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Introduction. Let K be an algebraic number field, S a finite set of
prime ideals in K and Og the ring of S-integers in K. Two binary forms
F(X,Y),G(X,Y) € Og[X,Y] are called equivalent if there is a matrix

(: ?) € GL(2,0s) such that G(X,Y) = F(aX + Y,7X +40Y). In

1972, Birch and Merriman [1] proved that for given integer r > 3, there
are only finitely many equivalence classes of binary forms F € Os[X,Y] of
degree r whose discriminant D(F") belongs to the group of S-units Og. The
proof in [1] is ineffective in the sense that it does not provide an algorithm
to find a full set of representatives for these equivalence classes. In a series
of papers, Gyory [8], [9], [12] obtained effective finiteness results for monic
polynomials with coefficients in Og and with given non-zero discriminant; for
binary forms F' with F'(1,0) = 1 these results imply an effective version of
Birch and Merriman’s theorem. In our recent paper [6] we made the result of
Birch and Merriman effective in full generality, without any restriction on F'.

The purpose of the present paper is to extend our results from [6] on
binary forms to decomposable forms in n > 2 variables. The general result
over algebraic number fields is stated in Section 2; here we restrict ourselves
to the case of the field of rationals Q. Let {p1,...,ps} (s > 0) be a finite set
of primes and consider the ring R = Z|[(p1 .. .ps)~']. A polynomial F(X) €
R[X1,...,X,] is called a decomposable form if it can be factored as F(X) =
i (X)F . (X)R where A € QF, [y,...,l; are pairwise non-proportional
homogeneous linear polynomials with coefficients in some algebraic number
field L and ky,...,k; are positive integers with k1 + ... + k; = deg(F).
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Let Z(F) be the collection of L-linearly independent subsets {l;,,...,l; }
(n = number of variables of F') of {l1,...,l;}. We denote the coefficient
determinant of {I;,,...,l; } € Z(F) by det(l;,,...,l; ). Further, by R we
denote the integral closure of R in L. Denote by (a) the R-ideal generated by
a, and by (;) the R-ideal generated by the coefficients of I; for i = 1,... ¢
Assume that Z(F') # (). Then there is a positive rational integer D = Dg(F),

composed of prime numbers outside {p1,...,ps}, such that
det(Li,,....1;))>
)= [T {0
7 (liy) .- (li,)

where the product is taken over all sets {l;,,...,l; } in Z(F'); further, the
integer D does not depend on the choice of Iy,...,l; (cf. Section 3) and
Dr(pF) = Dgr(F) for all p € Q*. The integer Dg(F) is called the R-
discriminant of F. If Z(F) = () then we put Dgr(F) = 0. For instance, if F'
is a binary form with relatively prime coefficients in Z, then Dz (F') is just
the absolute value of the discriminant D(F') of F'. Two decomposable forms
F(X),G(X) € R[X1,...,X,] are called R-equivalent if there is a matrix U €
GL(n, R) with G(X) = F(UX). Two R-equivalent decomposable forms have
the same R-discriminant (cf. Section 1). The height of a rational number a/b
with a,b € Z, ged(a,b) = 1 is defined by h(a/b) = max(|a|, |b|); the height
h(F) of a polynomial F with coefficients in Q is defined as the maximum of
the heights of the coefficients of F. We have

THEOREM 1. Let FI(X) € R[X1,...,X,] be a decomposable form of de-
gree r with relatively prime coefficients and with Dr(F) = D # 0. Then F
is R-equivalent to a decomposable form G with h(G) < C, where C is an
effectively computable number depending only on n, r, D, s and p1,...,ps.

We remark that Theorem 1 implies, in an effective way, that there are
only finitely many R-equivalence classes of decomposable forms in
R[X3,..., X,] with relatively prime coefficients, with given degree and given
non-zero R-discriminant.

For n =2 and R = Z (when s = 0), Theorem 1 gives (in a less explicit
form) Theorem 1 of [6] on binary forms with given discriminant.

We shall get Theorem 1 as a special case of a more general result on
decomposable forms on Og-modules, where Og is the ring of S-integers of
an algebraic number field (cf. Section 2, Corollary 4). The proof of this
general result uses an effective result of Gyéry ([10], Lemma 6) on the
S-unit equation in two variables; so the proof of our result ultimately goes
back to Baker’s theory on linear forms in logarithms and its p-adic analogue.

As an application of our general results on decomposable forms, we de-
duce (cf. Section 2, Corollary 6) an effective finiteness result for finitely



Effective finiteness theorems 235

generated Og-modules with given discriminant. Our results on decompos-
able forms can also be applied to the study of decomposable form equations
of the form

(%) Fx)=a inx=(zx1,...,2,) € R",

where F'(X) is as in Theorem 1 and a € R\ {0}. For instance, if one
can prove that the set of solutions of (x) has a special structure provided
that Dg(F) is sufficiently large, then it follows that there are only finitely
many R-equivalence classes of decomposable forms F' for which the set of
solutions of () does not have that special structure. A result of this type will
be published in a forthcoming paper of the first author [3], which extends
to the case n > 2 Theorem 2(i) of [5] obtained for n = 2. Another possible
application concerns effective results on equation (x). For a certain class
of decomposable forms which is invariant under linear transformations of
F and which includes binary forms, discriminant forms, index forms and
certain special norm forms (cf. [11], [4]) it is possible to give an effectively
computable number C}. depending only on n, 7, s, p1,...,ps, h(F) and a,
such that max; h(x;) < C% for every solution x = (z1,...,x,) of (x). It
might be possible to improve this bound in certain cases, by first looking
for a matrix U € GL(n, R) such that G(X) = F(UX) has height < C, then
computing the upper bound Cf, for the heights of the solutions of (x) with
F replaced by GG and finally deriving an upper bound for the heights of the
solutions x of (*) by estimating from above the heights of the entries of U 1.
Probably we shall publish a paper about these effective results.

