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e-LOCALLY ACYCLIC GRAPHS

Abstract. A graph G is e-locally acyclic if the neighbourhood of any edge
(i.e. the subgraph of G induced by the set of all vertices adjacent to at least
one vertex of this edge) is an acyclic graph. An upper bound for the number
of edges in e-locally acyclic graphs is given in this article.

All graphs considered in this article are finite undirected graphs without
loops and multiple edges.

Let G be a graph, let z be its vertex. By the neighbourhood of z (or
v-neighbourhood) in G we mean the subgraph of G induced by all vertices
adjacent to  and denote it by Ng(z).

Analogously by the neighbourhood of an edge f=zy (or e-neighbourhood)
in G we mean the subgraph of G (denoted by Ng(zy)) induced by all vertices
adjacent to at least one of the vertices z,y but different from them.

If the neighbourhood of any vertex (edge) of G is an acyclic graph then
G is a called a v-locally (e-locally) acyclic graph.

Erdds and Simonovits [1] found the maximal number of edges in v-locally
acyclic graphs. Kowalska [4], Zelinka [5], [6] and the author [2], [3] found the
maximal number or an upper bound for the number of edges of some special
classes of v-locally acyclic graphs.

THEOREM 1 (Erdés and Simonovits). Let G be a v-locally acyclic graph
with n vertices and m edges. Then

m<nn+1)/4.

We shall determine an upper bound for the number of edges in e-locally
acyclic graphs. First we prove some simple lemmas.

LEMMA 1. Let G be an e-locally acyclic graph and zq be its vertex. Then
Go = G — zg 1s also an e-locally acyclic graph.
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Proof. If zy is an edge not incident to zo then either Ng,(zy) = Ng(zy)
or Ng,(zy) = Ng(zy) — xo, which is also acyclic.

It is clear that each induced subgraph of an e-locally acyclic graph is
also e-locally acyclic.

LEMMA 2. Let G be an e-locally acyclic graph, each edge of which belongs
to at most one triangle. Let G contain a subgraph H = (M) = K, ¢. Then
each vertex not belonging to M 1is adjacent to at most two vertices of M.
(The symbol (M) denotes a graph induced by the vertex set M.)

Proof. Let H = (uy,uz,v1,vs,...,vs) contain all edges u;v;. If a vertex
y is adjacent to both u;, uz, then it cannot be adjacent to any v; (1 < j < 6)
—in this case the edge yv; belongs to two triangles. If y is adjacent to v;
and vy, it cannot be adjacent to any u; for the same reason.

If y is adjacent to three vertices from {vy,vs,...,vs}, say v1,v2,v3, then
(y, u1,u2,v1,v2,v3) = K33 and Ng(u1v;) = C4, which is a contradiction.

Now we consider graphs without triangles. It is clear that a neighbour-
hood of any vertex in such a graph consists of isolated vertices.

LEMMA 3. Let G be an e-locally acyclic graph without triangles contain-
ing a subgraph H = (M) = C4 and no subgraph isomorphic to Ky ¢. Then
there exist at most 6 vertices not belonging to M which are adjacent to two
vertices of M.

Proof. Let H = (uy,up,v1,v2) contain edges u;v;. According to the
assumption at most 3 vertices not belonging to M can be adjacent to both
u1,u2 and another at most 3 vertices to both v;,v2. Because G has no
triangle there is no vertex adjacent to both u;,v;.

LEMMA 4. Let G be an e-locally acyclic graph without triangles different
from a disjoint union of stars. Let G contain no subgraph isomorphic to Cy.
Then G has an induced subgraph H = (M) = P4 and at most one vertex
not belonging to M is adjacent to two vertices of M.

Proof. If G is an acyclic graph, then it is evident that it is either a
disjoint union of stars or a graph with diam G > 3. If it is not acyclic,
then the shortest cycle can be Cs and it contains an induced subgraph
H = (uj,ug,v1,v2) with the edges u;v1,v1u2 and ugvs. A vertex y; can be
adjacent to two vertices of M only if these vertices are u; and v (in the
opposite case G contains Cs or Cy). But then there is no other vertex y»
adjacent to both u; and wo—in this case (y;,u1,y2,v2) & Cjy, which is a
contradiction.

