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Inequalities relative to
two-parameter Vilenkin—Fourier coefficients

by

FERENC WEISZ (Budapest)

Abstract. The inequality

*) i i (e~ O<p<l)

nlml

3 i, mir)r < C Ilfiig—

and its dual inequality are proved for two-parameter Vilenkin-Fourier coefficients and for
two-parameter martingale Hardy spaces H, defined by means of the IP-norm of the conditional
quadratic variation. The inequality () is extended to bounded Vilenkin systems and monotone
coefficients for all p. The converse of the last inequality is also true for all p. From this it follows
casily that under the same conditions the two-parameter Vilenkin—Fourier series of an arbitrary IF
function (p > 1) converges ae. to that function.

1. Introduction. Up to now inequality (*} has been known for one-
parameter systems only. The proof for p =1 is due to Hardy, and, for the
trigonometric system, it can be found e.g. in Coifman-Weiss [9]. For the Walsh
system it was proved first by Ladhawala [13] and for another proof see the
book [22] written by Schipp, Wade, Simon and Pal. For Vilenkin systems it
was proved by Fridli and Simon [11] but for another Hardy space. The
inequality for 1 < p< 2 can be found in Edwards’s book [10].

First we establish the results of two-parameter martingale theory that will
be used later. Our proof of () for 0 < p < 1 is based on the atomic description
of H, (see [27]) and for 1 <p <2 it can be obtained by 1nterpo]at1on (see
[24])

In the next section a direct proof of the dual inequality to (x) is given. T he
analogoe to this inequality for the BMO space and for the one-parameter
Walsh system can be found in [13] and in [22].

Next (*) will be extended to bounded Vilenkin systems and monotone
coefficients for all p > 2 (for the exact conditions see (10) and (11)). This proofis
based on the proof for one-parameter systems given by Moéricz in [16]. Under
the above-mentioned conditions the converse of the last inequality is also true
similarly to [16]; moreover, it is proved that the supremum of the absolute
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222 ’ ‘ F. Weisz

values of the rectangle partial sums of a Vilenkin series is in I? if and only if the
left side of () is finite (0 < p < o). From this it follows easily that under the
above conditions the two-parameter Vilenkin—Fourier series of an arbitrary
Hy or I? function (p > 1) converges a.e, to that function.

2. Vilenkin orthonormal systems. In our paper 2 = [0, 1)x[0, 1), & is the
g-algebra of Borel subsets of Q and P is Lebesgue measure. Let (p,, n € N) and
(g,, neN) be two sequences of natural numbers whose terms are at least 2.
Introduce the notations P, = Q, = 1 and

" n
Poii=[lm Quivi=1la (®eN).
k=0 k=0

Every xe[0, 1) can be uniquely written in the following way:

[=2]

X = Z xk/ka.g.l»,

k=C

0<sx.<p, xeN.

If there are two different forms, choose the one for which lim,., ,, x, = 0. The

functions

2mix ‘ 2ni
L rb)=ep=

H n

r,(x):= exp

are called generalized Rademacher functions. :

Let o and .f be the o-algebras generated by {ry,...,r,-;} and
{ro, ..., "m—1}, respectively, and let %, be the c-algebra generated by
d]x '24;!: ie. g‘;l,m = 0'(&4[ x 'ﬁ:’)a %,m = U(Uf;o '%I.k) and ﬁao m
= o({ Jizo Frm). It is easy to see that '

(1) Fom = o{[kP7*, k+ )P < 101, (1+1)05):
| 0<k<P,0<1<Q,}.

