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1. Introduction. The purpose of this paper is to present some results
related to squarefree values of polynomials. For f(x) ∈ Z[x] with f(x) 6≡ 0,
we define Nf = gcd(f(m),m ∈ Z). For computational reasons it is worth
noting that

Nf = gcd(f(m),m ∈ {0, 1, . . . , n})
where n denotes the degree of f(x). This observation is due to Hensel
(cf. [1, p. 334]) and follows in a fairly direct manner after using Lagrange’s
interpolation formula to deduce that

f(m) =
n∑

j=0

(−1)n−j

(
m

j

)(
m− j − 1
n− j

)
f(j) ,

where m is any integer > n. We will be interested in estimating the number
of polynomials f(x) for which there exists an integer m such that f(m) is
squarefree. This property should hold for all polynomials f(x) for which Nf

is squarefree. However, this seems to be very difficult to establish. Nagel [8]
showed that if f(x) ∈ Z[x] is an irreducible quadratic and Nf is squarefree,
then f(m) is squarefree for infinitely many integers m. Erdős [2] proved
the analogous result for irreducible cubics. Nair [9] has shown that in the
case of an irreducible polynomial f(x) of degree n, one may obtain a similar
theorem for k-free values of f(x) provided that k ≥ (

√
2 − 1

2 )n. Of related
interest are the papers of Hooley [5], Nair [10], and Huxley and Nair [6].
The problem of determining whether there exists a polynomial f(x) ∈ Z[x]
of degree ≥ 4 for which there are infinitely many integers m such that f(m)
is squarefree is open.

Our interest is in the simpler problem of showing that many polynomi-
als take on at least one squarefree value. If one can show that (i) every
polynomial f(x) ∈ Z[x] with Nf squarefree is such that f(m) is squarefree
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for at least one integer m, then it will follow that (ii) every polynomial
f(x) ∈ Z[x] with Nf squarefree is such that f(m) is squarefree for infinitely
many integers m (cf. the proof of Theorem 2 in [3]). In fact, (i) implies that
(iii) every polynomial f(x) ∈ Z[x] is such that f(m)/Nf is squarefree for
infinitely many integersm. Our goal is to show the weaker result that almost
all polynomials f(x) withNf squarefree take on at least one squarefree value.

To clarify our results, we define

Sn(N) =
{
f(x) =

n∑
j=0

ajx
j ∈ Z[x] : |aj | ≤ N for j = 0, 1, . . . , n

}
.

Thus, |Sn(N)| = (2[N ] + 1)n+1. We say that almost all polynomials f(x)
have a certain property P if for every nonnegative integer n,

(1) lim
N→∞

|{f(x) ∈ Sn(N) : f(x) satisfies P}|
|Sn(N)|

= 1 .

Results associated with almost all polynomials go back to van der Waer-
den [12]. He showed that for almost all polynomials f(x) the associated
Galois group is the symmetric group on n letters where n = deg f(x). In
particular, this implies that almost all polynomials are irreducible. A proof
of this latter fact can be found in Pólya and Szegő [11, p. 156]. Other related
results can be found in Gallagher [4] and the author’s [3].

We make a brief historic remark on the phrase “almost all” in this con-
text. Van der Waerden’s Algebra I includes a comment on his result above
[13, p. 204]. The German edition states that the Galois group is the symmet-
ric group for asymptotically “100%” of the polynomials rather than using
a German equivalent for “almost all”. This led to a mistranslation in the
English edition [14, p. 200] where a statement is made asserting that the
Galois group is the symmetric group for “all” polynomials. The earliest
editions of van der Waerden’s Algebra I do not refer to his result above.

At times we will restrict our attention to polynomials f(x) for which Nf

is squarefree. An almost all result for such f(x) will mean that (1) holds
with Sn(N) replaced by {f(x) ∈ Sn(N) : Nf squarefree }. We will prove

Theorem 1. Almost all polynomials f(x) with Nf squarefree are such
that f(m) is squarefree for some integer m.

Theorem 2. Almost all polynomials f(x) are such that there is an integer
m for which f(m)/Nf is squarefree.

We will actually prove stronger results (see Section 3). As a conse-
quence of the stronger results, we note that almost all polynomials f(x) =∑n

j=0 ajx
j are such that f(m)/Nf is squarefree for some positive integer
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m ≤ ψ(max0≤j≤n{|aj |}), where ψ(x) is any function which tends to infinity
with x.

2. Preliminaries. Throughout this section and the next we make use
of the notation established in the introduction. We view n as being a fixed
nonnegative integer so that, in particular, other quantities such as ε may
depend on n. We will, however, stress when such a dependence is necessary.
We reserve p for denoting primes.

Lemma 1. Let ε > 0, and let B = B(N) be a function which increases
to infinity with N . Suppose further that B(N) = o(N). Then there exists
N0 = N0(n, ε,B) such that if N ≥ N0, then the number of pairs (f(x),m)
with f(x) ∈ Sn(N),m ∈ Z ∩ [1, B], and f(m) squarefree is in the inter-
val [

(1− ε)
6
π2

(2N)n+1B, (1 + ε)
6
π2

(2N)n+1B

]
.

P r o o f. Let ε′ > 0. Fix m0 to be a positive integer satisfying m0 ≥
(1/ε′) + 1 so that if m ≥ m0, then

mn−1 + . . .+m+ 1 =
mn − 1
m− 1

< ε′mn .

For the moment fix m to be an integer in [m0, B], and consider an integer
d such that

(2) |d| ≤ (1− ε′)Nmn .

