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Piecewise convex transformations
with no finite invariant measure

by Tomasz KoMorowskl (Lublin)

Abstract. The paper concerns the problem of the existence of a finite invariant absolutely
continuous measure for piecewise C2-regular and convex transformations T: [0, 1]—[0, 1]. We
show that in the case when T'(0) = 1 and T"(0) exists T does not admit such a measure. This result
is complementary to the ones contained in [3] and [5].

1. Introduction. Consider a semidynamical system described by the
difference equation x, 4, = T'(x,), where T: [0, 1]—[0, 1] is a transformation.
We are interested in whether or not there is an absolutely continuous finite
T-invariant measure. The case when T is piecewise smooth and |T'| > 1 was
thoroughly investigated by several authors; see for instance [4], pp. 119-128,
where it is shown that under the above assumptions T has a finite invariant
measure. Moreover, the system is exact with respect to such a measure
provided that each smooth piece of T is onto. The case when |T'| may assume
the value 1 on a certain finite set of points where T(x) = x was studied among
others by F. Schweiger and M. Thaler (see [6]-[9]). They proved some
interesting properties of such transformations, e.g. the existence of absolutely,
continuous o-finite invariant measures and exactness with respect to them.
However, the essential assumption they made in all papers was that there is
a partition of [0, 1] into a finite number of intervals I,, ..., I, for which
T({I) = [0, 1]. Here we do not require that T be onto. Instead, we assume that
T is piecewise convex. This case is not covered by the results of F. Schweiger
and M. Thaler. The transformations considered here need not even satisfy the
Markov property. A map T: [0, 1]—[0, 1] is Markov if one can [ind a finite
or countable collection {I,},, of disjoint open intervals such that

(a) Tis defined in ( Jx»: [, and I\(Ji»1I, has measure zero,

(b) Tl;, is strictly monotonic and extends to a C? function on I, for
each k%,

(©) if T(I)nI,# B then T(I)21, and

(d) there is an R such that | JR-, T"(I,) =2 I, for every k and j.
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Transformations having the Markov property were considered by R.
Bowen in [1].

The piecewise convex transformations were already treated by A. Lasota
and J. Yorke in [5]. They showed that if 7'(0) > | then T has a unique
invariant measure. Moreover, the system is exact with respect to this measure
(see [4]). The case when T’(0) = 1 was studied by P. Kacprowski in [3]. He
showed that if T"(0) does not exist then T possesses such a measure provided
that T satisfies a certain special integral condition (for more details see [3]).
Our main result is a natural complement of those two. We prove that if T"(0)
exists and T'(0) =1 then T has no finite invariant measure. Our method is
essentially different from the method of the jump transformation used by F.
Schweiger and M. Thaler. The idea of the proof is the following: [or any density
f we choose a sequence of nonnegative functions {g,},>, such that

(11) Pf>g, nxl,

where P is the Frobenius—Perron operator for T. The functions {g,},», may be
of a very special form when T admits a finite invariant measure. Assuming that
T has such a measure and T'(0) =1 and T"(0) exists we find a density f and
{g}n=1 satisfying (1.1) for which lim,.  , {§g,(x)dx = + o0, which is impos-
sible since P maps the set of densities into itself. As a corollary we deduce that
for any density f and ¢ > 0

N 1
lim N°'Y [P"fdx=0.
N-»+m n=0¢

2, Notations. We denote by # the o-algebra of Borel sets contained in
[0, 1] and by m the Lebesgue measure defined on 4. I} [0, 1] is the space of all
Z%-measurable functions integrable with respect to m on [0,1] and
D < L'[0, 1] is the set of all functions satisfying

f=0, }f(t)dt=1.
0

Functions from D are called densities. A transformation T: [0, 1]—[0, 1] is
said to be measurable and nonsingular if for every Aed, T '(A)e# and
m[A] =0 implies m[T"!(4)] = 0.

For any measurable and nonsingular transformation T we define the Frobe-
nius-Perron operator P,: [}[0, 11— L'[0, 1] by

[Prfdm= | fdm, Aed, [fel'[0,1].