The Kronecker product system of one-parameter Vilenkin systems (see [23]) is
called a two-parameter Vilenkin system (w,,; n, meN), ie.

o o

Wam(%, Y)i= [T o)™ [T riloy™

k=0 =0

where n= 3.2 om Py, m= 32 omQ,, 0 < m, < pp, 0 < my < g, and n,, meN.
Denote by E,, the conditional expectation . operator relative to
Foom gn, meN U {oo}). Instead of (complex) IF(Q, o, P} we use the shorter
notation If and fipally, for 0 < p < oc let
Ly:={fel’ By, f =F,of =0, neN}.
For feL, we shall denote by

f(ﬂ, m):= E(ﬁpn,m) (n, me N)
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the (n, m)th Vilenkin-Fourier coefficient of f. Similarly to the one-parameter
case (see e.g. [10]) a partial generalization of the Parseval formula and the
Riesz—Fischer theorem, the so-called Hausdorff-Young theorem can be proved
for two parameters as well.

TaeoreM 1 (Hausdorff-Young). Suppose that 1 <p <2 and 1/p+1/p =1
(@) If feL, then :

17 Ny, < U flpe= (LS.

(ii) If a = (Gpm; n, meN)el, then the sequence

n—-1m—1

Spm = z z Qi 1 Wit

k=0 1=0

converges in IP-norm as min(n, m)— o to a function f, for which

1l < laly,

where f = ( f(n, m); n, meN) and 1, denotes the space of those sequences of
numbers a = (aym; 7, meN) for which ||al;, := (3 smen |y PP < 0.

3. Martingales. It is easy to see that the sequence of c-algebras (&, .}
above satisfies the requirement that is usual in martingale theory. Namely,
(%,,) is clearly nondecreasing, ie. if (k, ) < (n, m) then ;< Fm (where
(k,]) <(n, m) means that k<n and I<m) Moreover, & = o {(Fms 1
meN)} and the condition F, introduced by Cairoli and Walsh [7] is also
satisfied: for an arbitrary pair (n, m)eN?:=Nx N the o-algebras %, o and
Foom are conditionally independent relative to %, .. An integrable sequence
f = (fum; n» meN) is said to be a martingale if :

(i it is adapted (i.e. fum is %, measurable for all n, meN),
(i) Ex;fopm = Siu for all &, ) < (n, m). '

For simplicity we always suppose that for a martingale f we have
foo = fo. =0 (neN). Of course, the theorems that are to be proved later are

true without this condifion. .
The following notations will be used for a martingale f = (f, . 1, meN):

dﬂ.mf:: f;l.m—j;l—lfm"?f;l.m—l +f;!—1,m—].’ dn,(}f:= do’nfl—-‘t 0, :
fro=suplfomls  S(F)i= (T [dnm S,

S(f):$ (Z En—'l,m—lidn,mftz)lﬂ'

We now introduce Fardy spaces for 0 < p < co: denote by H,, Hy and H,,
the spaces of martingales for which

[ Ve, = IS, < 00, (Sl = lIS(f)ﬂ_,,<00 and | flu,:= [F*1, < 0,
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respectively. In martingale theory it is well known that if feH, or f e H,, then
Jom converges ae. and in IP-norm as min(n, m)— o (p>1, see [18]).
Therefore, two of the Hardy spaces above can be identified with certain
subspaces of If (p > 1). Moreover, a sharper assertion can be shown:

THEOREM 2. (i) For p> 1 one has H, ~ H, ~ Ly where ~ denotes the
equivalence of spaces and norms (see [613, [147, [18]).

@) If (p,) and (q,) are bounded (ie. p,=0(1) and q,= O(1) then
H,~H,~ H, for every 0 <p < o (see [3], [4], [24], [27]).

If either (p,} or (g,) is unbounded then the H, space is different from all the
other spaces introduced above (p # 2) though the following inequalities are
true:

I, < Cyll N
1lys < Cyll -l

These inequalities also hold for H, instead of H, (see [4], [24], [27]).
Let us extend the definition of Vilenkin-Fourier coefficients from [I!

functions to H, martingales (0 < p< co) with the help of the previous two
inequalities:

0 <p<),

2<p<wm).

