D. FRONČEK (Hamilton, Ont.)

e-LOCALLY ACYCLIC GRAPHS

Abstract. A graph G is e-locally acyclic if the neighbourhood of any edge (i.e. the subgraph of G induced by the set of all vertices adjacent to at least one vertex of this edge) is an acyclic graph. An upper bound for the number of edges in e-locally acyclic graphs is given in this article.

All graphs considered in this article are finite undirected graphs without loops and multiple edges.

Let G be a graph, let x be its vertex. By the neighbourhood of x (or v-neighbourhood) in G we mean the subgraph of G induced by all vertices adjacent to x and denote it by $N_G(x)$.

Analogously by the neighbourhood of an edge f=xy (or e-neighbourhood) in G we mean the subgraph of G (denoted by $N_G(xy)$) induced by all vertices adjacent to at least one of the vertices x, y but different from them.

If the neighbourhood of any vertex (edge) of G is an acyclic graph then G is a called a v-locally (e-locally) acyclic graph.

Erdős and Simonovits [1] found the maximal number of edges in v-locally acyclic graphs. Kowalska [4], Zelinka [5], [6] and the author [2], [3] found the maximal number or an upper bound for the number of edges of some special classes of v-locally acyclic graphs.

THEOREM 1 (Erdős and Simonovits). Let G be a v-locally acyclic graph with n vertices and m edges. Then

$$m \le n(n+1)/4.$$

We shall determine an upper bound for the number of edges in e-locally acyclic graphs. First we prove some simple lemmas.

LEMMA 1. Let G be an e-locally acyclic graph and x_0 be its vertex. Then $G_0 = G - x_0$ is also an e-locally acyclic graph.

¹⁹⁹¹ Mathematics Subject Classification: Primary 05C99.

Key words and phrases: local properties, neighbourhood of an edge.

Proof. If xy is an edge not incident to x_0 then either $N_{G_0}(xy) \cong N_G(xy)$ or $N_{G_0}(xy) \cong N_G(xy) - x_0$, which is also acyclic.

It is clear that each induced subgraph of an e-locally acyclic graph is also e-locally acyclic.

LEMMA 2. Let G be an e-locally acyclic graph, each edge of which belongs to at most one triangle. Let G contain a subgraph $H = \langle M \rangle \cong K_{2,6}$. Then each vertex not belonging to M is adjacent to at most two vertices of M. (The symbol $\langle M \rangle$ denotes a graph induced by the vertex set M.)

Proof. Let $H = \langle u_1, u_2, v_1, v_2, \dots, v_6 \rangle$ contain all edges $u_i v_j$. If a vertex y is adjacent to both u_1, u_2 , then it cannot be adjacent to any v_j $(1 \le j \le 6)$ —in this case the edge yv_j belongs to two triangles. If y is adjacent to v_j and v_k , it cannot be adjacent to any u_i for the same reason.

If y is adjacent to three vertices from $\{v_1, v_2, \ldots, v_6\}$, say v_1, v_2, v_3 , then $\langle y, u_1, u_2, v_1, v_2, v_3 \rangle \cong K_{3,3}$ and $N_G(u_1v_1) \cong C_4$, which is a contradiction.

Now we consider graphs without triangles. It is clear that a neighbour-hood of any vertex in such a graph consists of isolated vertices.

LEMMA 3. Let G be an e-locally acyclic graph without triangles containing a subgraph $H = \langle M \rangle \cong C_4$ and no subgraph isomorphic to $K_{2,6}$. Then there exist at most 6 vertices not belonging to M which are adjacent to two vertices of M.

Proof. Let $H = \langle u_1, u_2, v_1, v_2 \rangle$ contain edges $u_i v_j$. According to the assumption at most 3 vertices not belonging to M can be adjacent to both u_1, u_2 and another at most 3 vertices to both v_1, v_2 . Because G has no triangle there is no vertex adjacent to both u_i, v_j .

LEMMA 4. Let G be an e-locally acyclic graph without triangles different from a disjoint union of stars. Let G contain no subgraph isomorphic to C_4 . Then G has an induced subgraph $H = \langle M \rangle \cong P_4$ and at most one vertex not belonging to M is adjacent to two vertices of M.

Proof. If G is an acyclic graph, then it is evident that it is either a disjoint union of stars or a graph with diam $G \geq 3$. If it is not acyclic, then the shortest cycle can be C_5 and it contains an induced subgraph $H = \langle u_1, u_2, v_1, v_2 \rangle$ with the edges u_1v_1, v_1u_2 and u_2v_2 . A vertex y_1 can be adjacent to two vertices of M only if these vertices are u_1 and v_2 (in the opposite case G contains C_3 or C_4). But then there is no other vertex y_2 adjacent to both u_1 and v_2 —in this case $\langle y_1, u_1, y_2, v_2 \rangle \cong C_4$, which is a contradiction.