In Section 1, we introduce some general notions about decomposable
forms which will be needed in the later sections. In Section 2, we state our
effective results about decomposable forms on Og-modules. The remaining
sections will be devoted to the proofs of these results.

1. General facts on decomposable forms. Let K be a field and V a
finite-dimensional K-vector space. A decomposable form on V is a function
F : V — K with the following property: there are an extension L/K, a
positive integer r and K-linear functions l; : V' — L (i = 1,...,r) such that

(1.1) Fx)=0h4(x)...l,(x) forallxeV.

We call (I1,...,1,) a factorization of F in L. If K is infinite then r is
uniquely determined by F'; in this case r is called the degree of F. The
smallest extension L of K in which F' has a factorization is called the split-
ting field of F' over K; it is a finite, normal extension of K. The rank of
F' is defined as the dimension of the L-vector space of K-linear functions
generated by {li,...,l.}. It is easy to see that rank F is independent of
l1,...,l, and L and is at most dimg V. We say that F is of mazimal rank
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if rank F' = dimg V.

Let K™ be the space consisting of all n-dimensional column vectors with
entries in K. The vectors e; = (1,0,...,0)T7,... e, = (0,...,0,1)T form
the standard basis of K™. We shall identify a decomposable form F on
K™ with the homogeneous polynomial F(X) = F(X1e; + ... + X,e,) €
K[X1,...,X,]. This homogeneous polynomial is also called a decomposable
form.

Let R be an integral domain (always with 1) with quotient field K. An
R-lattice is a finitely generated R-submodule of a K-vector space. An R-
lattice 91 contained in the K-vector space V is called an R-lattice in V. We
define rank 9t as the dimension dimyg K9 over K of the K-vector space
KM ={\x: )X e K, xe€ M}. An R-lattice decomposable form pair is a
pair (9, F') consisting of an R-lattice 9 and a decomposable form F' on
KM of maximal rank. Two R-lattice decomposable form pairs (9, F})
and (Mo, Fy) are called equivalent if there is an R-module isomorphism
@ : My — My such that

(1.2) Fy(p(x)) = Fi(x) for all x € 9

and weakly equivalent if there are an R-module isomorphism ¢ : 91, — Mo
and (}) A € K* such that

(1.3) AF(p(x)) = Fi(x) for all x € 9, .

EXAMPLE 1. Let n > 1 and R™ the lattice of n-dimensional column
vectors with entries in R. The group of R-module automorphisms of R" is
given by {x +— Ux : U € GL(n, R)}, where GL(n, R) is the multiplicative
group of n X n matrices with entries in R and with determinant contained
in the unit group R* of R. Hence two R-lattice decomposable form pairs
(R™, Fy) and (R", F,) are equivalent if and only if there is a U € GL(n, R)
with F5(Ux) = Fi(x) for x € R", and weakly equivalent if and only if there
are A € K* and U € GL(n, R) with AF5(Ux) = Fi(x) for x € R™.

ExaMPLE 2. Let M/K be a finite, separable extension with norm
Ny : M — K. Then Ny, g is the product of the distinct K-isomorphisms
a+— a® (i =1,...,[M:K]) of M which are K-linear functions. Hence
Ny is a decomposable form of maximal rank on M which is called a
norm form. Let 91 be an R-lattice in M and denote the restriction of
Ny to KO also by Nyp/i. Then (M, Ny k) is an R-lattice decompos-
able form pair. It is not difficult to prove that if 911, 9> are two R-lattices
in M, then (M1, Ny k) and (Mo, Npg/ i) are weakly equivalent if and only

(1) For any integral domain R, R* will denote the unit group of R; thus if R is a field
then R* = R\ {0}.
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if there are € M™ and a K-isomorphism ¢ of M such that
My = po(My) .

Let now R be a Dedekind domain with quotient field K of characteristic
0 (for instance the ring of S-integers of an algebraic number field). By an
R-ideal we mean a non-zero R-lattice in K; R-ideals contained in R are
said to be integral. The R-ideal or, more generally, R-lattice generated by
a1, .., 0y is denoted by (aq,...,qmn).

By a result of Kaplansky [14] (see also [18], Ch. I, §2), every R-lattice of
rank n is isomorphic to R"~! @ a for some R-ideal a. Moreover, R" ! ©a
and R"~! @b are isomorphic if and only if a and b belong to the same ideal
class. Let {eq,...,e,} denote, as usual, the standard basis of K™. Since
every R-ideal can be generated by at most two elements, every R-lattice I
of rank n is isomorphic to either

(e1,...,e,) =R" (if Mis free) or

1.4
(14) (e1,...,en_1,0€,,[e,) (if M is not free),

where a, 3 € R and the ideal a = («,3) is not principal. Let 9t be an
R-sublattice of R™ of rank n. Then for every R-module automorphism ¢ of
M there is a unique n x n matrix with entries in K such that p(x) = Ux
for all x € M. Let G(IM) be the group of matrices corresponding to the
automorphisms of 9. Then, trivially, two R-lattice decomposable form
pairs (9, F1) and (M, Fy) are equivalent (or weakly equivalent) if and only
if there is (are) U € G(M) (and X € K*) such that
Fy(x) = F1(Ux) (AFa(x) = F1(Ux), resp.) forall x € M.

It is obvious that G(R"™) = GL(n, R). Further, the following can be easily
verified: if M = (eq,...,e,_1,€,,e,) where a, 3 € R and a = (o, ) is
non-principal, then

15) G =du=1 ... .
Upl - Upn
ui; € Rfor 1 <i, j<n—1; up, € R;
umea_lforlgign—l;unanforlngn—l;
detU € R*.