Ffm,m:= lim E{ fu, 1 Wa,m)

min(k,l}~+ co

if j]”1= (fers k, leN)e H, . It is easy to see that this limit exists for O < p<1as
well. '

Let us introduce the concept of a stopping time analogously to [21].
A mapping v which maps Q into the set of subspaces of N* U {00} is said to be
a stopping time relative to (%, ) if the elements of v(w) are incomparable (i.e.
for distinct (k, 1), (r, mev(ew), neither (k,]) < (n,m) nor (n,m)y < (k,N; of
course, (k, ) < co for all k, IeN) and if for every (n, m)e N?

{oeQ: (n, meviw)} =:{(rn, mevies,, .

We use the notation (k, ) « (n, m)if k < n and I < m. For H = N? we write
H « (n, m) if there exists (k, /)e H such that (k, ) « (n, m). So we immediately
see that if v is a stopping time then

{vqk(na m)}E%t-l.m—-l (nvaN)‘

On the other hand, the converse of the previous assertion comes from the
equality

{(n,mev}={v«<(mn+1, m+1) A{v &+l m} o {y « (m, m+1)).

As i_n the one-parameter case, we can define a stopped martingale (;},,) for
a martingale f and a stopping time v:

Jomi= Z Z X({v * (i, J)})dl,Jf

i€n jxm

(n, meN)
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where y(4) denotes the characteristic function of a set A. Since
(v k{0, N} €Fimry-1 > (foms n, meN) is a martingale (see LZ’?]). .

The base of the following section will be the atomic description of
H, spaces. For this we first define an atom. A function aelf is said to be
a (p, g)-atom if there exists a stopping time v such that

() Gum:= Enma =0 if v & (n, m),
(i) fa*l, < P(v# oo)lia= e,

Now an atomic decomposition of H; martingales can be formulated:

TueoreM 3 [27). A martingale f = {f, .; 0, meN) is an element of
Hy @<p<1) iff there exist a sequence of (p, 2)-atoms (a, keN} and
a sequence of real numbers p = (u,, keN) such that for all n,meN

o .
(2) Uy Eqmy = fom e and ful,, < oo.
k=0

Moreover, || f1l wp ™ inf | uff, where the infimum is taken over all decompositions
(2) of f.

4. Hardy type inequalities. The following theorem, which is the glain result
of this paper, can be found in {9] and in [10] for the Fourier coefﬁcxents of the
one-parameter trigonometric system for 1 <p <2, f_urthermore,_ in [81, [11],
[13] and in [22] for bounded ome-parameter Vilenkin systems (i.e: p, = O(1))
for p = 1. In [11] a similar inequality is proved for p =1 for one-parameter
unbounded Vilenkin systems; the Hardy space used there is different from the
ones above. Moreover, it is proved there that for an unbounded Vilenkin
system there exists a fonction feH, such that

S 17 Gk = .
k=1

TueoriM 4. For an arbitrary martingale feH,

() ( Z i \f (n,m)|efam)? =) 2 S Cpll fll - O<p<2)

n=1 me=l

Proof. (i) First let 0 < p < 1, From the proof of Theorem 3 in [27] it
follows that there exists a decomposition (2) of fefl; such that

Ik, S Cpllf gy wnd 1S Grmll < 3 Il 40ty )l

Having this the only thing we have to prove is that for an arbitrary (p, 2)-
atom «

3) i i a(n, miPfnm)* " < C,.

n=1 m=]1



226 F. Weisz

If v is the stopping time belonging to a fixed atom « then the support of a* is
obviously F:= {v # 0}. The rectangles in (1) are called the atoms of the
g-algebra &, ,, . For the time being let m be fixed. To this m choose n such that
there exists an atom Ae%,,, for which A = F but BN F*# @ for évery atom
Be#,_,,, (F° denotes the complement of F); denote this number by N(m). If
there is no such n then let N(m)= co. The sequence (N(m)) is obviously
nonincreasing. Moreover, let

my = min{m: N{m) < oo}, n;:=N(m).
We define a sequence (n,, m,) recursively (if it does exist);
m=min{m: N(m) < ne_s}, ni=N(m).