If a0, a1, . . . , an−1 are arbitrary integers in [−N,N ] and N is sufficiently
large, depending only on ε′, we get

(3) |d− (an−1m
n−1 + . . .+ a1m+ a0)| ≤ Nmn .

We successively choose a0, a1, . . . , an−1 as above with a0 ≡ d (modm) and
for j ∈ {1, 2, . . . , n− 1},

aj ≡ (d− a0 − . . .− aj−1m
j−1)/mj (modm) .

Thus, the total number of choices for (a0, a1, . . . , an−1) is(
2[N ] + 1

m
+O(1)

)n

=
(

2N
m

)n

+On

(
Nn−1

mn−1

)
.

By (3), we can now find a unique an ∈ [−N,N ] such that

d = anm
n + . . .+ a1m+ a0 .

The above steps may be reversed. More specifically, given m and d as
above, we must have that a0, . . . , an−1 satisfy the congruences above, and
this uniquely determines an as above. Thus, for m fixed in [m0, B], each
integer d satisfying (2) has (2N/m)n +On(Nn−1/mn−1) representations of
the form f(m) where f(x) ∈ Sn(N).
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We now let m vary over all the positive integers m ≤ B. We divide the
pairs (f(x),m), where f(x) ∈ Sn(N) and 1 ≤ m ≤ B, into 3 sets S1, S2, and
S3. The set S1 consists of those (f(x),m) for which d = f(m) is squarefree,
m ∈ [m0, B], and (2) holds. The set S2 consists of those (f(x),m) for which
d = f(m) is nonsquarefree, m ∈ [m0, B], and (2) holds. The set S3 consists
of the remaining pairs (f(x),m). Then since for any t > 0 the number of
squarefree numbers ≤ t is (6/π2)t+O(

√
t), we get

|S1| =
∑

m0≤m≤B

((
2N
m

)n 6
π2

(1− ε′)(2N)mn +On(Nnm) +O(Nn+1/2)
)

= (6/π2)(1− ε′)(2N)n+1B +On(Nn+1m0)

+On(NnB2) +O(Nn+1/2B) ,

|S2| =
(

1− 6
π2

)
(1− ε′)(2N)n+1B +On(Nn+1m0)

+On(NnB2) +O(Nn+1/2B) ,
and
|S3| = (2[N ] + 1)n+1[B]− |S1| − |S2|

= ε′(2N)n+1B +On(Nn+1m0) +On(NnB2) +O(Nn+1/2B) .

Now, |S1| gives us a lower bound on the number of pairs (f(x),m) with
f(m) squarefree and m ∈ [1, B]. An upper one is

|S1|+ |S3| < (6/π2)(1 + ε′)(2N)n+1B +On(Nn+1m0)

+On(NnB2) +O(Nn+1/2B) .

Thus, taking ε′ = ε/2 and N sufficiently large, the result follows.

The proof of Lemma 1 given above is similar to the proof of Lemma 1 in
[3]. Lemma 1 asserts that the f(x) ∈ Sn(N) on average take on ∼ (6/π2)B
squarefree values as x ranges over the positive integers ≤ B. We note that
this is true despite the fact that a positive proportion of the f(x) ∈ Sn(N)
take on no squarefree values. More specifically, observe that Nf is divisible
by p2 if and only if

f(x) ≡ x2(x− 1)2 . . . (x− (p− 1))2g(x)

+ px(x− 1) . . . (x− (p− 1))h(x) (mod p2) ,

for some polynomials g(x) and h(x) ∈ Z[x]. Thus, if p ≥ n + 1, then
f(x) ≡ 0 is the only such f(x) modulo p2; if (n + 1)/2 ≤ p ≤ n, then
there are exactly pn−p+1 incongruent such f(x) modulo p2; and if p ≤ n/2,
then there are exactly p2n−3p+2 incongruent such f(x) modulo p2. A simple
application of the sieve of Eratosthenes implies that for N sufficiently large,
the proportion of f(x) ∈ Sn(N) for which Nf is nonsquarefree is asymptotic
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to

1−
∏

p≤n/2

(
1− 1

p3p

) ∏
(n+1)/2≤p≤n

(
1− 1

pn+1+p

) ∏
p≥n+1

(
1− 1

p2n+2

)

≥ 1−
∏
p

(
1− 1

p3p

)
= 0.015675 . . .

Thus, the polynomials f(x) ∈ Sn(N) which take on at least one squarefree
value as x ranges over the positive integers ≤ B on average take on ≥
(6/π2)B (1.0159 . . .) squarefree values. This curiosity is due to the size of
the coefficients of the polynomials under consideration in comparison to B.

For f(x) ∈ Z[x] and l ∈ Z, we define %(l) = %f (l) to be the number
of incongruent solutions to f(x) ≡ 0 (mod l). The next lemma gives some
basic properties of %(l).

Lemma 2. Let f(x) ∈ Z[x] of degree n. Then %(l) has the following
properties:

(i) %(l) is multiplicative (i.e., if l1 and l2 are relatively prime integers,
then %(l1l2) = %(l1)%(l2)),

(ii) if %(p) = p, then either p ≤ n or f(x) ≡ 0 (mod p),
(iii) if %(p) < p, then %(p) ≤ n,
(iv) if %(p2) > %(p), then f(x) has a multiple root modulo p (i.e., there ex-

ist an integer a and a polynomial g(x) such that f(x) ≡ (x−a)2g(x)(mod p)),
(v) if %(p2) < p2, then %(p2) ≤ pn,
(vi) if p > n and %(pr) = pr for some positive integer r, then f(x) ≡

0 (mod pr).