As regards graphs with triangles, we shall proceed similarly. If G contains
an edge ;22 belonging to 4 triangles (z1,22,%;) (1 <1 < 4), we can easily
see that (y1,v2,¥ys,ys) is an independent set of vertices (if there exists an
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edge, say y1¥2, then Ng(z1ys) contains the triangle (z3,y1,¥2)). There is
also no vertex z; (¢ > 3) adjacent to two vertices from {y1,y2,¥3,y4}. If for
instance z3 is adjacent to both yi,y2, then Ng(z1y2) contains the triangle
(#1,Z2,¥1) and thus it is clear that G = (y1,...,y4,%1,...,Z,) has at most
n+6edgesziy; (1<i<n, 1<5<4).

If G contains an edge y;y2 belonging to two triangles (y1,y2,y3) and
(y1,Y2, y4) but no edge belonging to 4 triangles, then there exist at most
9 vertices z1, 3, ..., Z9 which are adjacent to two vertices of {y1,y2,y3,y4}
(one vertex can be adjacent to both y;,y2, no vertex can be adjacent to
¥3,y4 and at most two vertices can be adjacent to any other pair). Therefore
G = (y1,...,¥4,%1,...,%s) contains at most n + 9 edges z;y;.

If each edge belongs to at most one triangle (and a triangle exists), then
G contains a triangle (y1,¥2,ys) with a hanging edge, say y3ys. Because
there exists at most one vertex adjacent to both y3 and y4 and no vertex
adjacent to two vertices of {y1,¥2,y3} we can see that all other vertices
adjacent to two vertices from the set {y;,y2,3,y4} are adjacent to y4 and
either to y; or to y;. Thus either G = (yy,...,y4,21,...,2,) contains a
subgraph isomorphic to K¢ or there exist at most 4 vertices adjacent to
both ¥, y4 and analogously at most 4 vertices adjacent to both 2, y4. Hence
G contains at most n + 9 edges z;y;.

Now we have proved the following lemma.

LEMMA 5. Let G be an e-locally acyclic graph with n + 4 vertices con-
taining triangles. Then either G contains an induced subgraph isomorphic
to K g or there exists a set of vertices M = {y1,y2,y3,ya} such that G has
at most n + 9 edges z;y;.

Lemmas 3-5 yield immediately the following

COROLLARY. Let G = (y1,...,Y4,Z1,...,2Zn) be an e-acyclic graph with
n + 4 vertices. Then G contains either an induced subgraph isomorphic to
K¢ or an induced subgraph H = (M) = (y1,...,y4) such that H has at
most 5 edges and G has at most n+ 9 edges z;y;.

Now we are able to prove our main result.

THEOREM 2. Let G be an e-locally acyclic graph with n vertices and m(n)
edges. Then

m(n) < n(n+24)/8.
Proof. We use induction with respect to n.
1°. We have
n(n —1)/2 < n(n + 24)/8

for each n < 9 and thus all graphs with at most 9 vertices have less than
n(n + 24)/8 edges.
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2°. Now suppose that m(n) < n(n + 24)/8 for some n. We distinguish
two cases:

(i) G = (y1,---,¥s,%1,---,%n) contains Ko g = (y1,.-..,ys). Then from
Lemma 2 it follows that there exist at most 2n edges z;y;. Since K3 ¢ has
12 edges we have from our assumption
n(n+24) (n+8)(n+32)

8 8 '

(ii) G = (y1,---,Ya,%1,...,Ty) contains no induced subgraph isomor-
phic to K36. Then by our Corollary there exists a set of vertices M =
{y1,...,ya} such that (M) contains at most 5 edges and there are at most
n + 9 edges z;y;. Thus using our induction assumption we see that

n(n+24) (n+4)(n+28)
8 - 8

m(n+8) <12+ 2n+m(n) <12+ 2n +

m(n+4)<5+(n+9)+mn)<n+14+

and the proof is complete.
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