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ASYMPTOTIC STABILITY OF TESTS BASED
ON ORDER STATISTICS FOR THE SCALE PARAMETER

Abstract. Let F = {@Qi2 Fa : Fa(z) = F(z/X), A > 0} be a given
Parametric model. We consider the one sided scale testing problem in the
class of consistent tests based on linear combinations of order statistics. It
turns out that under the assumed violation of F the test based on the largest
order statistic is asymptotically most power-stable and minimax for a given
broad class of local alternatives.

1. Introduction. Let {X,} be a sequence of independent identically
distributed random variables (r.v.’s). We assume that the distribution func-
tion (d.f.) belongs to the family {F) : Fi(z) = F(z/)), A > 0}, where F
is a fixed life d.f. (F(0) = 0) and the scale parameter is to be tested. Thus
We consider the parametric model F = {@:2, Fa : A > 0}. Consider the
Problem of testing the hypotheses:

(1) Ho: A< X (Ao>0) versus H;:A> Ag.

Let o be an arbitrary number, 0 < a < 1. Let C(a) be a specified class of
asymptotic tests for (1), all corresponding to the same asymptotic level of
significance a. Thus for every sequence {¢,} € C(a),
(2) lim sup Eppon = a,

n—00 3<)\,
where ¢, = ¢n(X1,...,X,) and Epppn denotes the expectation of ¢, if
the sample (X1,..., X,) comes from F.

Assume that all tests in C(a) are consistent. A well-known procedure
of studying tests in C(a) (see e.g. [4]) is based on the method of local
alternatives. It is connected with the power of tests evaluated under a class
of sequences of alternatives approaching the hypothesis Ho. This procedure
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gives a possibility to provide numerical approximations to the true power
functions. On the other hand, it reveals the general structure of power
functions. Now, suppose that the model F is violated and the violation is
described in some specified way. Then we can study the robustness of tests
in C(a) by investigating their power on the class of sequences of violated
alternatives.

2. Preliminaries. Let X,, be a sample of size n and let ¢, = @n(Xy)
be a level-a test for (1). Given A > 0, let 7,(F)) denote a fixed set of
d.f.’s that contains F). Suppose that due to measurement errors the sample
X, has an unknown distribution G € m,(F)), where 7, (F) = {®i=; G: :
Gi € m(F))} and ®'_, G; stands for the product of Gy,...,Gn.

If G runs through the set w,(F)), A > Ag, then

(3) Ta(@Pn, A) = sup{|Eg, n — Eg,¢n| : G1,G2 € mn(F))}

is the oscillation of the power of ¢, over w,(F)) and gives us a measure
of stability (robustness) of the test ¢, with respect to its power, under the
violation #, (see [7]).

Let I' denote a certain class of sequences {),} converging to ¢ with
An > Ao. Let IT be a specified class of sequences of neighbourhoods {,}
defined on {F) : A > 0}. We assume that for every sequence of alternative
hypotheses {F_} the corresponding sequence of violations {m,(F), )} does
not contain any distribution from the hypothesis Hy in the sense that for
large n

(4) {Fr: X< }nm(F\,)=0 forevery {(An,mn)} €T % II.
DEFINITION 1. We shall say that, relative to (T, IT), the test {¢p,} €

C(a) is more stable than the test {¢,} € C(a) if, for any sequence
{(Am ﬂ',;)]' erxim, '

lim sup r4(n, An) < ]i'ff_l.icgf Ta(Pns An)

and there exists {(A2,72)} € I' x IT for which the inequality is strict.

DEFINITION 2. We shall say that, relative to (I, IT), the test {¢,} €
C(a) is most stable within the class C(«) if it is more stable than any other
test in C'(a).

We adopt the following notation. If ¢ = {¢,} and X, has the distribu-
tion G, then E¢, ¢, is denoted by B,(Gy).