P r o o f. Property (i) is an immediate consequence of the Chinese Re-
mainder Theorem. A theorem of Lagrange states that either the number of
solutions to the congruence f(x) ≡ 0 (mod p) is ≤ n or f(x) is identically 0
as a polynomial modulo p. This easily implies (ii) and (iii). Each root m of
f(x) modulo p extends to at most p roots m+kp, where k ∈ {0, 1, . . . , p−1},
modulo p2. Furthermore, m will extend to exactly 1 root of f(x) modulo
p2 unless m is a multiple root of f(x) modulo p (cf. [7, pp. 63–69]). Thus,
(iv) follows. From the above, if %(p) < p, then (v) is a consequence of
(iii). Also, if p ≤ n, then (v) is immediate since then %(p2) ≤ p2 ≤ pn.
Now, suppose that p > n and %(p) = p. Then %(p2) < p2 implies that
f(x) = pg(x) where g(x) is a polynomial in Z[x] which is not identically 0
modulo p. By Lagrange’s Theorem, g(x) has ≤ deg g(x) = n roots modulo
p. Each such root m of g(x) modulo p corresponds to exactly p incongruent
roots of f(x) modulo p2 since f(m + kp) ≡ pg(m + kp) ≡ 0 (mod p2) for
each k ∈ {0, 1, . . . , p− 1}. Thus, (v) follows. Finally, we just note that the
proof of (vi) is similar to the proof of (v).
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Lemma 3. For B ≥ ee, f(x) ∈ Z[x], and z ≤ log logB, the number of
positive integers m ≤ B for which f(m) is not divisible by p2 for each p ≤ z
is equal to ∏

p≤z

(
1− %(p2)

p2

)
(B +O(logB)) .

In particular , there exists an absolute constant C1 > 0 such that the number
of positive integers m ≤ B for which f(m) is squarefree is

≤
∏
p≤z

(
1− %(p2)

p2

)
(B + C1 logB) .

The proof of Lemma 3 is omitted. It is a direct application of the sieve
of Eratosthenes. The main idea in the paper is to show that for most
f(x) ∈ Sn(N) the upper bound given above is very close to the actual
number of integers m ≤ B for which f(m) is squarefree. This is what is to
be expected since the product above converges as z tends to infinity.

Lemma 4. Let xj ∈ (0, 1) for j ∈ {1, 2, . . . , r}. Then
r∏

j=1

(1− xj) ≥ 1−
r∑

j=1

xj .

The proof of Lemma 4 is easily done by induction since by the conditions
on xj , (

1−
r−1∑
j=1

xj

)
(1− xr) ≥ 1−

r∑
j=1

xj .

Lemma 5. As f(x) ranges over all the incongruent polynomials of degree
≤ n modulo p2, the average value of %f (p2) is 1.

We omit the proof of Lemma 5 as it follows in a fairly straightfor-
ward manner by using translation considerations to establish that each of
0, 1, . . . , p2 − 1 have an equal probability of being attained as a value of
f(m) (mod p2).

Our next goal is to show that for most f(x) ∈ Sn(N), if∏
p≤z

(
1− %(p2)

p2

)
> 0 ,

then it is not too small. We formulate this in the following manner.

Lemma 6. Let ε > 0, and let N be sufficiently large (depending on n and
ε). Let z ≤ log logN . Then there exist positive numbers n0 = n0(ε) and
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ε′ = ε′(ε, n) such that the number of f(x) ∈ Sn(N) satisfying

(i)
∏

p≤n2+n0

(
1− %f (p2)

p2

)
> 0 and (ii)

∏
p≤z

(
1− %f (p2)

p2

)
< ε′

is ≤ ε(2N)n+1.

P r o o f. Consider the f(x) ∈ Sn(N) for which (i) holds (where n0 as
well as ε′ are for the moment unspecified). Thus, %(p2) < p2 for each such
f(x) and each prime p ≤ n2 + n0. Hence,∏

p≤n2+n0

(
1− %f (p2)

p2

)
≥

∏
p≤n2+n0

(
1− p2 − 1

p2

)
=

∏
p≤n2+n0

p−2 .

Now, consider any f(x) ∈ Sn(N). We find from Lemma 2(ii), (iii), and (iv)
that for n2 + n0 < p ≤ z, either %f (p2) ≤ n or f(x) has a multiple root
modulo p. Letting

c(n, z) =
∏

n2+n0<p≤z

(
1− n

p2

)
,

we see that c(n, z) is greater than the product

c(n) =
∏

p>n2+n0

(
1− n

p2

)
,

which is easily seen to converge to a positive quantity. Hence, for each
f(x) ∈ Sn(N),∏
n2+n0<p≤z

(
1− %f (p2)

p2

)
≥

∏
n2+n0<p≤z

(
1− n

p2

) ∏
n2+n0<p≤z

∗
(

1− %f (p2)
p2

)

≥ c(n)
∏

n2+n0<p≤z

∗
(

1− %f (p2)
p2

)
,

where
∏∗ indicates that the product is over those primes p for which f(x)

has a multiple root modulo p. We now show that this latter product is not
small for most polynomials f(x) ∈ Sn(N).

Let k = k(ε) be a positive integer such that
∞∑

j=0

(
7
10

)2jk

<
ε

2e
.