Let (M, F') be an R-lattice decomposable form pair such that rank 9t =
n, deg(F') = r and F has splitting field L, and put V = K9t. We can factor
F as

(1.6) F(x)=AJJux)* forallxeV,
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where A € K™, l1,...,l; : V — L are pairwise L-linearly independent linear
functions and kq, ..., k; are positive integers with ky + ...+ ks = r. Let R
be the integral closure of R in L. For any R-ideal b in K we shall write b
instead of bR. Let [;(9M) be the set consisting of the elements /;(x), x € M,
i=1,...,t. One can show (cf. Section 3) that there is an R-ideal ¢(9, F'),
called the content of (M, F'), such that

t
(L.7) «(M, F) = (A) [ aam)*,
i=1
where (), (I;(9)) denote the R-ideals in L generated by A and I;(9),
respectively. It is easy to check that the definition of the content is inde-
pendent of the choice of A, [1,...,l;. It is also easy to verify that if (90, F')
and (9, F') are equivalent R-lattice decomposable form pairs, then

(1.8) (M, F) =c(M, F).

We now introduce the discriminant of (9, F'). Let Z(F') be the collec-
tion of L-linearly independent subsets {l;,,...,l; } (with n = rank 9 =
dimg V) of {l1,...,l;}. For L ={l;,,...,l; } € Z(F), let 9(M, L) be the
R-ideal in L generated by all numbers

with x1,...,x, € M. (We remark that 9(9, £) is indeed finitely generated,
since there is an « € L* with ad(9M, L) C R). The ideal
0

) (M, £) ’
(1.9) DO, F) = L§F> ((zil(zm)) -, (971)))

where the product is taken over all sets £ = {l;,,...,l;, } in Z(F), is called
the discriminant of (9, F'). In the trivial case n = 1 we have (9, F') = (1).
In Section 3 we shall show that © (9, F') is an integral R-ideal. (We remark
that without squaring, the ideal on the right-hand side of (1.9) would be
contained in R but not necessarily in R.) Further, since by assumption F
is of maximal rank, ® (91, F') is non-zero.

If the linear functions [,...,[; are multiplied by constants aq, ..., a,
respectively, then for £ = {l;,,...,l;,} € Z(F'), both the ideals (9, £) and
(li; M) ... (1;, (9M)) are multiplied by «;,,...,a;, . Hence the right-hand
side of (1.9) does not change. This implies that the definition of D (M, F')
is independent of the choice of A, I1,...,l;. Moreover,

(1.10) DN, puF) =DM, F) forallue K*.
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Let now (M, F’) be an R-lattice decomposable form pair which is equivalent
to (I, F'). Then

F'(x)= /\H U(x)k for all X' € 9,

where I/ = l;op~! fori =1,...,t and some R-module isomorphism ¢ : 9 —
M. Tt is trivial that I(9') = [;(9) for ¢ = 1,...,¢ and that (9N, L") =
oM, L) for all £ € Z(F'), where £' := {l} : |; € L}. Hence DM, F') =
D(M, F). Together with (1.10) this implies that if (91, F'), (9, F') are two
weakly equivalent R-lattice decomposable form pairs, then

(1.11) DM, F) = D(M, F').

EXAMPLE 3. Let F(X,Y) € R[X,Y] be a binary form without multiple
factors and with splitting field L. Then F' can be factored in L[X,Y] as
F(XY) = [[(iX - B;Y)
=1
with o4, 8; € L and a;8; — o;3; # 0 for 1 < i < j < r. A straightforward
computation shows that the discriminant of the R-lattice binary form pair
(R?, F) is equal to

DR F) = (R F) @I ( ] (@i — a;8)%).
1<i<j<r

It is not difficult to prove that if R is the ring of S-integers of an algebraic
number field, then D(R?, F) is just the S-discriminant of F' defined in [6].

EXAMPLE 4. Let F(X) € K[X},...,X,] be a decomposable form (i.e. a
decomposable form on K™). Then F(X) = A;(X)" ...1;(X)* where \ €
K* and lq,...,l; are pairwise non-proportional linear forms with coefficients
in the splitting field L of F'. It is easy to verify that if F' is of maximal rank
then

2
@(Rn’F): H <det(l“,...,lzn)) ’
(R (liy) .- (li,)

where Z(F) is the collection of L-linearly independent subsets {l;,,...,;, }
of {l1,...,l;} and where (I;) denotes the R-ideal generated by the coefficients
of ;. Hence for the ring R = Z[(p1 . .. ps) '] considered in the Introduction,
D(R™, F) is equal to (Dg).

We now give another characterization for the discriminant. Let (90, F')
be an R-lattice decomposable form pair as above. Every R-ideal a can be

uniquely expressed as
a= Hpordp(u) ,
p
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where the product is taken over all prime ideals p of R and where the
exponents ordy(a) are integers of which at most finitely many are non-zero.
For a € K we put ord,(a) = ordy((e)) if @ # 0 and ordy(a) = oo if a = 0.
Fix a prime ideal p of R, and let R, = {a € K : ordy(a) > 0} be the local
ring corresponding to p. Choose A € K* such that the decomposable form
Fypp := AF has ordy(¢(9M, Fonp)) = 0. Note that Fyp, maps 9 to Ry.
Denote the maximal ideal of Ry, also by p, and let K, = R, /p be the residue
class field. The reduction of 9T mod p is defined as the factor module

D, = M/pM
(where pt = {Ax : A € p,x € M}) and the reduction of Fyy p mod p
Fonp: My — Ky 2 x mod p — Fyn p(x) mod p.

Note that 91, is a finite-dimensional I?p—vectgr space and that Foy, is a
decomposable form on this space. The form Fyy , is determined by I, F'
and p up to a constant factor in I?p* .