DEFINITION 3. We shall say that, relative to (I, IT) and C(a), the test
¢ € C(a) is asymptotically minimaz if for any other test ¥ € C(a),

inf{lim inf 8,(G»)} > inf{ligrl)iong Bu(Gr)},
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Where the infima are taken over all sequences {(An,7,)} € I' X IT with
G“ € r“(qu )'

3. Stability of asymptotic tests based on order statistics. In the

Sequel we assume that the d.f. F has a continuous positive density f such
that

: o i T2 , f(=z)

(i) lim inf 1= 1) >0, hin_‘s;p = {5 < 0.
For the testing problem (1) we consider consistent tests based on order
Statistics X1.p < ... < Xp.n of the form

n .
. a i N —
(5) ‘Pn(an Ep) - { 1 if ; gJ(m) X,':_n + GX[ﬂplm > cﬂ,(ﬂJ, ap),

0 otherwise,

Wherea = Q or 1, @ = 1 —a, J # 0 is an arbitrary nonnegative function with
a continuous derivative on [0, 1], i.e. J € C}[0,1], p is an arbitrary point in
(0,1) with np > 1 ([¢] denotes the integer part of t).

We assume that each sequence {(,} satisfies the condition (2). It deter-
Mines the asymptotic properties of the corresponding sequence {c,}.

Let <, denote the stochastic ordering. Let G, H be absolutely continu-
ous life d.f.’s such that

(i) H<y F<a« G and F(z)# H(z) for every z > 0,
(i) [ 2*dG(z) < oo,
0

G B 2EE)
z—= (/1 - F(z)

Given n, we define a neighbourhood of the d.f. F) as follows:
(6)  wu(Fa)={Sdf’s:(1=6)Pr+6nHr <t S <st(1—&n)Fr+2aGa},
Where A > 0, £, 6, € [0,1], GA(z) = G(z/), Hx(z) = H(z/)). By (ii) we
have F, € 7n(Fy). It should be mentioned that for &, = 6,,A > 0 we have
Ta(F)) = {(1 —€n)F\ 4+ €,5 d.f’s : G\ £ § < H,}, i.e. a “neighbourhood
of ¢,-contamination type with restrictions”. Neighbourhoods generated by

Stochastic ordering have been considered in [1].
Let I' be the class of all sequences {),,} with A, > A¢ and such that

0 < limsup v/n(An/Ao— 1) < 0.
n—+00

Let I7 consist of all sequences {r,} of neighbourhoods of the form (6), where
lim sup y/ne, < 00, limsup/né, < .

n—roo n—+00

From (6), (i), (ii) one can deduce that (I, IT) satisfies (4).
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Let C(a) be the class of all tests {¢,} which are defined by (5) and (2)-
Under the above definitions and assumptions, we prove the following
theorem.

THEOREM. Let a € (0,1) and ¥ = {pn(0,1)} € C(a). Then relative to
(I, 1) and C(a),

(a) ¥ is most stable,
(b) ¢ is asymptotically minimaz.

4. Proof. We first present some auxiliary lemmas. Let F satisfy the
conditions of Section 3 and let S be an absolutely continuous life d.f. with
the third moment finite. Let Rg = —In(1 — ) denote the hazard function
of the d.f. S. We assume that lim,—, v/70n = 0, limp 00 V(T — 1) =7,
where {¢,} C [0,1], {rn — 1} C [0,00) and g, T € [0,00). We define S, =
(1 —on)F + 0,5.

Let & be the standard normal d.f. For simplicity, Es=(X,) is denoted
by Es@(X,). Analogously, Varge(X,,) denotes the variance of ¢(X,).

LeEMMA 1. Let p € (0,1).

@ If “]Lngo Vn(z, — S;l (p)) = —-——-M then nll_.ngo Ps, {X[np]m <

f(F=1(p))
Zn} = 8(z). —
ii) L =ik .81 =—_,p1—p T where
(ll) ﬂ]'_l_.mm\/’_l‘(F (P) ﬂsﬂ (P)) f(F_],( ))MP(Q': '!S)'l h
_ (e(5(F~'(p)) - p) —10 ) F(F71(P)
(7) MP(Q! T, S) i ( f(F_I (p)) TF ( )) (_'-"_p(l _ )

Proof. (i) follows from the Berry-Esseen theorem applied to the sum
of independent exponentially distributed r.v.’s and is a simple modification
of the proof of Corollary 1 of [2].