Such a k exists since
∞∑

j=0

(
7
10

)2jk

≤
∞∑

j=k

(
7
10

)j

=
10
3

(
7
10

)k

.
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Define
t(j) = (n2 + n0)2

j

for j ∈ {0, 1, . . . , s+ 1} ,
where s is chosen so that (n2 + n0)2

s

< z ≤ (n2 + n0)2
s+1

. Thus,∏
n2+n0<p≤z

∗
(

1− %f (p2)
p2

)
≥

s∏
j=0

( ∏
t(j)<p≤t(j+1)

∗
(

1− %(p2)
p2

))
.

Let T = T (n,N) be the set of f(x) ∈ Sn(N) for which there is a j ∈
{0, 1, . . . , s} such that f(x) has a multiple root modulo p for ≥ 2jk primes
p ∈ (t(j), t(j + 1)]. Also, we define T ′ = T ′(n,N) to be the set of f(x) ∈
Sn(N) for which %f (p2) = p2 for some prime p ∈ (n2 +n0, z]. We show that

(4) |T ∪ T ′| ≤ ε(2N)n+1

and then establish that
∏

p≤z(1− %f (p2)/p2) ≥ ε′ for the remaining f(x) ∈
Sn(N).

We deal with T ′ first. By Lemma 2(vi), each f(x) ∈ T ′ is such that
f(x) ≡ 0 (mod p2) for some prime p ∈ (n2 + n0, z]. Note that the number
of f(x) ∈ Sn(N) such that f(x) ≡ 0 (mod p2) for a given prime p is(

2N
p2

+O(1)
)n+1

=
(

2N
p2

)n+1

+On(Nn) .

The choice of z ≤ log logN easily implies that the total number of such
f(x) ∈ T ′ is

≤
∑

n2+n0<p≤z

((
2N
p2

)n+1

+On(Nn)
)

≤
( ∑

p>n2+n0

(
2N
p2

)n+1)
+On(Nn log logN)

≤ (2N)n+1

( ∑
p>n0

1
p2

)
+On(Nn log logN) .

For n0 chosen sufficiently large (depending only on ε) we get |T ′| ≤
(ε/2)(2N)n+1.

We now turn to considering T . We begin by dividing up T into subsets
Tj which are not necessarily disjoint. For each j ∈ {0, 1, . . . , s}, we define
Tj as the set of f(x) ∈ Sn(N) such that f(x) has a multiple root modulo
p for ≥ 2jk primes p ∈ (t(j), t(j + 1)]. Fix j, and set w = 2jk. Let
p1, . . . , pw be w distinct primes in (t(j), t(j + 1)]. Define Tj(p1, . . . , pw)
to be the set of f(x) ∈ Tj such that f(x) has a multiple root modulo pj

for each j ∈ {1, . . . , w}. Note that each f(x) ∈ Tj belongs to some set
Tj(p1, . . . , pw). The number of incongruent polynomials modulo a prime p
of degree ≤ n which have a multiple root modulo p is equal to the number of
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incongruent polynomials of the form (x−a)2g(x) where a ∈ {0, 1, . . . , p−1}
and deg g(x) ≤ n − 2. Thus, the number of such polynomials is ≤ pn.
Therefore, the Chinese Remainder Theorem easily yields that the number
of incongruent polynomials f(x) modulo p1 . . . pw of degree ≤ n such that
f(x) has a multiple root modulo pj for each j ∈ {1, . . . , w} is ≤ pn

1 . . . p
n
w.

By dividing Tj(p1, . . . , pw) into these ≤ pn
1 . . . p

n
w congruence classes, we get

|Tj(p1, . . . , pw)| ≤
(

2N + 1
p1 . . . pw

+ 1
)n+1

pn
1 . . . p

n
w .

By the definition of s we have (n2+n0)2
s

< z, so that for n0 sufficiently large,
w ≤ 2sk < z. Also, each pj ≤ t(s+ 1) = t(s)2 ≤ z2 so that p1 . . . pw ≤ z2z.
The choice z ≤ log logN gives

p1 . . . pw ≤
2N
n+ 1

− 1 ,

for N sufficiently large (depending on n). Hence,

|Tj(p1, . . . , pw)| ≤

(
2N + 1
p1 . . . pw

+
2N
n+1 − 1
p1 . . . pw

)n+1

pn
1 . . . p

n
w

=
(

1 +
1

n+ 1

)n+1 (2N)n+1

p1 . . . pw
< e

(2N)n+1

p1 . . . pw
.

Since each polynomial in Tj belongs to some Tj(p1, . . . , pw) described
above, we now get

|Tj | ≤ e(2N)n+1

( ∑
t(j)<p≤t(j+1)

1
p

)w

≤ e(2N)n+1cw ,

where we can take c to be any constant > log 2 provided n0 is sufficiently
large. Here, we have used the fact that∑

p≤y

1
p

= log log y +A+ o(1) ,

for some absolute constant A. We take c = 7/10.
We are now ready to complete our estimate for |T |. We get

|T | ≤
s∑

j=0

|Tj | ≤ e(2N)n+1
∞∑

j=0

(
7
10

)2jk

<
ε

2
(2N)n+1 ,

by our choice of k. The above estimates on |T ′| and |T | easily imply (4).
We now consider

∏
n2+n0<p≤z
∗ (1 − %f (p2)/p2) where f(x) ∈ Sn(N) −

T −T ′. By Lemma 2(v), for each prime p in the range of the product above,
%(p2) ≤ np. Also, for each j ∈ {0, 1, . . . , s}, there are fewer than 2jk primes
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p ∈ (t(j), t(j + 1)] for which f(x) has a multiple root modulo p. Hence,∏
t(j)<p≤t(j+1)

∗
(

1− %f (p2)
p2

)
≥

∏
t(j)<p≤t(j+1)

∗
(

1− n

p

)
≥
(

1− n

t(j)

)2jk

.