Let Ky be a field, Vy a finite-dimensional Ky-vector space and Fj :
Vo — Ko a decomposable form. Further, let (mq,...,m,) be a factorization
of Fy in some extension Ly of Kjy. We denote by N(Fy) the number of
subsets {i1,...,4,} with 2 < wu < r of {1,...,r} such that {m;,,...,m;, }
is Lo-linearly independent. It is easy to verify that N(Fp) is independent
of the choice of the factorization {mq,...,m,} and that N(AFy) = N(Fp)
for A € K§. In Section 3 we shall show that for every prime ideal p of the
Dedekind domain R considered above we have
N(Fap) < N(F),

(1.12) _
N(Fonp) < N(F) < ord, (D(M, F)) > 0.

Let M /K be a finite extension, and 9t an R-lattice in M. We define the
discriminant of 9T by

D) =DM, Nuyxc) -
By (1.11) and Example 2, if 9, 9 are R-lattices in M such that 9 =
po (M) for some p € M* and some K-isomorphism o of M, then
D) =D(M).

EXAMPLE 5. Let 91 be a full R-lattice in M, that is, an R-lattice in M
with largest possible rank [M: K]. Put n = [M: K] and for wq,...,w, €
M, denote by Dys/x(wi,...,wy) the discriminant of {w1,...,wy} (cf. [15],
p. 64). Further, denote by Dy k() the R-ideal generated by all numbers
Dy (w1, ... wn) with wy, ..., w, € M. Let R be the integral closure of R

in M and denote by Ny x (91) the norm of the R-ideal in M generated by
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M. It is not difficult to show that
(1.13) D(M) = Dy (M) /{ N/ i ()}

If in particular 90 is integral over R (i.e. M C ]3@), then (M) divides
Dy ().

2. Results. Before stating our results we have to introduce heights and
some notions related to S-integers.

The height h(a) of an algebraic number « is defined as follows: let
f(X) € Z[X] be an irreducible polynomial with relatively prime coefficients
and with f(«) = 0, and suppose that f(X) factors as a(X —aq) ... (X —aq)
over the algebraic closure of Q with cy = «. Then

1/d

(2.1) h(a) = {\a| f[max(l, |a¢])}

The height h(F') of a polynomial F' with algebraic coefficients is defined as
the maximum of the heights of these coefficients.

Let K be an algebraic number field of degree d. Denote by Ok the ring
of integers of K, and by Mg the set of prime ideals of O. Take a finite set
of prime ideals S. The ring of S-integers is defined by

Os ={a € K :ordp(a) >0 for all p € Mg\ S}.
The unit group of Og is the group of S-units
O ={a € K :ordy(a) =0 for all p e Mg\ S}.

The ring Ogs is a Dedekind domain with prime ideals pOg, p € Mg \ S.
For convenience we shall identify the prime ideals of Og with those of Ok in
Mg\ S. We shall denote by (aq, ..., a,) the Os-ideal or Og-lattice generated
by a1, ..., a,, unless otherwise stated.

For every Os-ideal a there is a unique Ok -ideal a*, composed of Og-prime
ideals outside S, such that a = a*Og; we put

lals = {Niq(a*)}/".
Every Os-ideal a can be written uniquely as a = b - ¢~!, where b, ¢ are
integral Os-ideals with b+ ¢ = (1). We put
ms(a) = |b|5 . |C‘S.
It is easy to show that for every C' > 1 there are only finitely many Og-ideals
a with mg(a) < C.

Let e; = (1,0,...,0)7,... e, = (0,...,0,1)T. From the remarks made
in Section 1 it follows that every Og-lattice of rank n is isomorphic to either
O¢ = (e1,...,e,)or(eq,...,e,_1,aey, fe,) where a = («, §) is an integral,
non-principal Og-ideal. Here a can be replaced by any ideal belonging to
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the same Og-ideal class as a. By Lemma 5 in Section 4 of this paper, every
non-principal Og-ideal class contains an integral Os-ideal («, ) such that

(22) h(a) S Cl, h(ﬁ) S Cl y

where (1 is an effectively computable number depending only on d = [K : Q)
and the discriminant Dg of K. We conclude that every Og-lattice of rank
n is isomorphic to either

(e1,...,e,) =0§ or
(2.3) (e1,...,€n_1,0€y, fe,) with a, 8 € Os, h(a) < Cy,
h(B) < C1, (a, ) non-principal.

The lattices in (2.3) are called reduced. If (9, F') is an Os-lattice decom-
posable form pair in which 91 is reduced and rank 991 = n, then F' is a
decomposable form on K™. The height of F'is defined as the height of the
corresponding polynomial F(X) = F(X1e1+ ...+ X,e,) € K[X1,...,X,].

We are now in a position to state our results. By Dj; we denote the
discriminant of a number field M. As before, we put d = [K : Q]. Further,
let s denote the cardinality of S, and P the largest of the prime numbers
lying below the prime ideals in S with P = 1 if S = (). Finally, let L be a
finite, normal extension of K, let  and n be positive integers, and let 0 be
a non-zero integral Og-ideal.

THEOREM 2. Let (M, F') be an Os-lattice decomposable form pair such
that rank MM = n, deg(F') = r, F has splitting field L and D(M, F) = 0.
Then (M, F) is weakly equivalent to a pair (I, F"), where M is a reduced
Os-lattice of rank n, and F' is a decomposable form on K™ with

h(E') < Calolg*

where Cy, Cs are effectively computable numbers depending only on d, |Dy|,
s, P, n and r.

In [6], we proved Theorem 2 in the case that 9 = O2 and F is a binary
form, and gave explicit expressions for Co and Cj.

The main tool in the proof of Theorem 2 is an effective result of Gyéry
([10], Lemma 6) on the S-unit equation ax + fy = 1 in x,y € OF. This
result of GyOry was proved by means of Baker’s theory on linear forms in
logarithms of algebraic numbers and its p-adic analogue.