(ii) follows immediately from the fact that for t = F~1(p), t, = S;'(p)

we have
Vit - ) O=TE) = g (S(ta) - Fita))

and /n(t — Tatn) = Ta/n(t - t,,) —ty/n(1, = 1).
LEMMA 2. Let J € C1[0,1],

1% i
L,= ;gJ(n—H)X.-m,

ob(J) = [ [ J(F(z))J(F(v))(F(min(z,y)) - F(z)F(y)) dz dy.

00
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Then
(i) lim nVars, L, = ot (J).
v Ty — ES Lﬂ .
(ii) If lim ———=— =1z then lim Ps {L, < z,} = ¥(z).
n—oo /Vars- L, n—oco

(ﬁi) ‘_}LIEO \/E(EFLn - TnES. L'I"l) = aF(J)NJ(Q! Ty S)! where

®)  Nier.S)= [ JF@)Ne(S()— F(&)) - r2f(z)) dz/or(J).

Proof. (i) is a direct conseqﬁence of the proof of Theorem 1 of [5], and
(ii) follows from Corollary 4.2 of [8].
(iii) Let
n i/n

V,.:Z( f J(x)dz)X,-m.

=1 (i-1)/n
Note (see e.g. [3]) that

9) VA(ErVa— 1aBs,Va) = vRE [ (ETn(F(z))) = rab(Tn(Su(z)))) da

+ ev/n(EpX — mEs, X),
Where I', denotes the empirical d.f. based on independent uniform (0,1)
tv.’s, ¢ = _ﬁ; J(z)dz, £(u) = [ J(z)dz — (1 - u)e, u € [0, 1].
It is easily shown that sup{|¢”(u)| : u € [0,1]} = sup{|J'(u)| : u €
[0,1]} = C; < 00, ET,(z) = z, E(T,(z) - z)? = z(1 — z)/n.
Consequently, using the Taylor expansion of order two and the Fubini
theorem we find that for P, = F or Sy,

E [ &(Tu(Pa(z))dz = [ &(Pa(2))da + on,
(10) _ 0 ow
J €(Sn(@) - &(F(2))dz = [ €(F(2))(Sa(z) - F())dz + gn,
0 0
Where
lon| < g j?a: dP,(z), |gn] < 92&( j?zdF(x)+ j?z dS(z))
T 0 7 T 0 0 '
Thus from (9), (10) it follows that

lim VA(EpVy - 1uEs, V) = 0 f{'(F(m))(F(m) — S(z)) dz
0
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-1 [ &(F(z))dz + c(e(ErX — EsX) - TEFX).
0
In view of the definitions of ¢ and £ and the fact that

f f J(u)dudz = j J(F(m)):cf(z)d::

0 F(z)
the above equality proves the desired result for the statistic V,,. Since

VEp, |Ln — Vi

for P, = F or S, the proof is complete.

‘/_EP_X

Under the assumptions (i), (ii), (iv) of Section 3 we have

LEMMA 3. Let limp—oo n(1 = F(yn)) = B, B € (0,00). Then

() Jlim 2(1 - F(yn/m)) =B,

(i) lim non(H(yn/Tn) = G(4n/0))/ F(yn/ma) = 0

Proof. (i) In view of the obvious equality

n(1 = F(yn/7s)) = n(1 = F(yn)) exp(Rr(yn) = RF(yn/™n)), Ta 21,
it suffices to show that
lim sup(Rr(yn) = Rr(yn/Ta)) = 0.