Since (m,) is decreasing and (m,) is increasing, we have only finitely many pairs
(n, my); denote the number of these pairs by K. Let

G:={n,m) 1<k<K}, H:={P, Q) lsk<K]}
If G« (n,m) then it follows from the construction that there is nmo atom

AcF,, such that A < F, consequently, for all we @ we have (n, m)¢v(w).
Thus for all w '

G < v(w).

If G« (n, m) then for all w one has v{w) <« (n, m). Consequently, using the
definition of the atom we find that a, () = 0 (0eQ) if G & (n, m). Next, it is
easy to show that d(n, m) =0 if H % (n, m). So by Hdlder’s inequality

@ T Y it mPemPE = Y (aln, m)Pfm) 7

n=1 m=1 HE (n,m)
<( Y 1@ mPP Y 1mm?)E-an,
. ) H<(n,m) ’ "< (n,m)
It is obvious by the definition of the atom and from the Parseval inequality that
®) (% latn, mI?P* < llal < PFP21

H<(nm)
We shall show that
(6) 7 )y
: - HS{nmy

Combining (4)—(6) yields (3), and the theorem follows.
Using the inequality

1/inm)? < 2P(F),

Y 1k < “f (xDdx <2n (22

kzn n
we get immediately
. K
(M P Y YemP< Y 0ntPRt—PLl) =:H|
H < (n,m) k=1
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where P! := 0. By the construction of the set H for 1 < k < K there exists an
atom A, €%, m. such that 4, = F. Let A:= | J§, 4;; then A < F. We shall
show that ‘ . _

(®) |H| < P(A4).

For 1 € k < K choose an atom B, e #,,_,, such that the intersection of any B,
and B,, is nonempty. Then it can easily be shown that the Lebesgue measure of
B:=| )% B, is equal to |H|. Let C:= | J{=; C, where C,e &, ,, is an atom.
By induction on K we show that C has minimal area if and only if the
intersection of any C,, and C,, is nonempty. For k = 1 or k = 2 this is trivial.
Let 1 <[ K be the minimal index for which C,r1 n €, = &. (If there is no
such index then the intersection of any two sets C, is nonempty.) It can be seen
that

K K
P(C,— L_J C,) > P(B,— Lﬂj B,).
et re

Nevertheless, by the induction hypothesis we have

X K
P(|J €)= P(\ By,
i :
consequently, P(C) > P(B). Thus we have proved (8), and hence (6), so the
proof of the theorem is complete for 0 <p < 1.
(ii) Secondly, let 1 < p < 2. Denote by P the set of positive natural numbers
and introduce on P? the measure u(n, m)=1/n*m?). If

T/ (n, m) = nm (n, m)

then it follows by the Parseval formula and by the previous theorem for p=1
that both

P

1
#l

T: I3 > [2(P%, 1) and T: H7 —IMP? p)

are bounded. (In contrast to the one-parameter case it is not true that T is of
weak type (1, 1).) By a well known interpolation theorem (see [17) the operator

Te (HT, Dioy — (LR, ), (P, )y, (0 <O<1)
is bounded as well. However, on the ‘one hand, '
(L @2, w), L2, W)o, = LP(P*, 1)
{see [17), and, on the other hand, we have proved in [24] that
(HT, Lo, = Hy

where in both cases 0 < 0 < 1 and 1/p = (1 —6)-+6/2. This completes the proof
of Theorem 4. =
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Of course, it can similarly be proved that the theorem is true even if we do
not suppose for a martingale feH, that f, o= fo,=0

In [27] we have introduced an atomic Hardy space #' generated by
some special atoms (1 < g < o). Applying Theorem 1(i) we can show
a theorem similar to Theorem 4 for #*? (1 <¢g< oo, p=1):

THEOREM 5. For an arbitrary martingale f e

Y X e, mlfnm) < | f e
=1 m=1
5. Dual theorems. In [27] we have shown that the dual of H; is A,(a)
(0< p<1,a=1/p—1) where A,(x) denotes the space of functions ¢ e L} for
which

(1 <gq<co)

140 4500 = sUP {Pv # 00) 27 %lp~¢"|,} <00 (22 0)

(the suprerum is taken over all stopping times). As in the one-parameter case,
A,(0) is also denoted by BMO,. Denote the set of sequences
{(P> Q) 1 <k <K} by # where KeN, (n) is decreasing and {m,) is
increasing. Now we give a direct proof for the dual inequality to Theorem 4 for
O<pgl.