We now state some consequences of Theorem 2 which will be proved
in Section 7. The upper bound for hA(F’) in Theorem 2 depends on |Dy|.
In Section 7 we shall prove that |Dy| < Cy, where C4 is an effectively
computable number depending only on d, |Dg|, s, P, n, r and [0|s. Thus
we obtain the following.
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COROLLARY 1. Let (M, F') be as in Theorem 2. Then (I, F) is weakly
equivalent to a pair (I, F'), where M’ is a reduced Os-lattice of rank n,
and F' is a decomposable form on K™ with

h(F') < Cs,

where Cy is an effectively computable number depending only on d, |Dk/, s,
P, n,r and |d|s.

We note that for n = 2 and 9 = M’ = OZ, our Corollary 1 (see also
Example 3 in Section 1) implies, in a less explicit form, Theorem 2 of [6].

Assume that K is effectively given, i.e. that an irreducible polynomial
f(X) € Z]X] is given such that K = Q[X]/(f(X)). Let a be a zero of f.
Then every element of K can be expressed uniquely as (Zf:_ol a;at)/aq (d =
deg(f)), where ag,...,aq—1,aq are rational integers with ged(ag,...,aq-1,
aqg) = 1 and agq > 0; the tuple (ao,...,aq) is called a representation of the
element in question. We say that an element of K is given (or computable)
if the finite tuple of integers by which it is represented is given (or can
be computed). Then sums, differences, products and quotients of given
elements in K can be computed. We assume that S is effectively given in
the sense that for every prime ideal in S, a set of generators is given. Then
for every given a € K it can be effectively decided whether o € Og (or
ae 0f).

COROLLARY 2. For any positive integers n and r and every integral Os-
ideal 0, there are only finitely many weak equivalence classes of Os-lattice
decomposable form pairs (M, F) such that rank M = n, deg(F) = r and
DN, F) = 0. Further, if a set of generators for 0 is given, then a full
set of representatives of these weak equivalence classes can be effectively
determined.

Corollary 2 does not follow at once from Corollary 1, since if (9;, F) and
(Mg, Fy) are two Og-lattice decomposable form pairs such that 9t and 9o
are reduced and F} and F5 have small heights, then it might still happen
that (91, F1) and (9o, Fy) are weakly equivalent. We shall prove that
there is an algorithm to decide whether two such pairs (9, F1), (Ma, Fo)
are weakly equivalent or not.

By combining Corollary 1 with (1.12) we get

COROLLARY 3. Let (M, F') be an Os-lattice decomposable form pair such
that rank MM = n, deg(F) = r and N(Fon ) = N(F) for every prime ideal
p of Os. Then (M, F) is weakly equivalent to a pair (I, F') such that MV
is reduced and h(F') < Cg, where Cg is an effectively computable number
depending only on d, |Dk/|, s, P, n, and r.
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We now state some results on (not weak) equivalence classes of Og-lattice
decomposable form pairs. Let ¢ be a non-zero Og-ideal.

COROLLARY 4. Let (M, F') be an Os-lattice decomposable form pair such
that rank MM = n, deg(F) = r, F has splitting field L, (N, F) = 0 and
¢, F) =c. Then (M, F) is equivalent to a pair (I, F'), where M’ is a
reduced Og-lattice of rank n, and F’ is a decomposable form on K™ with

h(F') < Coms(0)p|S®  and  h(F') < Coms(c),

where C7, Cg, Cy are effectively computable numbers such that Cr, Cs depend
only ond, |Drl, s, P, n and r, and Cy only on d, |Dk|, s, P, n, r and |9|s.

Corollary 4 implies that there are only finitely many equivalence classes
of Og-lattice decomposable form pairs (9, F') with rank 9 = n, deg(F) =
r, (O, F) = ¢ and (M, F) = 0. Further, by arguments similar to the
proof of Corollary 2 one can prove the existence of an effective algorithm
that selects one pair (9, F') from each of these equivalence classes. We
remark that in view of Example 4 of Section 1, Theorem 1 stated in the
Introduction is exactly Corollary 4 with the second inequality for K = Q,
Os = R=2[(pr...ps) '], M= = R", ¢ = (1) and 0 = (Dp(F)) = (D).

From Corollary 4 we shall derive the following.

COROLLARY 5. Let (M, F') be as in Corollary 4. Then M = (w1, ...,wn)
where either M is free and m = n, or M is not free, m = n+ 1 and
Wnt1 = Ywy, for some v € K* with h(y) < Cig, F(w1)F(w2)...F(wn) # 0
and

24)  h(Fw)) < Ciums(©P|S?  and  h(F(w;)) < Cisms(c)

fori=1,...,m, where Cyg, C11, C12, C13 are effectively computable num-
bers such that Cyg depends only on d and |Dg|, C11 and Ci2 only on d,
|D|, s, P, n and r, and C13 only on d, |Dk|, s, P, n, r and |9|s.
A trivial consequence of Corollary 5 is that the bounds occurring on the
right-hand side of the estimates in (2.4) are upper bounds for
min{h(F(x)) :x € M, F(x) #0}.

Hence, for n = 2 and 9 = 02, Corollary 5 implies (in a less explicit form)
Corollary 5 of [6].

Let M/K be a finite extension of degree r. Two Ogs-lattices My, My in
M are said to be similar if Mo = pMy for some p € M*.

COROLLARY 6. Let M be an Os-lattice of rank n in M with D(9M) = 0.
Then M is similar to an Os-lattice (w1, ... ,wm) With wy,...,w, € M*,
where either M is free and m = n, or M is not free, m = n+ 1 and
Wnt1 = YWy for some v € K* with h(vy) < C14 and

(2.5) hw) < Ci5P(§*  and  h(w) <Ciz  fori=1,...,m,
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where Cy4, C15, C1g, C17 are effectively computable numbers such that Ciy4
depends only on d and |Dk|, Ci5, Ci6 only on d, |Dyl, s, P, n and r =
[M: K], and Cy7 only on d, |Dk|, s, P, n, r and |d|s.