As regards graphs with triangles, we shall proceed similarly. If G contains an edge x_1x_2 belonging to 4 triangles $\langle x_1, x_2, y_i \rangle$ $(1 \le i \le 4)$, we can easily see that $\langle y_1, y_2, y_3, y_4 \rangle$ is an independent set of vertices (if there exists an

edge, say y_1y_2 , then $N_G(x_1y_3)$ contains the triangle $\langle x_2, y_1, y_2 \rangle$). There is also no vertex x_i $(i \geq 3)$ adjacent to two vertices from $\{y_1, y_2, y_3, y_4\}$. If for instance x_3 is adjacent to both y_1, y_2 , then $N_G(x_1y_2)$ contains the triangle $\langle x_1, x_2, y_1 \rangle$ and thus it is clear that $G = \langle y_1, \dots, y_4, x_1, \dots, x_n \rangle$ has at most n + 6 edges x_iy_i $(1 \leq i \leq n, 1 \leq j \leq 4)$.

If G contains an edge y_1y_2 belonging to two triangles $\langle y_1, y_2, y_3 \rangle$ and $\langle y_1, y_2, y_4 \rangle$ but no edge belonging to 4 triangles, then there exist at most 9 vertices x_1, x_2, \ldots, x_9 which are adjacent to two vertices of $\{y_1, y_2, y_3, y_4\}$ (one vertex can be adjacent to both y_1, y_2 , no vertex can be adjacent to y_3, y_4 and at most two vertices can be adjacent to any other pair). Therefore $G = \langle y_1, \ldots, y_4, x_1, \ldots, x_n \rangle$ contains at most n + 9 edges $x_i y_j$.

If each edge belongs to at most one triangle (and a triangle exists), then G contains a triangle $\langle y_1, y_2, y_3 \rangle$ with a hanging edge, say y_3y_4 . Because there exists at most one vertex adjacent to both y_3 and y_4 and no vertex adjacent to two vertices of $\{y_1, y_2, y_3\}$ we can see that all other vertices adjacent to two vertices from the set $\{y_1, y_2, y_3, y_4\}$ are adjacent to y_4 and either to y_1 or to y_2 . Thus either $G = \langle y_1, \dots, y_4, x_1, \dots, x_n \rangle$ contains a subgraph isomorphic to $K_{2,6}$ or there exist at most 4 vertices adjacent to both y_1, y_4 and analogously at most 4 vertices adjacent to both y_2, y_4 . Hence G contains at most n+9 edges x_iy_i .

Now we have proved the following lemma.

LEMMA 5. Let G be an e-locally acyclic graph with n+4 vertices containing triangles. Then either G contains an induced subgraph isomorphic to $K_{2,6}$ or there exists a set of vertices $M = \{y_1, y_2, y_3, y_4\}$ such that G has at most n+9 edges x_iy_i .

Lemmas 3-5 yield immediately the following

COROLLARY. Let $G = \langle y_1, \ldots, y_4, x_1, \ldots, x_n \rangle$ be an e-acyclic graph with n+4 vertices. Then G contains either an induced subgraph isomorphic to $K_{2,6}$ or an induced subgraph $H = \langle M \rangle = \langle y_1, \ldots, y_4 \rangle$ such that H has at most 5 edges and G has at most n+9 edges x_iy_i .

Now we are able to prove our main result.

Theorem 2. Let G be an e-locally acyclic graph with n vertices and m(n) edges. Then

$$m(n) \leq n(n+24)/8.$$

Proof. We use induction with respect to n.

1°. We have

$$n(n-1)/2 < n(n+24)/8$$

for each $n \leq 9$ and thus all graphs with at most 9 vertices have less than n(n+24)/8 edges.

- 2°. Now suppose that $m(n) \leq n(n+24)/8$ for some n. We distinguish two cases:
- (i) $G = \langle y_1, \ldots, y_8, x_1, \ldots, x_n \rangle$ contains $K_{2,6} = \langle y_1, \ldots, y_8 \rangle$. Then from Lemma 2 it follows that there exist at most 2n edges $x_i y_j$. Since $K_{2,6}$ has 12 edges we have from our assumption

$$m(n+8) \le 12 + 2n + m(n) \le 12 + 2n + \frac{n(n+24)}{8} = \frac{(n+8)(n+32)}{8}$$
.

(ii) $G = \langle y_1, \ldots, y_4, x_1, \ldots, x_n \rangle$ contains no induced subgraph isomorphic to $K_{2,6}$. Then by our Corollary there exists a set of vertices $M = \{y_1, \ldots, y_4\}$ such that $\langle M \rangle$ contains at most 5 edges and there are at most n+9 edges x_iy_j . Thus using our induction assumption we see that

$$m(n+4) \le 5 + (n+9) + m(n) \le n + 14 + \frac{n(n+24)}{8} = \frac{(n+4)(n+28)}{8}$$
 and the proof is complete.

References

- P. Erdős and M. Simonovits, A limit theorem in graph theory, Stud. Sci. Math. Hungar. 1 (1966), 51-57.
- [2] D. Fronček, Locally linear graphs, Math. Slovaca 39 (1989), 3-6.
- [3] —, Locally path-like graphs, Čas. Pest. Mat. 114 (1989), 176-180.
- [4] E. Kowalska, On locally tree-like graphs, Zastos. Mat. 19 (1987), 497-503.
- [5] B. Zelinka, Locally tree-like graphs, Cas. Pest. Mat. 108 (1983), 230-238.
- [6] —, Locally snake-like graphs, Math. Slovaca 37 (1987), 85–88.

DALIBOR FRONČEK
DEPARTMENT OF MATHEMATICS AND STATISTICS
McMASTER UNIVERSITY
HAMILTON, ONTARIO
CANADA L8S 4K1

Received on 28.3.1991