From the assumption it follows that lim,_,(Inn — Rp(y,)) = Inf and

consequently lim,_,o Rr(yn)/+/n = 0. Furthermore, the condition (i) of
Section 3 states that

g = lim inf Rep(z)>0, g= hmsupR (z) < o0.
Thus the obvious inequality
lim sup(Rp(yn) — Rr(yn/ms)) < P hm 1 sup Rr(yn)/V/n

n=—+00

completes the proof.

(ii) Note that

n H(yn/mn) _ n(1l - T, T

0 S Qn(F(yn/Tn) 1) s gﬂ (1 F(yﬂ-/ ﬂ))/F(yn/ ﬂ.) ?
G(yn/Tv)

"‘-’“(l ~ Flya/n ))

_n(1- F(ynm))( 1= G(yn/Tn) Von i )
F(yn/m)  \1=F(yn/mm) V21 = F(nT0))
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Consequently, by the condition (iv) of Section 3 and part (i) of the lemma
the proof is complete.

Proof of Theorem. Let {(A;,7,;)} be an arbitrary sequence in
I’ x I1, where, in view of (6), {r,} is defined by {¢,} and {8,}. Let

£= li’fn_’ioréf\/f_:.sm §= ].Ei_l’iolcl}f'\/?_t&n i
7= li'ﬂioréf\fﬁ()\n/,\o -1).
For the upper limits we use the notations £, 4 and 7 respectively.

Let {¢n} € C(a). It is easy to note that ¢,(z1,...,2x) is based on the
Statistic which is nondecreasing in each z;, i = 1,...,n. Consequently, we
obtain (see e.g. [6])

(11) far(‘Pm ’\n) = EG. Pn — -EH. ©Pn
Where G, = (1 —€n)Fa, +€,Gi,, Hn=(1=8,)F5, + 6o H»,.
Let p € (0,1). Condition (2) implies that
lim A(en — 2F~(p)) = 2adov/A(1= )/ F(F~ (7)),

Where ¢, = ¢,(0,p) and uq = $71(1 - ).
Let P, be equal to G, or H,,. Since

Vi(en = P (5) = Vilen = Y0P 0) + Do) - P 2)),

(11) and Lemma 1 yield
(12)  liminf ro(@n, An)
2 Té‘;&f(@(“a + My(8,7, H)) — ¥(ua + My(g, 7,G))),

Where ¢, = ¢,(0,p) and M, is defined by (7).
Analogously, from (11) and Lemma 2 we obtain

(13) lim nf ra(@n, An) > _inf_(#(uat+Ns(8,7, H))~B(vat No(e,7,G))),

Where ¢,, = ¢,(J,0) and N is defined by (8).
Consider the test {¢,(0,1)} € C(a). Let y, = ¢,(0,1)/ X0, Tn = An/Ao-
By (11) we get
Ta(PnyAn) = (1= 6n) F(yn/Tn) + 8u H (yn/T2))"
= (1 = &n)F(yn/Ta) + €aG(yn /™))"
= F(yn/m)((1 + ha/n)" = (1 = gn/n)"),
where
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Obviously, condition (2) states that lim, 0 n(1 — F(y,)) = —In(1 — a)-
Thus Lemma 3 implies that

(14) lim sup 7(¢n,An) =0, where ¢, = ¢,(0,1).
n—o0

By the assumption (ii) of Section 3 we obtain
My(8, 7, H) > My(e,7,G), Nyjb,7,H)> Ny(e,7,G)

for every 0 < 7 < 00, £ > 0 and § > 0. Consequently, by (12)—(14) the proof
of part (a) of the theorem is complete.
(b) The same argument as in (11) implies that

inf{B,(Gr) : G € ®n(F\,)} = En, o -

Therefore from the proof of (a) one concludes that for ¢ = {p,(0,1)} €
C(a),

inf{lim inf Eg, ¢n :0 <7 < 00, 0 < § < 00} = ar.
Analogously, for :ny other test ¢ € C(a) we have

inf{]iﬂicgff,‘g_cp,, 10<F<00,0<8<00}=0,
which completes the proof.
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