THeEOREM 6. If (b, m; n, meP) is a sequence of complex numbers such that

M:= sup |H|-1[2—u( Z lbn'mlz)llz < o0

Heat . H<{nm)

then there exists @ € A,(¢) for which ¢(n, m) = b, ,, (n, meP) and L@l s S M.
(The definition .of |H| is given in (7))

Proof It follows from the Riesz—Fischer theorem that there exists

a fanction ¢ & L} such that ¢(n, m) = b, ,, (n, meP). It is easy to show that for
every stopping time v

lo~g'i2 = 3 T Elc(r<< G, )idsol).

Let us use again the sets G and H constructed for the stopping time v in the
proof of Theorem 4. It is clear that

le—¢l2= 3 E[x(v<@)dyelr]< Y E(diel?.
G(i,j) G«li,f)

If we express d; ;¢ as a linear combination of the functions w, ,, then we obtain

Z |bn,m|2-

lo—e'l3 <
. H<(n,m)
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As we have seen in the proof of Theorem 4, |H| < P(v # 0}, consequently,

P #w0) 2 o—@"l, S HIT27H Y baal)?
H < (n,m)

i, [®@liim s M, which shows Theorem 6. m

Let us give the dual theorem to Theorem 4 also for 1 < p < 2. If p, = O(1)
and g, = O(1) then by Theorem 2 one has H; ~ If (p > 1) and it is well
known that their dual space is I} (1/p+1/g =1).

TueoreM 7. If p,= O(1), q,=0(1), 2< qg< oo and (bym n, mel) is
a sequence such that

i i |brr.m|q/(”m)2"q < o,

n=1 om=1

ther the Vilenkin polynomials

N M
fN.M:ﬂ Z Z bn,mwn.m

n=1 m=1

converge in L, as min(N, M)~ oo 1o a function [ satisfying f(n, m)
=z by m (n, meP) and

Il S €T S w9,
n=1 m=l|

This theorem can be shown similarly to the case of the one-parameter
trigonometric system (see [10], p. 193).

We have also proved in [27] that the dual space of #'? is 40,
(1/g+1/¢ =1, 1 < g < o) where B4 0, denotes the space of functions ¢ € %
for which

19l ko, = SUP [(Enml @~ Ep, o0 = Ecoum® -+ Enm @), < 00

/)
Now we prove a result for #.#0, spaces analogous to Theorem 6.

THEOREM 8. If 2< ¢ < oo and (b n, meP) is a sequence of complex
numbers such that

M = sup (Pan)lM( Z
nam (P Qin)d & ()
then there exists pe BHO, for which ¢k, ) = by (k, 1eP) and | ol gae, < M.
Proof. By Theorem 1(i)) there exists pelf such that @k, 1) = b
(k,1eP). Let n, m, I, jeN and introduce the Vilenkin polynomials

|y 17 < o0

Pp=1 Om—1
Py = kZO iZO P+ K, JO +F) Wi -



230 " F. Weisz

Then

=)

QD—E,, wgﬂ—Ew m(P+Enmq9_ Z z Pin )WIPmJQm
I=1 j=1

As P{®™ i3 &, , measurable, applying again Theorem 1(ii), we get the following
inequalities (1/q+ g =1):

Eyml@— En o0~ E 0+ Em@ 0 = (Ep| ¥ Y, PE™wWip, 50,9

=1 j=1
( |k, DY,

ie, [o)|aue, <M. This completes the proof of Theorem &. =

2 |PImYE < (P07 Y

(Pro@m) € (k1)

IlMg

This theorem can be found for one-parameter martingales in [13], [22] and
another version for nonlinear martingales is in [25].