Thus, using Lemma 4,∏
n2+n0<p≤z

∗
(

1− %f (p2)
p2

)
≥

s∏
j=0

(
1− n

t(j)

)2jk

≥ 1−
s∑

j=0

2jkn

t(j)
= 1−

s∑
j=0

2jkn

(n2 + n0)2
j >

1
2
,

provided n0 is sufficiently large. We note that we can choose n0 so that
everything above holds and so that n0 only depends on ε (and not on n
unless, of course, ε depends on n). For example, by checking the cases
n ≤ √n0 and n >

√
n0 separately, the last inequality above is easily seen to

hold provided that
∞∑

j=0

2jk

n2j−(1/2)

0

<
1
2
,

which, since k only depended on ε, gives a lower bound on n0 depending
only on ε.

Combining the above, we see that for f(x) ∈ Sn(N)− T − T ′ and f(x)
satisfying (i), ∏

p≤z

(
1− %(p2)

p2

)
≥ c(n)

2

( ∏
p≤n2+n0

p−2

)
.

Thus, the lemma follows by letting ε′ be the right-hand side above.

Lemma 7. Let ε > 0, and let N be sufficiently large (depending on n and
ε). Let z ∈ [2, log logN ]. Then

(5)∑
f(x)∈Sn(N)

(∏
p≤z

(
1− %f (p2)

p2

))
=
(∏

p≤z

(
1− 1

p2

))
(2N)n+1 +On(Nn+ε) .

P r o o f. For each p ≤ z, consider the p2n+2 incongruent polynomials
modulo p2 of degree ≤ n, and let w1(p), . . . , wr(p), where r = r(p) =
p2n+2, denote some ordering of the values of %f (p2) as f(x) ranges over
these polynomials. Let p1, . . . , pt represent the t = π(z) primes ≤ z,
and let f1(x), . . . , ft(x) denote arbitrary polynomials with integral coeffi-
cients. Then the Chinese Remainder Theorem implies that the number of



Squarefree values of polynomials 223

f(x) ∈ Sn(N) such that f(x) ≡ fj(x) (mod p2
j ) for every j ∈ {1, . . . , t} is(

2[N ] + 1
p2
1 . . . p

2
t

+O(1)
)n+1

=
(

2N
p2
1 . . . p

2
t

)n+1

+On

((
2N

p2
1 . . . p

2
t

)n)
,

where we have used the fact that since z ≤ log logN ,

(6) p2
1 . . . p

2
t ≤ (log logN)2 log log N < Nε′ ,

where ε′ ∈ (0, 1) and N is sufficiently large (depending on ε′). For later
purposes, we fix ε′ = min{1/2, ε}. If w′j denotes the number of incongruent
roots of fj(x) modulo p2

j , then the contribution of the f(x) ≡ fj(x) (mod p2
j )

(for all j ∈ {1, . . . , t}) on the left-hand side of (5) is
t∏

j=1

(
1−

w′j
p2

j

)((
2N

p2
1 . . . p

2
t

)n+1

+On

((
2N

p2
1 . . . p

2
t

)n))
.

Hence, summing over all f(x) ∈ Sn(N), we get∑
f(x)∈Sn(N)

∏
p≤z

(
1− %f (p2)

p2

)

=
∏
p≤z

((
1− w1(p)

p2

)
+ . . .+

(
1− wr(p)

p2

))

×
((

2N
p2
1 . . . p

2
t

)n+1

+On

((
2N

p2
1 . . . p

2
t

)n))
.

Recalling the definition of wj(p) and Lemma 5, we get∏
p≤z

( r(p)∑
j=1

(
1− wj(p)

p2

))
=
∏
p≤z

(
r(p)− r(p)

p2

)

=
(∏

p≤z

p2n+2

)∏
p≤z

(
1− 1

p2

)
.

Thus, ∑
f(x)∈Sn(N)

∏
p≤z

(
1− %f (p2)

p2

)

=
∏
p≤z

(
1− 1

p2

)(
(2N)n+1 +On

(
(2N)n

∏
p≤z

p2
))

.

Recalling our choice of ε′ = min{1/2, ε} in (6), we get the desired result.

3. The main theorems. We are now ready to prove Theorems 1 and
2 of the introduction. As mentioned there, we will actually be able to prove
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slightly stronger results.

Theorem 3. Let n ∈ Z+ ∪ {0}, and let B(N) be a function which in-
creases to infinity with N . Then the proportion of polynomials f(x) ∈ Sn(N)
with Nf squarefree such that f(m) is squarefree for some integer m ∈ [1, B]
tends to 1 as N tends to infinity.

Theorem 4. Let n ∈ Z+ ∪ {0}, and let B(N) be a function which in-
creases to infinity with N . Then the proportion of polynomials f(x) ∈ Sn(N)
such that f(m)/Nf is squarefree for some integer m ∈ [1, B] tends to 1 as
N tends to infinity.