We say that an Og-lattice 9 is of degree r over K if it is contained in
some finite extension of K, and the smallest extension of K containing p9t
for some non-zero algebraic number p has degree r over K. Corollary 6
implies that there are only finitely many similarity classes of Og-lattices
of degree r and rank n with ©(9t) = 0. Further, in view of (1.5) it is easy
to prove the existence of an algorithm to choose such 91 from each of these
similarity classes.

We note that from Corollary 6 and relation (1.13) one can also deduce
effective finiteness results for full, integral Os-lattices 9 of given (finite)
rank and given (non-zero) ordinary discriminant D (). We shall not work
these out here. For K = Q and S = (), these imply a result of Nagell
([17], Theorem 6) which says that there are only finitely many full and
integral Z-modules with a given (finite) rank and a given (non-zero) ordinary
discriminant, and all these Z-modules can be effectively determined.

3. Properties of decomposable forms and discriminants. In this
section, we prove the facts about decomposable forms and discriminants
mentioned in Section 1; namely, that ¢(9%, F') is an R-ideal, that D (M, F')
is an integral R-ideal, and that © (9, F') satisfies (1.12), and some other
facts needed in this paper.

Let R be a Dedekind domain with quotient field K of characteristic 0,
and (9, F') an R-lattice decomposable form pair such that rank 9 = n,
deg(F) = r and F has splitting field L. Let Gal(L/K) denote the Galois
group of L/K. Since F maps K9 to K, it can be factored as

t
(3.1) F(x)=A]Jux)* forxe KM,

i=1
where A € K*, l1,...,l; : V — L are pairwise non-proportional linear
functions and k1, ..., k; are positive integers such that

(3.2) UOlizlg(i), ko(i) =k; fori=1,...,¢, O'EG&I(L/K),
where (o(1),...,0(t)) is a permutation of (1,...,t) for 0 € Gal(L/K). De-
fine the fields M; (i =1,...,t) by

(3.3) Gal(L/M;) ={o € Gal(L/K) : o(i) = i} .

Then [;(9M) C M, for i = 1,...,t. Partition {1,...,t} into Gal(L/K)-
orbits Cy,...,C, such that ¢ and j belong to the same orbit if and only if

o(i) = j for some o € Gal(L/K). For convenience, we assume that i € C;
for i =1,...,u. We shall frequently use the following fact:
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let Si,...,S: be non-empty sets such that S; C M; and o(S;) =
(3.4) S, fori=1,...,t, 0 € Gal(L/K); then it is possible to choose T;
from S; such that o(m;) = 7, fori =1,...,t, 0 € Gal(L/K).
Namely, for i = 1,...,u one can choose 7; arbitrarily from S; and then the
remaining 7; can be selected such that the relationships o(m;) = 7, ;) for
i=1,...,u, 0 € Gal(L/K) are all satisfied. This is possible since S; C M;
fori=1,...,t.
Let p be a prime ideal of R. As before, we put

and denote the maximal ideal of R, also by p. Let }A%, ]/%p denote the integral
closures of R, Ry, respectively, in L, and let B, ..., B, be the prime ideals

of R lying above p. In what follows, we denote the ﬁp-ideal generated by
ai,...,ap by (a1,...,a,),. Further, the }Azp—ideal generated by the numbers
l;(x), x € M, is denoted by ({;(M)),. Note that l;(x) € M; for x € M. Both
Ep and ﬁiyp = Ep N M; are principal ideal domains (cf. [2], Ch. III, §4).
Hence (1;(9M)), is generated by an element in M;. In other words, there are
7; € M; such that

(3.5) (LN)p = (m)p, fori=1,...,t.
By applying (3.4) to the sets {& € M, : ([;(M)), = (&)p} we infer that
m,..., T can be chosen such that
(3.6) o(mi) = 7o) fori=1,...,t, 0 € Gal(L/K).
Put 7 = 75* ... 7. Then o(n) = 7 for each ¢ € Gal(L/K), hence w € K.
Further,
ordg, (¢(IM, F)) = ordgyp, (7) forj=1,...,9.

Hence ¢(9M, F') is an R-ideal.

Define the linear functions m; = m; 'l; : 9 — L (i = 1,...,t). Then, by
(3.2), (3.5) and (3.6),
(3.7)  gom;=mge),  (mi(M))p = (1)

fori=1,...,t, 0 € Gal(L/K).

Since R, is a principal ideal domain, 9, is a free Ry-module of rank n
(cf. [18], Ch. I, §2). Hence M, has an R,-basis {x1,...,x,} with x; € 91 for

i=1,...,n. Let Z'(F) be the collection of L-linearly independent subsets
{mi,,...,m;, } (n =rank M) of {mq,...,m;}. Define the number

(3.8) 0p = [ {det(mi, (x;))1<k, j<n}?

7'(F)



Effective finiteness theorems 247

where the product is taken over all sets {m;,,...,m; } in Z'(F). From
(1.10), (3.7) and the fact that {x1,...,x,} is an Ry-basis of M, it follows
that

(3.9) ordg, (0,) = ordg, (O(M, F)) fori=1,...,g.
We notice that J, € ﬁp, since (m;(M)), = (1), for i = 1,...,t. Further,
{oom;,,...,c0om,; }is L-linearly independent if and only if {m;,,...,m; }

is. Hence each o € Gal(L/K) permutes the sets of Z'(F"). Moreover, each
factor on the right-hand side of (3.8) depends only on the set {m;,,...,m;, }
and not on its ordering because of the exponent 2. It follows that each
o € Gal(L/K) permutes the factors on the right-hand side of (3.8), which
implies that o(d,) = 0,. Therefore, §, € ﬁp N K = R,. We conclude that
D(M, F) is an integral R-ideal.

