We remark that, when E = M(Y, v, the condition (2} in the above theorem
is equivalent to the following:

(2) For every sequence (f)%, in M(Y,v), f,— f () implies Q(-, /("))

Q(,f () .

The proof is easy by passing to subsequences and by keeping in mind that
every sequence in M(Y, v) which converges v-a.e. is order bounded.

Theorem 4.3 has an important consequence. Recall that a function

N: YxR—R defines a superposition or Nemytskil operator N: M(Y, v)
- M(Y, v) by (Nf)(y}:=N (y, f _(y)) v-a.e. We note that Theorem 4.3 with the

" condition (2') can be used to prove the following: If a Nemytskil operator

which is continuous in measure is generated by a nonmeasurable function, then

. it can also be generated by a function satisfying the Carathéodory conditions.

This result was independently proved by several people. L. Drewnowski and
‘W. Orlicz got it [7, Theorer 3.3] as a consequence of their theorem of integral
representation. On the other hand, it was proved by I Vrko¢ in [25] for
Nemytskil operators acting on M([G, 1]) and by A. V. Ponosov in {19] for
more general measure spaces. See also [17 for more details about this problem
and its connection with the Nemytskil conjecture, as well as for a different
proof. :
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Inequalities relative to
two-parameter Vilenkin—Fourier coefficients

by

FERENC WEISZ (Budapest)

Abstract. The inequality

*) i i (e~ O<p<l)

nlml

3 i, mir)r < C Ilfiig—

and its dual inequality are proved for two-parameter Vilenkin-Fourier coefficients and for
two-parameter martingale Hardy spaces H, defined by means of the IP-norm of the conditional
quadratic variation. The inequality () is extended to bounded Vilenkin systems and monotone
coefficients for all p. The converse of the last inequality is also true for all p. From this it follows
casily that under the same conditions the two-parameter Vilenkin—Fourier series of an arbitrary IF
function (p > 1) converges ae. to that function.

1. Introduction. Up to now inequality (*} has been known for one-
parameter systems only. The proof for p =1 is due to Hardy, and, for the
trigonometric system, it can be found e.g. in Coifman-Weiss [9]. For the Walsh
system it was proved first by Ladhawala [13] and for another proof see the
book [22] written by Schipp, Wade, Simon and Pal. For Vilenkin systems it
was proved by Fridli and Simon [11] but for another Hardy space. The
inequality for 1 < p< 2 can be found in Edwards’s book [10].

First we establish the results of two-parameter martingale theory that will
be used later. Our proof of () for 0 < p < 1 is based on the atomic description
of H, (see [27]) and for 1 <p <2 it can be obtained by 1nterpo]at1on (see
[24])

In the next section a direct proof of the dual inequality to (x) is given. T he
analogoe to this inequality for the BMO space and for the one-parameter
Walsh system can be found in [13] and in [22].

Next (*) will be extended to bounded Vilenkin systems and monotone
coefficients for all p > 2 (for the exact conditions see (10) and (11)). This proofis
based on the proof for one-parameter systems given by Moéricz in [16]. Under
the above-mentioned conditions the converse of the last inequality is also true
similarly to [16]; moreover, it is proved that the supremum of the absolute
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