P r o o f o f T h e o r e m 3. We suppose, as we may, that B(N) = o(N)
and that N is sufficiently large (depending on ε given below and n). Recall
the discussion after Lemma 1 and, in particular, that there is a positive
proportion of f(x) ∈ Sn(N) for which Nf is squarefree. Alternatively, one
may deduce that Nf is squarefree for a positive proportion of the f(x) ∈
Sn(N) as a consequence of Theorem 1 in [3], which stated that for a positive
proportion of the f(x) ∈ Sn(N), there is an integer m for which f(m)
is prime. Let ε > 0. To obtain Theorem 3, we need only prove that if
N is sufficiently large, there are ≤ ε(2N)n+1 polynomials f(x) ∈ Sn(N)
with Nf squarefree and such that f(m) is nonsquarefree for all integers
m ∈ [1, B]. In fact, for later purposes, we prove something stronger. Using
the notation of Lemma 6 with n0 = n0(ε/2), we prove that the set T of
f(x) ∈ Sn(N) such that (i) gcd(Nf ,

∏
p≤n2+n0

p2) is squarefree and (ii)
f(m) is nonsquarefree for every integer m ∈ [1, B] satisfies |T | ≤ ε(2N)n+1

(provided N is sufficiently large). Assume that |T | > ε(2N)n+1. Let z =
log logB. For each f(x) ∈ Sn(N), we denote by W (f(x)) the number of
integersm ∈ [1, B] such that f(m) is squarefree. Then Lemma 3 implies that

W (f(x)) =
∏
p≤z

(
1− %(p2)

p2

)
B + E(f(x)) ,

where

E(f(x)) ≤ C1

∏
p≤z

(
1− %(p2)

p2

)
logB .

Thus, using Lemma 7, we get∑
f(x)∈Sn(N)

W (f(x)) =
∑

f(x)∈Sn(N)

(∏
p≤z

(
1− %(p2)

p2

)
B + E(f(x))

)
(7)

=
∏
p≤z

(
1− 1

p2

)
(2N)n+1B + E1 ,
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with

E1 =
∑

f(x)∈Sn(N)

E(f(x)) +On(Nn+1/2B) ≤ C2(Nn+1 logB +Nn+1/2B) ,

where C2 = C2(n) and we note that E1 may be negative (so that, in partic-
ular, we claim no bound on |E1| at this point). Note that∏

p≤z

(
1− 1

p2

)
>
∏
p

(
1− 1

p2

)
=

6
π2

.

Recalling that z = log logB(N), we find that since N and, hence, B(N) are
sufficiently large,

6
π2

<
∏
p≤z

(
1− 1

p2

)
<

6
π2

+
ε′

2
,

where ε′ > 0 is arbitrarily small and possibly depends on ε and n. Thus,∑
f(x)∈Sn(N)

W (f(x)) =
6
π2

(2N)n+1B + E2 ,

where
E2 ≤ ε′(2N)n+1B .

On the other hand, Lemma 1 gives us∑
f(x)∈Sn(N)

W (f(x)) =
6
π2

(2N)n+1B + E3 ,

where
|E3| ≤ ε′(2N)n+1B .

Thus, in fact,
|E2| = |E3| ≤ ε′(2N)n+1B .

Recalling how E2 was obtained, we now get

|E1| ≤ 2ε′(2N)n+1B .

The importance of this last inequality is that, unlike the previous inequality
on E1, we are now supplied with a lower bound on E1. More specifically,
E1 ≥ −2ε′(2N)n+1B.

Recalling the definitions of T and E(f(x)), we get

E(f(x)) = −
∏
p≤z

(
1− %f (p2)

p2

)
B for all f(x) ∈ T .

Thus, ∑
f(x)∈T

E(f(x)) = −
∑

f(x)∈T

∏
p≤z

(
1− %f (p2)

p2

)
B .
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The definition of T easily implies that for each prime p ≤ n2 +n0, %f (p2) <
p2 for all f(x) ∈ T . Thus, by Lemma 6, there exists an ε′′ such that

(8)
∏
p≤z

(
1− %f (p2)

p2

)
≥ ε′′

for all but at most (ε/2)(2N)n+1 polynomials f(x) ∈ T . Since by assump-
tion |T | > ε(2N)n+1, there are ≥ (ε/2)(2N)n+1 polynomials f(x) ∈ T for
which (8) holds. Hence,∑

f(x)∈T

E(f(x)) ≤ −ε
2
ε′′(2N)n+1B .

On the other hand,∑
f(x)∈Sn(N)
E(f(x))>0

E(f(x)) ≤ C1

∑
f(x)∈Sn(N)
E(f(x))>0

∏
p≤z

(
1− %f (p2)

p2

)
logB

≤ C1|Sn(N)| logB

≤ C1(2N)n+1 logB +On((2N)n logB) .

Thus, recalling the definition of E1,

E1 ≤ −
ε

2
ε′′(2N)n+1B +O((2N)n+1 logB) +On(Nn+1/2B) .

We are still free to choose ε′ > 0. We take ε′ = (εε′′)/5. Then the above
contradicts the inequality

|E1| ≤ 2ε′(2N)n+1B = 2
5εε

′′(2N)n+1B ,

completing the proof.

P r o o f o f T h e o r e m 4. For n = 0, the theorem is clear, so we only
consider n ≥ 1. Let ε ∈ (0, 1), and let N be sufficiently large (depending on
n and ε). Assume that there exist ≥ ε(2N)n+1 polynomials f(x) ∈ Sn(N)
such that f(m)/Nf is nonsquarefree for every m ∈ [1, B]. Let T1 denote
the set of such polynomials. By the proof of Theorem 3 and the notation of
Lemma 6, the number n0 = n0(ε/6) is such that |T2| ≤ (ε/3)(2N)n+1 where
T2 denotes the set of f(x) ∈ Sn(N) for which (i) gcd(Nf ,

∏
p≤n2+n0

p2) is
squarefree and (ii) f(m) is nonsquarefree for each integer m ∈ [1, B]. Since
increasing the size of n0 will only decrease the number of f(x) for which (i)
and (ii) hold, we may assume that n0 ≥ 7. We do this so that later we may
use the estimate ∑

j≥n0

1
j2

<
4
25
.
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Let T3 = T1 − T2 so that T3 consists of ≥ (2ε/3)(2N)n+1 polynomials
f(x) ∈ T1 for which Nf is divisible by p2 for some p ≤ n2 + n0. Define

M = M(n, ε) =
(

4(n2 + n0)
ε

)2(n2+n0)

and

B′ = B′(N) =
1
M
B

(
N

(2M)n

)
− 1 .