We now prove formula (1.12). We recall that 90T, = 9t/p9. We take

t
Fopp(x) = Hmz(x)k for x € KM,

=1

which can be done since (m;(M)), = (1), for i = 1,...,t. By Fon, we

denote the decomposable form on M, : x mod p — Fyy ,(x) mod p.

LEMMA 1. We have N(Fon ) < N(F). Further, N(Fon,) < N(F) if
and only if ord, (D (M, F)) > 0.

_ Proof. Let B be one of the prime ideals of R lying above p. Put
K,=R/p = R,/p and Ly = R/P = R, /P. Since, by (3.7), m;(M) C R,
fori=1,...,t, we can define the reductions of m; mod 3 by

m;(x mod pIN) = m;(x) mod P.

Then
t
Fonp(x) = [[mi(x)*  for x € M, .
i=1

Obviously, if {m;,,...,m;,} is some fgp—linearly independent subset of
{my,...,m} then {m;,,...,m; } is L-linearly independent.  Hence
N(Fony) < N(F). Further, N(Fon,) < N(F) if and only if there is an
L-linearly independent subset {m;,,...,m; } of {my,...,m} with u > 2
such that {m;,,...,m;,} is Ly-linearly dependent. But each linearly inde-
pendent subset of {m1,...,m;} can be extended to a linearly independent
subset of cardinality n. Hence N(Fon ) < N(F) if and only if there is a set
{mi,,...,m;, } in Z'(F) with u > 2 such that {m;,,...,m;,} is Ly-linearly
dependent. But {my,,...,m;, } is Ly-linearly dependent if and only if

ordsg (det(my,, (%) )i<k, j<n) >0,
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where {x1,...,X,} is the Ry-basis of M, used in the definition of J,. This
shows that N(Fon,) < N(F) if and only if ordg(d,) > 0. Together with
(3.9) this implies Lemma 1. m

As before, Cq,...,C, denote the Gal(L/K)-orbits of {1,...,7} where
the action of Gal(L/K) on {1,...,u} is defined by (3.2). Further, i € C; for
i=1,...,t. Let ]?{Z be the integral closure of R in the field M; defined by
(3.3) and let 9; be the discriminant of the ring extension R; /R (sce e.g. [13]).

LEMMA 2. We have (I, F)" C (01...04)%

Proof. It suffices to prove that for every prime ideal p of R,
(3.10) nordy(5,) > 2 ordy(v:),
i=1

where 0, is defined by (3.8) for some Rp-basis {x1,...,x,} of M, with
x; EMfori=1,...,n. Fix a prime ideal p, and consider one of the factors
A = det((m, (x5))1<k, j<n)

in (3.8) where {m;,,...,m; } € Z'(F). Let m; be the vector with coordi-
nates (m;(x1),...,m;(x,)). In what follows, if a is any vector with coordi-
nates in L, then (a), denotes the }Azp-ideal generated by the coordinates of
a. Thus, using (3.7), we get

(A)p = (det(m;,,...,m; ), = (det(m;,,m;, —m;,,...,m;, —m; )),

C (my, —my,)p...(m;, —m; ).

We can do the same for m;,,...,m;_ in the role of m;,. Thus
(A)g C H (m’tk - mil)P :
1<k, I<n
k£

It is easy to see that every pair {m;, m;} with distinct i,j € {1,...,t} is
contained in one of the sets of Z'(F'). Since, by (3.7), each vector m; has its
coordinates in Ry, it follows that

This implies that
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where the second product takes the value 1 if Cy, has only one element. Now
(3.10) follows once we have proved that

(3.11) H (m; —m;j), €O, fork=1,...,u,
1,jECK
17
where g := 05 Ry. Put r := [M},: K], let o+ o (i = 1,...,r) denote
the distinct K-isomorphisms of M, and for a € M]' define a) by applying
a — a to the coordinates of a. Then there is a vector m € Ry , such that
the left-hand side of (3.11) is equal to 7

H (m® — m(j))?, —a.
1<i<j<r
Put K(X) = K(X1,...,Xn), Mp(X) = Mu(X1,...,X,), LX) =
L(Xy,...,X,) where Xi,...,X,, are independent variables. Consider in
L(X) the polynomials

A(i)(X) = Zml(i)Xl fori=1,...,r,
=1

where (my,...,m,)T = m. Consider also the polynomial

DX)= ] {AYX)-ADX)}*.
1<i<j<r

By Gauss’ lemma, the Ry-ideal generated by the coefficients of D is equal
to a. Since R, is a principal ideal domain, Ry, has an R,-basis, say
{wi,...,wr} (cf. e.g. [20], Ch. V, §4). Then this basis is also an R, [X]-basis
of Ry p[X], where Ry[X] := R,[X1,...,X,] and Ry p[X] 1= Ry p[X1,...
..., Xp]. Then A € Ry, ,[X]. Further, D(X) is precisely the discriminant of
{1, A, ..., A"~} with respect to M(X)/K(X):

D(X) = Dugxy/xx) (1A, ..., A1),
From elementary properties of discriminants it follows that there is a poly-
nomial G(X) € R,[X] such that

D(X) = G(X) Dy, x)/k(x) (Wi, - -y wr) = G(X) Dy, g (w105 wp)
This implies that each coefficient of D(X) 1is divisible in R, by

Dy, g Kk (wi,...,w,) and hence by the relative discriminant 9, ,. Therefore,
a is divisible by 9y ,. This proves (3.11). m

4. Preliminaries. In this section we provide some basic tools needed in
the proofs of our results. As before, K is an algebraic number field of degree
d, S a finite set of prime ideals of Ok, and Og the ring of S-integers. The
Os-ideal or Og-lattice generated by ajq,...,a, is denoted by (aq,...,an).
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We recall that if a is any Os-ideal then |a|s = N /g(a*)/¢, where a* is the
Ogk-ideal composed of prime ideals outside S such that a = a*Os. We put

lals = [(a)|s  for a € K.
We recall that if a = b-¢~! where b, ¢ are integral Og-ideals with b+¢ = (1),
then mg(a) :=|b|s - |c|s. We put
mg(a) =mg((a)) forae K.