6. Converse inequalities. In this section we extend Theotem 4 under certain
conditions to the case p > 2. Moreover, we prove the converse inequality. In
-the sequel we suppose that

) | p.= 00, ¢,=0(.
If f = (fom; 7, meN) is a martingale and b, ;:= f (k, }) then it is obvious that
P,—1 Qm—1

m = Z Z bk,lwk,l

k=

and, conversely, an arbitrary sequence (bk 1; k, 1eP)-defines a martingale. From
now on we consider only those martingales for which

(10) bk;->0
Rby,— bk+li'—bkl+l+bk+ll+1)
J(by,— bk+1l_bkl+1+bk+11+1)>0 (k, leP).

It follows from (10) and (11) that the sequences (%b,,) and >(‘:Sb,,.l} are
decreasing. Now we extend Theorem 4.

as max(k, [)» w0,

(11)

THEOREM 9. Under the conditions (9) and (11) suppose that f eH,. Then

(3 5 170 miP o 2 < C, ) f i,

na=1 m=1

(Note that by Theorem 2 one has Hj

(0 < p<0)

~H, for 0 <p< o)

We are not going to prove Theorem 9 because the proof is similar to
Moricz’s proof for the one-parameter Walsh system (see [16]).

icm
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We show a sharper assertion than the converse inequality. If

n=1 m—1

= Z E by Wi

k=1 1=1
then the following holds:

TueoreM 10, Under the conditions (9)—(11)

( i i Byl fnm)? ~YLIP

n=3 m=]

lsup onmlll, < Cp 0 <p<®).

Proof. This theorem for the one-parameter Walsh system was also proved
by Méricz for p > 1 (see [17]). Since

n-1
1D, 0= | Y. wiolx, ¥ <2/x  (x&[0,1), neN)
s k=0

is also true for a bounded Vilenkin system {see [11]), applying two-parameter
Abel rearrangement, similarly to the proof in [16] we get

1 1
and — Ky <.

1 1
— <
Cz Zlbml fori_l_1 x < ) ;

k=l f=14

[T (e, YN <

Therefore

o w I 14

|suplonatll =Y, 2. (sup |omlx, Y dxdy
o f=1 J=1 1(+1) 1j+1) ™m

(X T

Now a slightly modified version of the Hardy inequality is needed: .

LEmMA {[19], Theorem 8). If r>1, 0 < p < co and (d,, neP) is a non-
negative, nonincreasing sequence then .

] oo
2 n(Y dF<C, 3 it
nw ] k=l n=l
Applying twice the Lemma we obtain the inequality

3 “(Z 3 P <

1 =1 = =

C, Z Elbk Pkl

=] =]

This completes the proof of Theorem 10. m



232 F. Weisz

Finally, it is easy to see that the following corollary holds.

CoroLLARY 1. If (9)—{11) are satisfied and 0 < p < oo is fixed then the
following conditions are equivalent:

[ce} @

suplo,uels feHy L X Ibaalum)?Tr < 0.
n.m o
Therefore
(12) [8up |pml |, < C,ll fllg, (0<p<co)

"M

As any martingale feH, (p > 1) can be identified with an I} function, the
Gnm are partial sums of the Vilenkin-Fourier series of the function correspond-
ing to f Vilenkin polynomials are dense in H,, consequently, by (12) and by
Theorem 2 of Chapter 3.1 in [22], Corollary 2 follows immediately:

COROLLARY 2. Let p, = O(1) and q, = O(1). If feI¥ (p > 1) or feH, such
that (10) and (11) are satisfied then 6, f — f a.e. and also in [F-norm (p = 1) as
min(n, m) — 0.

Note that the fact that o, , converges a.. has already been proved under
the conditions (%)—(11) only (see [17]).
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