Using the notation of Lemma 6, define

n1 = n1(ε) = n0

(
ε

4(2M)n2+n+2

)
.

The proof of Theorem 3 implies that there are

≤ ε

2(2M)n2+n+2
|Sn((2M)nN)|

polynomials g(x) ∈ Sn((2M)nN) for which (i′) gcd(Ng,
∏

p≤n2+n1
p2) is

squarefree and (ii′) g(m) is nonsquarefree for each integer m in the interval
[1, B′((2M)nN)]. We will obtain a contradiction by showing that there
are more than (ε/(2(2M)n2+n+2))|Sn((2M)nN)| such g(x) (even under the
condition that gcd(Ng,

∏
p≤n2+n1

p) = 1).
We begin by restricting our attention to p ≤ n2 + n0. For each such p,

let k = k(p) = k(p, n, ε) be the minimal positive integer such that

pk+1 ≥ 4(n2 + n0)
ε

.

Note that ε ∈ (0, 1) implies that the right-hand side above is > n2 + n0 so
that pk < 4(n2 + n0)/ε. Let T4 be the set of polynomials f(x) ∈ T3 such
that pk+1 divides Nf for at least one prime p ≤ n2 +n0. The constant term
of each such f(x), being f(0), must be divisible by pk+1. Thus, the number
of f(x) ∈ T3 for which pk+1 divides Nf for a given prime p ≤ n2 + n0 is

≤ (2N + 1)n
(2N + 1
pk+1

+ 1
)
≤ ε

4(n2 + n0)
(2N + 1)n+1 + (2N + 1)n

≤ ε

3(n2 + n0)
(2N)n+1 .

Hence,

|T4| ≤ π(n2 + n0)
ε

3(n2 + n0)
(2N)n+1 ≤ ε

3
(2N)n+1 .

Define T5 = T3 − T4. Thus, |T5| ≥ (ε/3)(2N)n+1.
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For f(x) ∈ T5, define

Mf =
∞∏

r=1

( ∏
p≤n2+n0

pr|Nf

p
)

and Pf = Mf

∏
p|Mf

p .

Note that Nf = MfQf where gcd(Qf ,
∏

p≤n2+n0
p) = 1 and that Pf ≤M2

f .
By the definition of T5, for each prime p ≤ n2 + n0 and each f(x) ∈ T5, we
see that pk+1 does not divide Mf . This easily implies that each of Mf and
Pf is ≤M(n, ε) for every f(x) ∈ T5.

We now define a function α : T5 → Sn((2M)nN) as follows. For each
f(x) ∈ T5 and each prime p ≤ n2 + n0, define r = r(p, f(x)) to be the
nonnegative integer such that pr divides Mf and pr+1 does not divide
Mf . In particular, pr+1 does not divide Nf so that there is an integer
a = a(p, f(x)) ∈ [1, pr+1] such that f(a) 6≡ 0 (mod pr+1). Necessarily,
f(a) ≡ 0 (mod pr). By the Chinese Remainder Theorem, there is a mini-
mal positive integer b = b(f(x)) such that f(b) is divisible by Mf and, for
each prime p ≤ n2 + n0, f(b) is not divisible by pMf . Furthermore, since
f(x) ∈ T5,

1 ≤ b ≤
∏

p≤n2+n0

pr(p,f(x))+1 ≤
∏

p≤n2+n0

pk(p)+1 ≤
( ∏

p≤n2+n0

pk(p)
)2

≤M(n, ε) .

Define

g(x) = f(Pfx+ b)/Mf .

Each coefficient of f(Pfx+b) is divisible byMf , except possibly the constant
term f(b). But f(b) ≡ 0 (modMf ), and thus g(x) ∈ Z[x]. Furthermore, it
is easily verified that each coefficient of g(x) has absolute value ≤ N(2M)n.
We define α(f(x)) = g(x).

Note that Mf and Pf are uniquely determined by one another; in other
words, given Mf , one can determine Pf , and given Pf , one can determine
Mf . Since there exist ≤ M(n, ε) possible values for Pf and ≤ M(n, ε)
possible values for b, it is easy to see that for each g(x) in the image of
α, there are at most M2 possible f(x) ∈ T5 such that α(f(x)) = g(x). In
particular, since N is sufficiently large,

|α(T5)| ≥
1
M2

|T5| ≥
ε

3M2
(2N)n+1

=
ε

3(2n2+n)(Mn2+n+2)
(2(2M)nN)n+1

≥ ε

(2M)n2+n+2
|Sn((2M)nN)| .
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On the other hand, one can check that the definitions of b and g(x) above
imply that for g(x) ∈ α(T5),

gcd
(
Ng,

∏
p≤n2+n0

p
)

= 1 .

Recall that by assumption, each f(x) ∈ T5 ⊆ T1 is such that f(m)/Nf

is nonsquarefree for each integer m ∈ [1, B]. Note that B′((2M)nN) =
(B(N)/M)− 1. Now, if m ∈ [1, (B(N)/M)− 1] and b is as in the definition
of α, then Pfm + b is a positive integer ≤ B(N). Also, the definition of
Mf implies that Mf divides Nf . We now conclude that if f(x) ∈ T5 and
g(x) = α(f(x)), then g(m) = f(Pfm + b)/Mf is nonsquarefree for each
integer m ∈ [1, B′((2M)nN)].

Thus far, we have shown that there are

≥ ε

(2M)n2+n+2
|Sn((2M)nN)|

polynomials g(x) ∈ Sn((2M)nN) such that gcd(Ng,
∏

p≤n2+n0
p) = 1 and

(ii′) holds. Let T ′1 denote the set of all such g(x). Let T ′2 denote the set of
all g(x) ∈ T ′1 such that also gcd(Ng,

∏
p≤n2+nL1

p) = 1. It now suffices to
prove that

|T ′2| >
ε

2(2M)n2+n+2
|Sn((2M)nN)| .

For p ∈ (n2 + n0, n
2 + n1], define k′ = k′(p) = k′(p, n, ε) as the minimal

positive integer such that

pk′+1 ≥ 4(n2 + n1)(2M)n2+n+2

ε
.

Then following the argument which led to an estimate of |T5|, we find that
there are

≥ 2ε
3(2M)n2+n+2

|Sn((2M)nN)|

polynomials g(x) ∈ T ′1 such that if p ∈ (n2 +n0, n
2 +n1] and pr divides Ng,

then r ≤ k′(p). Let T ′3 denote the set of all such g(x). Note that T ′2 ⊆ T ′3.
In fact, our goal now is to show that most of the polynomials in T ′3 are in
T ′2.

For each g(x) ∈ T ′3, let

M ′
g =

∞∏
r=1

( ∏
n2+n0<p≤n2+n1

p|Ng

p
)

=
∞∏

r=1

( ∏
p≤n2+n1

p|Ng

p
)
.

Note that with n and ε fixed, so are M and k′(p) for each p ∈ (n2 +n0, n
2 +

n1]. Thus, M ′
g takes on a finite number of distinct values. Let M ′ be one
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such value of M ′
g. By the definition of n1 and the proof of Theorem 3, we

find that there are

≤ ε

2(2M)n2+n+2

∣∣∣∣Sn

(
(2M)nN

M ′

)∣∣∣∣ ≤ ε

(2M)n2+n+2(M ′)n+1
|Sn((2M)nN)|

polynomials h(x) ∈ Sn((2M)nN/M ′) such that gcd(Nh,
∏

p≤n2+n1
p) = 1

and h(m) is nonsquarefree for each positive integer m ≤ B′((2M)nN/M ′) ≤
B′((2M)nN). We note that we want the above to hold for every choice of
M ′, and we can do this since N is sufficiently large and there are only
finitely many values of M ′. Since every prime factor of M ′ is > n2 +
n0 > n, we see by Lemma 2(vi) that each g(x) with M ′

g = M ′ satis-
fies g(x) ≡ 0 (modM ′). But this means that g(x) = M ′h(x) for some
h(x) ∈ Sn((2M)nN/M ′). The definition of M ′ = M ′

g implies that every
such h(x) satisfies gcd(Nh,

∏
p≤n2+n1

p) = 1. Also, using the fact that
gcd(Pf ,

∏
n2+n0<p≤n2+n1

p) = 1, one can show from the definition of Mf

and M ′
g that MfM

′
g divides Nf where α(f(x)) = g(x). One finds that

for h(x) as above, h(m) = f(Pfm + b)/(MfM
′
g) is nonsquarefree for each

positive integer m ≤ B′((2M)nN/M ′). Therefore,

|T ′3 − T ′2| ≤
∑∗ ε

(2M)n2+n+2(M ′)n+1
|Sn((2M)nN)|

=
ε

(2M)n2+n+2

(∑∗
(M ′)−n−1

)
|Sn((2M)nN)| ,

where
∑∗ denotes that the sum is over those values of M ′ which are strictly

greater than 1. Since each such M ′ is divisible by some prime p > n2 + n0,
we deduce that each such M ′ is ≥ n2 + n0 ≥ n0. Thus, since n ≥ 1,∑∗

(M ′)−n−1 ≤
∑
j≥n0

1
j2
,

which, by our choice of n0 ≥ 7, is < 4/25. Hence,

|T ′3 − T ′2| ≤
4ε

25(2M)n2+n+2
|Sn((2M)nN)| ,

so that

|T ′2| ≥ |T ′3| − |T ′3 − T ′2| ≥
38ε

75(2M)n2+n+2
|Sn((2M)nN)| ,

which completes the proof.

Before concluding the paper, we note that Theorem 4 and, hence, The-
orem 2 can be improved slightly. For f(x) ∈ Z[x], write Nf = UfVf ,
where Vf is the largest squarefree factor of Nf . Then one may replace
the role of f(m)/Nf in the statement of Theorem 4 with f(m)/Uf . The
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proof is essentially the same with the following minor changes. One de-
fines α(f(x)) = g(x) where now g(x) = f(Pfx + b)/ gcd(Mf , Uf ). Then
g(x) ∈ α(T5) implies that gcd(Ng,

∏
p≤n2+n0

p2) is squarefree. One con-
siders, instead of T ′2, the set T ′′2 of g(x) ∈ Sn((2M)nN) such that (i′) and
(ii′) hold. Since T ′2 ⊆ T ′′2 , the lower bound for |T ′2| obtained in the proof of
Theorem 4 is a lower bound for |T ′′2 |, and the desired improvement follows.
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