A T - 1{A4)
Hence

[Prfdm={fdm, fel*[0, 1],
0 0

Prf20 when f20.
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It is well known (see [4]) that
(PrN)*<P.f*, fel'[0,1].

A measure y defined on & is said to be T-invariant if:
p is absolutely continuous with respect to m,

0<uf[0,1]] < +0, wu[A]=pu[T *(4)], for all Ae4.

It is easy to observe (see [4]) that T' admits an invariant measure if and only if
there exists /e D such that P, [ =/..

Finally, to avoid misunderstandings we recall the definition of a convex
function. Let I < R be an interval. We say that a function S: I — R is convex if

S{ax+(1 — o)y} < aS(x)+(1—a) S(),
for all x, yel and a€[0, 1].

3. Auxiliary results. Let T: [0, 1]—[0, 1] be a transformation for which

(1) there is a partition 0 =gy <a, < ... < ay = 1 such that T|;,, _, ., is
C! and convex for k=1,..., N,

() T(ay-.)=0, T'(ay-() >0, k=1,...,N,

(i) T'0) =1 and T'(x) > 1 for x&(0, a,),

(iv) T"(0) exists.
Denote by Z the class of transformations satisfying (i)—(iv). It is easy to
observe that T"e Z for all ne N provided that Te 7. For any Te 7 we denote
by 0=bf <b} <...<bi =1 the partition corresponding to T". We have

{b3, bi, ..., b1} = T "({a, ay, ..., an-1})-
From (ii) we see that
{(lo, Qyy ooy aN—l} = Tnl({am Ayr ey aNHl})

and in consequence

(3'1) {b:'l)i '{v""b;,.—l}c{b"+l b"+l :,H.l -1
=T 1({bn n ey b.\',.—l})'
Let
() = TH™'(x), xeT"([bi-y, bi),

e b x€[0, 1\T"([6}- 1. bY)
where Tk = T"| ;0 ,am> k=1, ..., 5,. From the definition it is easy to observe
that y§, k=1, ..., s,, are increasing and (V3), k=1, ..., , understood as
right denvanves defined in [0, 1] are decreasmg Moreover (1)—(iii) imply
3.2) 1(0) =

(3.3) W7Y©0) =1 and (',')'(x)<1, x€(0, 1].
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Since T = T"|iosn, for xe[0, b]) we have

i) = (1),  for xeT"([0, bY)).

From (iii) we see that b} €(0, a,), and T'(b}) > b} for n > 1. Hence (3.3) implies
that

(3.4 bt =y, (b)) < bl, neN.
Since, by (3.1), b e{by*t, bi*!, ..., b2}, (3.4) gives us
b3t < b, neN,
From (3.2) and (3.3) we obtain
lim (Y)k(t) = for any te(0, 1] and neN,

k= +o

SO
lim b} = lim b} =

n++om n—++w

Denote by P the Frobenius-Perron operator for T. Then the Frobe-
nius-Perron operator for T" is

PP =Y fne)Wy o)
p=l

and maps the class of decreasing densities defined on [0, 1] into itself (for more
details see [4]).

Let @ = P¥ and let g be any decreasing density. From (3.2) we have g > 0
such that Y% and Y% are C'-regular on [0, ¢]. Hence for any xe(0, o]

Qg(x) = g(Wi )WY (x)+ g (W (x) (FhY (x)
2 g(Vi () (WA (x)+ g (Y5.0)) (V) (@)
Setting L = (%) (¢) we obtain
(3.5) Qg(x) 2 (P X)WhY (x)+ Lg(Ws(x), xe[0, el

Now suppose that fis a decreasing density. Then all the functions f, = Q"f are
decreasing and nonnegative. Applying (3.5) to f,+, and f, we get for any
xe[0, ¢]

(3.6) Jor1(0) 2 [N WAY (x)+ LA, (1 (x)),
(3.6a) 5100 2 Lo 1 (W1 )WY () + Lfo - 1 (500)).

From (3.2) and (3.3) it follows that * ([0, ¢]) € [0, ¢]. Since lor any x [0, ¢]
we have % (x)e[0, o] from (3.6a) we see that

L) 2 fo- (WD DY (W () + L - 1 (WE (W4 ().
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Replacing f,(y/%(x)) in (3.6) by the foregoing expression we get

Jur1(6) 2 [o- 1 (WD) WD (W (0) + Lo (W5 (W4 () ] (W5 () + LAy (W ()
= fo- 1 (WD CN(W1)?) )+ Lf,- 1(¢z(¢1(x DAY (o) + L, (4 (x).

We may apply again (3.5) to f,_(x) for xe[0, ¢] with (y%)*(x) instead of x.
Repeating the above procedure n times we obtain finally

Sre1(0) 2 S D™ Y ()
+ Z L, (5@ )@y 7y  for xel0, ol.

p=0
Since we have assumed that f is a decreasing density all the functions f),
1 < p < n, are decreasing. As y4(x) < b% for xe[0, 1], we see that

(3.7) Jor1(x) 2 ): LA 7)), xe[0, ol.

In the sequel we w1ll need the following lemma:

LeMMA 3.1. Assume that Te J and P is the Frobenius—Perron operator for
'T. Suppose that there exists a density f, invariant under P. Then for any
continuous and decreasing f € D satisfying (1) > O there are a, % > 0 for which

P'f(o) 2%, neN.
Proof. It suffices to prove that there is ¢ > 0 for which
liminf P"f (o) > 0.

n-+a

Suppose not. Then for an arbitrary o > 0 we have a sequence ny <n, <... of
natural numbers for which lim,., ., P™f(¢) = 0. Thus

P*™f -0 as k- 40,

uniformly on [o, 1]. For any & > 0 there exists M > 0 satisfying
1
[(fu—Mf)"dx <.
0

Now,

P

f f,dx < [(P™f,~ MP™f)* dx+M j P dx

o

Q

—

< [ P™(f, - Mf)*dx+MjP"“fdx

L

< Q+MIP""fdx.
4
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As k— + 0o we obtain
1
jf,,dx <g¢ for any pair ¢, 0> 0.
(-4

This proves that (! f,dx =0, ¢ > 0, which is impossible since f, € D. This
contradiction ends the proof.

In the case when P has an invariant density we can transform (3.7). From
Lemma 3.1 we find a decreasing density f and o > 0 for which P"f(0) > %,
neN. Let k be so large that b% < ¢. Setting Q = P¥, f, = Q"f and applying (3.7)
we obtain

(38) fus)2 A Y (YY) for xe[0, o]

p=0
where A = Lx > 0.
The following lemma will be useful in the sequel.
LemMMA 3.2. Assume that : [0, 1]1—[0, 1] satisfies the following con-
ditions:

(i) ¥ is C'-regular on [0, o] for some g€(0, 1].

() ¥(0) =0 and y(x) =y(a), x > e.
(ii)) 0 < ¢¥'(x) <1 for xe(0, g].
(iv) ¥'(0) =1 and Y"(0) exists.

Then for every te(0, 1]
2

39 li "O)=—= If ¥
39) Jim myQ) = e I O1> 0,
(3.10) im my"() = +o0 i y"(0) = 0.

n=+m

Proof. First we assume that " (0) s 0. From (iii) and (iv) we see that
¥"(0) < 0. Let te(0, 1] be fixed. Set a, = ny"(t) for ne N. From the Taylor
formula for ¢ at 0 we obtain

2
b () = x— 0" O (1 +0(x),

where lim, .+ 0o(x) = 0. Thus

SRR O
n

¥ (t)

1 ae
= 1 —_— —_nrn =
( +n>[1 nG] 1+b,,

& =14+0(y"()) =1, n-+oo,

where
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1 ac a.e 2
11 b.o=2|1=2n2n [ non -
(3 ) n n[ G} an, nEN, G | H(O)I.

Since lim,. 4+ /"(t) =0 we see that

tim #*! = fim (1+ )"'('V(t) w0 =1.

et @, no e Y"(t)
Let ¢ > 0. Take N, so large that
(3.12) G+8/2> Gfe,>G—e/2 for n= N,,
Gt+e_ a,.,_ G—e
3.13 > > 2 N,.
(3.13) G—e~ a, = G+e for n > No
Let N; = max{N,, 2G/¢}.
CLAIM. There is N, = N, such that
(G+e)? (G—¢)?
. —2za, = = .
(3.14) G =% Gre for n>=N,
To prove (3.14) first observe that neither
(G—e)?
(3.15) a, < Gre for all n> N,
nor
2
(3.16) (%”: <a, forall n3z N,

65

can be true. Indeed, if (3.15) took place then from (3.11) and (3.12) we would

obtain

n (G—¢/2(G+e) | (G—¢/2)(G+e)n?
So Y53 b, = + . Hence

T PR T

N N
an.u___ I—Ia"+l= H(l'l-b,,)""‘*‘oo: N- 400,
a, n=t Gn n=1

and this would contradict (3.15).
If (3.16) occurred then from (3.11), (3.12) we would get

i (G +6)?
b < Z[' —(G+c/2)(a-s)]

and ) 9b, = —co. Hence

N
an+1 _ l—I Qn+1 _
a, n=1 @

N
[I1+b,)—-0, N-+co.

n=1

5 — Annoles Polonici Math. 54.1
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This would contradict (3.16). Thus we have proved that there are n > N, such
that (3.14) holds. It now suffices to show that if (3.14) holds for some n > N,
then it does for n+1. We fix such an n and consider several cases.

If a, < G+¢ then

L <l e (G
i SAG T 6=

Let now
G 2
(GJ:? >a > G+s.
We have
Qn+ 1 1 €, 4, 1 G+e
<14-{1- <1l4+-|1- 1
a, n|: G :|\ +n[ G+s/2:|<
and
2
(¢ <an<(G+8) .
G—:¢

Thus we have proved that if a, < (G+¢&)*/(G —¢) then a,, < (G +¢£)*/G —5¢).
Assume now that
(G—e)?
G+e

<a,<G-—e¢.

Qp+ 1 g,a, ¢&,d 1 G—e G-—¢
Zl+-| -2 2 14— 1= — P
[ G Gn] +n[ G—¢2 mc-dm} :

(G—e)?
G+e

a!l+1 ; a" ;

If a, > G—¢ then from (3.13)

G—c (G —¢)?
"G+&~ G+e

Gy+1 24

Thus if a, > (G—¢e)*/(G+¢) then
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Hence

(G+e)? _ .. . (G—e¢)?
>1 > limi p3 .
G—e = filfl:opa" l:injgfa,, G+e

Since e > 0 was arbitrarily chosen we see that

lim g, =G.
n=+w

Observe that (3.10) [ollows immediately from (3.9), Indeed, when i satisfies
(i)—(iv) and ¢"(0) = O then for any ¢ > 0 we can find y, satisfying (i)-(iv) such
that
(3.17) vz, te[0,1], ¥'(0) = —e.

Hence from (3.9), (3.17) and (iii)

lim infay™(t) > liminf my"(t) = 2/e.
n++w

n—*+wo

Since £ > 0 was arbitrarily chosen we get finally (3.10).

4. The main theorem
THEOREM 4.1. Assume that TeZ and T'(0)= 1. Then there is no
T-invariant measure.

Prool. Suppose that T admits an invariant measure. Then there are
a density f and a positive number A for which (3.8) holds, Thus we obtain

1 n
= gfnn(X)dx?—A Y. (¥1)Y(e), neN,

p=0
SO

@.1) 1A > 2: VY.

However, y/* satisfies the assumptions of Lemma 3.2 and from this we see that
(4.1) does not hold. This contradiction ends the proof.

Remark 4.2. From the nonexistence of a finite invariant measure it
follows that there exists an increasing sequence of sets A, € 4, < ... for which

(4.2) [0, 1= 4

k21
N
(4.3) lim N"'Y [P fdx=0 [for any keN and feD
N=+ao n=1 Ax
(see [2]). Since gy = N"!'YN., P"1 is a decreasing density, it is easy to
calculate that for every ¢ > 0
gy(x) < 1/ if xefe, 1] (see [3]).
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From (4.2), (4.3) we have

(44)

N 1
lim N°t ) [P'ldx=0.

N+ n=1c¢e

By standard computations we deduce from (4.4) that for every feD

R
[2]
3]
4
(5]
(6]

(7
(8]

(9]

N 1
lim N"'Y [Pfdx=0.

N-+wo n=1gs
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