We shall frequently use the fact that for any two Og-ideals a, b, and k£ € Z

(41)  |abls = [als-[bls, ms(ab) < ms(a)ms(b), ms(a*) =ms(a)*,

and for any two «, 5 € K*

(42) |apls =lalslfls, ms(aB) <ms(a)ms(B), ms(a®) =ms(a)*.
Further, if L/K is a finite extension and T is the set of prime ideals of Oy, (?)

lying above those in S then Op, the ring of T-integers in L, is the integral
closure of Og in L. Then we have, by the definition of | - |g and mg(+)

(4.3) { la|z = |als, mr(a) =mg(a) for every Os-ideal a;
lalr = |als, mr(a) =mg(a) foralla € K*.

We recall that the height hA(F) of a polynomial F' with algebraic coefficients
is defined as the maximum of the heights of the coefficients of F. Further,
the height h(a) of a vector a with algebraic coordinates is defined as the
maximum of the heights of the coordinates of a. We define the height h(A)
of a matrix A with algebraic entries in a similar way. We recall some prop-
erties of the height from ([6], Lemma 1). Let o, 3, a1, ..., a, be algebraic
numbers with 5 # 0, and f(Xi,...,X,), g(X) polynomials with algebraic
coefficients. Then the following properties hold:

h(a*) = h(a)*l for k € Z;

(4.4) h(aB) < h(a)h(B); h(a/B) < Ma)h(B);
h(ag + ...+ an) <nh(ay)...h(ay);

if f(X4,...,X,) has exactly r non-zero coefficients
(4.5) and degree d; in X for j =1,...,n then

h(f(ai,...,an)) < rh(f)"hlar)® ... h(ap)%;
(4.6) lals < h(a) ifa€ K;
(4.7) if 6 is a zero of g(X), then h(f) < {4h(g)}desl@)+1,
From (4.4) and (4.5) it follows that if upper bounds for the heights of al-
gebraic numbers aq, ..., a, are known and [ is some rational expression in
a1, ...,Q,, then an upper bound for h(3) can be computed. This fact will

be used frequently without refering to (4.4) and (4.5).

(2) For any algebraic number field M, we denote by O} the ring of integers of M.
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In what follows, let s denote the cardinality of S, and P the largest of
the prime numbers lying below the prime ideals in S, with P =1 if s = 0.

LEMMA 3. Let a be an Og-ideal. Then there is an o € a with o # 0 and

(i) lals < clals,
(ii) h(a) < cilalg if a is integral

where ¢1 s an effectively computable number depending only on d and |Dk|.

Proof. First we prove (ii). Let a be an integral Os-ideal and let a*
be the Og-ideal composed of prime ideals outside S such that a = a*Os.
Let o — a(® be the distinct Q-isomorphisms of K in Q. By Satz 6 of [16],
a* contains an element o # 0 with |a()| < clNK/Q(a*)l/d fori=1,...,d
where ¢ is an effectively computable number depending only on d and
|Dr|. Now Lemma 3(ii) follows from the fact that h(a) < max; |a®| and
Ngg(a)V/* = [a]s.

We now prove (i). Take 6 € K* such that o’ := da C Og. By (ii) there
is an o € o’ such that o’ # 0 and h(a’) < ¢1|a’|s. Now (4.6) implies that
la’|s < e1]d]|s. Put a:=&6"1a/. Then (4.1), (4.2) imply that |o|s < c1|als. =

We write a = 8 mod a if a— ( belongs to the Og-ideal a and, for v € Og,
a=pmodyifa—pe(y).
LEMMA 4. Let a be an integral Og-ideal and 3 € Os. Then there is an
« € Ok such that
a=fmoda, ha)< crlals,
where cq is an effectively computable number depending only on d and |Dk|.

Proof. See Lemma 6 of [6] with an explicitly given cy. m

We now prove the result stated in Section 2, that every non-principal
Ogs-ideal class contains an integral ideal with generators of small height.

LEMMA 5. Let a be a non-principal Og-ideal. Then there are v € K* and
a, B € Og such that

ya = (O[7ﬂ)7 h(O[) S C3, h(ﬂ) S C3,
where c3 is an effectively computable number depending only on d and |Dy|.

Proof. ¢4, c5 will denote effectively computable numbers depending
only on d and |Dg|. By Lemma 3(i) we can choose v € a~! such that
v # 0 and |y|s < e1]alg'. Put b = ya. Note that b is an integral Os-ideal
with |bls < ¢;. By Lemma 3(ii) we can choose a € b such that a@ # 0
and h(a) < c¢1]bls < ca. Then ord,(a) > ord,(b) for all p € Mg \ S. By
the Chinese Remainder Theorem (see e.g. [2], Ch. III, §3, Thm. 4) we can
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choose 3 € Og such that
(48) ordy(3) = ord,(b) for all p € Mg \ S with ord,(«) > ord,(b),
' ordy(3) > ord,(b) for all p € Mg \ S with ord, (o) = ord,(b).

Further, if 3 satisfies (4.8) then so does every 3’ € Os with 8’ = 3 mod «.
Hence by Lemma 4 and (4.6) there is a § € Og satisfying (4.8) and

h(B) < ealals < eah(a) < c5.

For every p € Mg \ S we have ord,(b) = min(ord,(a),ord,(3)). Hence
b = (a, 3). This proves Lemma 5. m

We now state some results on S-units.
LEMMA 6. Let o € K* and n € N. