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An abstract version of the resonance theorem

by B. PrzerADZKI1 (L06dZ)

Abstract. The paper includes a version of the existence theorem for a nonlinear operator
equation and. its application to boundary value problems for systems at resonance,

Introduction. In the sixties, there started to appear papers referring to
nonlinear vibrations of systems at resonance. From the mathematical point of
view, this amounts to studying the boundary value problem

Pu—Ayu=f(u,x), Bu=0,

where P is a linear differential operator acting on a function u defined on an
open bounded set Q = R¥, xeQ, f is a nonlinear function, B is a boundary
operator, and A, is an eigenvalue of the homogeneous problem, ie. there is
a nontrivial solution of

Pu—A,u=0, Bu=0.

The differential operator P can be partial or ordinary (in this last case, Q is
a finite interval). The first and most remarkable work in this direction was that
of Landesman and Lazer [4], who considered the case of elliptic and
self-adjoint P, Later, a lot of mathematicians studied similar problems using
different methods, more or less advanced (cf. [1], [6], [7]). In particular, the
method of nonlinear Fredholm mappings and their degree plays an important
role ([2], [8]).

The methods used in solving the considered problem seem to be too
sophisticated for many natural cases. The proof in [7] is almost elementary,
but the problem is specific. In the present paper, we apply only the Schauder
Fixed Point Theorem to obtain a rather general result which includes the
theorems of Landesman and Lazer [4], [7].

The common part of the assumptions of all resonance theorems is that i,
is an isolated eigenvalue and that the eigenspace belonging to A, is finite-
dimensional. We have also added some assumption about the form of the
inverse operator (P—Al)"! near A,.

1. AssumpTiONS. (a) Let X, ¥, X, be Banach spaces, let U be an open
interval containing A,eR and let D: U— L(X, Y) be a continuous mapping
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taking values in the space of linear bounded operators X — Y such that D(1) is
a linear homeomorphism for 13 1, and D(4,) is a Fredholm operator
(obviously, of index zero). Denote by G(4) the inverse operator to D(4), 4 # 4,. .

(b) Let J: X —» X, be a completely continuous linear embedding. We shall
assume that, for A # 4,, the operator

JoG() = G+ 3 ¢, ), ->w,(d),
Jj=1

where Go: U\{l} > L(Y, X,), u;: U\{Ao}=>Y* and w;: U\{i}->X,,
j=1,...,n, has a continuous extension to U, and that thg functions c;:
U\{A,} =R, j=1,...,n, have infinite left-hand and right-hand limits as
A—Ay. It is evident that for A4 # iy, Gy(4) is completely continuous as the
difference of the completely continuous operator JoG(A) and a finite-dimen-
sional operator, and G,(4,) (=lim,.;,G4(4)) is completely continuous by
continuity of G, as a function of A.

(c). Suppose that
ImD(A) = () Keru(d,),
J=1
the vectors w;(4,), j=1,...,n, are linearly independent and
J(Ker D(4,)) = Lin{w;(A,): j=1, ...,n}.
Moreover, let
D(Ao)oJ " roGy(Ag)y =y  for yeIm D(4,).

This means that the equation D(i,)x =y has a solution if and only if
(u;(Ap), y> =0, j=1,...,n, and then all its solutions are of the form

Ix = GolAg)y+ Y. Cwy(ho),
Jj=1

where C,, j =1, ...,n, are arbitrary constants.

(d) We shall deal with the nonlinear equation D(1)J ~'x = F(x), where F:
X, — Y is a nonlinear continuous mapping such that F(X,) is a bounded set. If
A # Aq, then the above equation can be written in the form x = JoG(4)F(x).
Since JoG(4) is completely continuous and F(X,) is bounded, this last
equation is solvable by the Schauder Fixed Point Theorem. When A = 4, the
equation D(lg)J ~!x = F(x) is equivalent to the system

= GolhgF()+ 3, Cyw,lh),

<uj(’10)7 F(x))=0, j=1,...,n

where C;, j=1,...,n, are arbitrary constants.
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We need an ‘assumption on the asymptotic behaviour of F on
J(KerD(4,)). Denmote by [C,,...,C,] the equivalence class of
(Cy, -..,C,)eR"\ {0} with respect to the relation

(Cys o CY)~(C1, ..., C) = 3150V, C; = aC).
We shall identify [C,, ...,C,] with a half-line in X, starting from the origin

and passing through Y, C,w;(4;). The set of all such half-lines covers
J(KerD(4,)). Suppose that the limits’

F[Cl.....C"] = lim F(a Zl Cjwj(;"O))
[ Smdl- o] .’='

exist for any [C,,...,C,].
Now, we are able to formulate the main theorem.

2. MAIN THEOREM. -Under the above assumptions, if, for each [C,, ...,C,],
there exists j, (1 <j, < n) such that

C;, Cuy,(49), Fie,,..ca)¢fy <0,
where ¢ = +1iflim _ . c;(4) = +oco and cji = — 1 if this limit equals — oo,
then the equation
D(A;)J ' x = F(x)

has a solution. The same holds if the right-hand limits are replaced by the
left-hand ones.

Proof, Suppose that the assumptions of the theorem in the version with
the right-hand limits are satisfied, and that A, — 13 . Then, due to the Schauder
Fixed Point Theorem, there are x,€ X,, ke N, such that

x, = JoG(A)F(x,).

Assume first that the sequence (x,) is bounded. Then

Z cj('q'h) <“1(Ak), F(x)>w,(4), keN,

=1

is also bounded as the difference of bounded and relatively compact sequences.
Since w;(4,), j =1, ...,n, are linearly independent (at least for large k), the
sequences of real numbers c;(4,)<{u,(4,),. F(x,)>, keN, are bounded for
j=1,...,n. Hence, we can pass to convergent subsequences:

Go(h)F(x,)~»zeX,, c(A)<u4), Fx,)>—=C;,, j=1,...,n
It follows that x,, —x = z+3 -, C,w,(4,). By the continuity of F and u; and
the unboundedness of c¢/(4,), leN,

ulde), FX)) =0, j=1,...,n.
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Therefore
x = Go(Ap) F(x)+ Z Cyw,(4)

j=1
and x is a solution of our equation.

"Now, we have to show that the sequence (x,) cannot be unbounded.
Suppose the contrary. Then passing to a subsequence (if necessary), we can
assume that lim||x,| = oo. Applying the preceding arguments to the bounded
sequence (|jx, | ~*x,), we conclude that the sequences '

c;(Ao ”xk"—1<uj(’2'k): F(x)>, keN,
are bounded for each j. Passing to subsequences once more, we obtain
Cj(}“k.) | X, |1 <“j(lk,), F(x,q)> — Cj
as -0 for j=1,...,n. On the other hand, ||x,¢||“GO‘(,1,,)F(xk)—+0, SO

12,1l ~ lxk. - Z Cjwj('q-o)-
J=1

Hence. F(x; ) — Fic,,....c.;, Which implies that

for j=1,...,n. But ¢,(4,)—¢/ - 00, which means that
C<uy(Ao)s Ficy,..cadei 20
for each j, and this is false for j = j,. The contradiction finishes the proof.

Now, we apply the theorem to boundary value problems for differential
equations.

3. AppLicATION L. Let X = H2(R2) be the Sobolev space of all functions
defined on an open bounded set 2 < R*, having derivatives up to order 2 (in
the distribution sense) in L*(£2) and vanishing on the boundary Q2. We assume
that 8Q is such that the embedding J: X -I*(Q) = X, =Y is completely
continuous. Let D(A) = P—AI where P is an elliptic, formally self-adjoint
differential operator of order 2 on 2, and I is the identity map. It is known that
D(4) is a linear homeomorphism of X onto Y if 4 is not an element of
a sequence {1,;:s=0,1,...,n,...}, and that the eigenspace corresponding to
each eigenvalue A, is finite-dimensional. In (4,), the eigenvalues are repeated
according to their multiplicities.

Choose an eigenfunction w, corresponding to 4, in such a way that all the
w,’s which correspond to the same eigenvalue are orthonormal with respect to
the L* scalar product. Due to the Hilbert-Schmidt theory, {w,: s =0, 1, 2,...}
is a complete orthonormal system in I*(2) and for A#4,s=0, 1, 2, ..., the
unique solution (in H2(2)) of the equation

Pu—Au=y
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is given by the formula

it (ws’ y)
.'.-‘;0 A‘_As ol

Suppose that A, is a simple eigenvalue, i.e. 1, # 4, for s = 1. We can set in the
Main Theorem

u=G()y=

2 (ws, ¥)
Go(Ay =Y =—=2Zw,,
° .1;1 ,1—-,1

to(A) = (wo, ), Wold) =wo, Co(d) =(A—29)7".

s

Let
F(u)(x) = f (u, x)

where f: RxQ—R is a continuous function such that the limits

lim f(u, x) = f_(x), liin flu, x)=f,(x)

= — &0

exist in the L2-sense where f,, f_eI*(Q).
We look for a-solution of the equation Pu—A,u = f(u, x) in H*(2). The
following theorem of Landesman and Lazer is a consequence of our result.

THEOREM ([4]). If the numbers
o= | ) sWot | fowo,

(x: wo(x) > 0) {x: wp(x) <0}
B= I f-wot .f J+Wo
{x: wo(x) > 0} {x: wo(x) < 0}

have opposite sings then the equation Pu—Aqu = f (4, X) has a solution in H*(Q).

Proof When the eigenspace is one-dimensional (as in this case), there are
only two half-lines [+1] and [—1]. The corresponding limits F,;; and
F(_yyare a and f, respectively. If « < 0 < f, then we take the right-hand limits
A—Ag in the Main Theorem and obtain

+|C|asgn(+ ) <0, —|C,|Bsgn(+c0)<0.

If B < 0 < a, we take 1 — Ay to get the assertion, The other assumptions of the
Main Theerem are trivially satisfied. m

One can also study the case of multidimensional eigenspaces by our
method. For simplicity, consider the two-dimensional case, and let v,, w, span
the eigenspace corresponding to 4,. Then

f+(x) if Cvg(x)+ Dwy(x) > 0,

Fic,py(x) = {f_ (x) if Cuvg(x)+Dwy(x) < 0.
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have opposite sings and (vy, Ficop) # 0 # (Wo, Flo,;). Then the considered
equation has a solution in H?(Q). The proof is quite similar to the previous one.

4. ArpLiCATION II. Now, we pass to boundary value problems for
ordinary differential equations. One can construct a Green function for such
a problem explicitly, even when the operator is not self-adjoint and has an
arbitrary order. For this reason we consider the case of ordinary differential
equations separately.

Let a,,...,am-1: [a, B]x U—R be continuous functions which depend
analytically on 1eU and let

m m=—1
D(A)x = %t—:-i-a,,,_l(t, A)%t—m_—f+ o Fag(t, D).

Suppose that B,,...,B,, are linearly independent functionals of the form

il dx(b
B(x)= Y [“u ;t(ja)'*‘ﬁu ;tg )]-

j=0

We write shortly B = (B,, ..., B,). The operators D(4) will be considered on
the space X consisting of a]l C™-functions x defined on [a, b] such that Bx = (.
Let X, = Y = C([a, b))

We construct the Green function for the BVP

D(A)x=y, Bx=0

following [3]. Let ¢,(4),j = 1, ..., m, be a C™-function satisfying the differential
equation D(A)x = 0 and the initial conditions ¢}~ "(1)(a) = I, where [I;,];j<m
is an invertible matrix that we shall choose later. The functions ¢, (1), ..., ¢,,(4)
form a fundamental system of solutions of the homogeneous linear equation for
each Ae U, and they are analytic functions of 1 (see [7]). Hence the matrix
[B,¢,] is analytic, and so is its determinant. We consider the case when 4, is an
isolated zero of this determinant. This means that the problem D(1)x =y,
Bx = 0 has a unique solution for A # 4, and, for A = 4,, the homogeneous
problem (y = 0) has an n-dimensional space of solutions, l S n<m. Letn=1
for simplicity. Choosing the appropriate matrix /], we can assume that
Bip(A)) =0 for i=1,....m

We also need a less natural assumption. For y being an analytic function
of A, denote by u(y, 1,) the multiplicity of the zero of  at 4,; if Y(4,) # O, then
we put u(y, 4,) =0. Suppose that

(*) ﬂ(det[B((Pj]: Ao) = u(Bioy, o)

for any i < m.
Define K: [a, b]>x U—~R by

K(t,s; A)=0 for s>t,
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(pl(}“’ S) QD,.,,()», S)
K(t, s; ) = W(s; )t oI I g for s <t,
©,(4, 1) e 0,4, 1)

where W is the Wronskian of the fundamental system. If 4# i, and
yeC([a, b]), then the function

V() = EK(t, s; A)y(s)ds
satisfies the differential equation D(A){ = y. Put
G, s; 2) = K(t, s; l)+1i1 hi(A, o, t)
for A # A,. The scalar functions hj will be chosen in such a way that

Y (t) = [G(t, s; Ay(s)ds

satisfies not only the differential equation D(4)} = y, but also the condition
By = 0. This is equivalent to the system of algebraic linear equations

jil h(A, s)B;p,4) = B[K(-,5;4), i<m.
Hence, by the Cramer formulas,
hi(4, 5) = (det[BIth(l)])_l i (—1)** 1 det B (A) x B/(K(", s5; 4),
i=1
where B, ;(4) is the matrix obtained from [B;¢,(4)] by deleting the i-th row and
the j-th column. By (#), h; has a finite limit as A — 4, for j > 1. On the other

hand, h, does not admit a continuous extension to the whole neighbourhood of
Zo. Thus, one can put in the Main Theorem

¢,(4) = (det[B,p,()]) ",
b
Cug(A), ¥> = e ()7 hy (A, s)y(s)ds,

wi(4) = @,(4).
Moreover,

b
Go(Ay = [ G(:, 53 y(s)ds—cy (A)<u, (A), y>w,(4).

Let F: X, —»Y be the superposition operator
FO)() = f(x(0), 1),
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where f: R x [a, b] - R is a bounded continuous function such that the uniform
limits
lim f0r,0=fo0), lim f(x,0=/-0)

x—++

exist. The limits lim,- s , F(pw,(A0)) = Fp+1y do not exist in ¥, in general. If
they exist, they should have the form

_Jfe @ if wy(dg, 1) >0,
Fren® = {f_ ©  if w,(g, 1) <O,

(O i wilde, >0,
F-ul) = {f+ © i wyllo, 1) <.

The functional u,(4,) given by an integral can act on the discontinuous
functions E;;,; as well. We have

THEOREM. Under the above assumptions, if the numbers (u,(A,), F;+1;) and
{uy(Ao), Fr—11) have opposite signs, then the problem

D(lg)x = F(x), Bx=0
has a solution in the classical sense.

Proof. The problem will be solved if we show that there exists
a continuous function x such that

b
x(t) = [ Gy(t, 55 Ag) F(x(s))ds+Cw, (4o, 1),

b
(uy(Ao)s F(x)) = [ U (Ag; s)F(x(s))ds = 0,

where G, is the kernel of the integral operator G,(4,) = lim,_.;,G,(4) and U, is
the kernel of the functional u,. The zeros of w,(4,) are isolated, so we can cut
out of [a, b] a small neighbourhood V of the set of zeros in such a way that the
numbers
[ Ui(Ao; 8)F(41;(s)ds, | Ui(do; 8)Fi=y(s)ds
[a,6\V [a, BNV

have the same signs as (u, (o), Fr+1y) and <u,(4,), Fy—,;) respectively.

Take a sequence (V)in of such neighbourhoods so that their intersection
consists of the zeros of w,(4,) only. The arguments from the proof of the Main
Theorem can be applied to give the existence of a solution of

(&)= [ Golt, s; Ag)F(x,(8)ds+ Cwy (Ao, 1),

[a,b1\Vie

§ Uyi(Aos 8$)F(x,(s))ds = 0.
[a,6)\Vsc
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The sequence (C,) cannot be unbounded. In fact, if C, — + oo then C; ' x, » w,
and, therefore, F(x,)— Fj.q pointwise, so (u(4,), Fi+() =0. The case
C,— —oo is similar.

Since (C,) is bounded, we can pass to subsequences and get X, —x,
C,,— C. Obviously,

X = Go(Ag) F(x)+Cw (Ag), <uy(4y), F(x)) =0,
thus x is a solution of the problem considered. m

The above considerations become more and more complicated when the
dimension of the eigenspace corresponding to A, increases, However, it is
possible to get similar results in many special cases.

5. Final remarks. Our method works also for ordinary differential
equations in R™.

The assumption that A, is an isolated singular point has not been
necessary for the proof of the Main Theorem. In fact, we have only needed to
know that A, is a boundary point of the set of regular points. This encourages
us to apply our method to boundary value problems for differential equations
in unbounded domains. Such problems possess continuous spectra. However,
there is an amount of other difficulties: the choice of appropriate spaces and
the jumping change of Green functions as A — 4,, for example. These difficulties
have not been overcome yet.
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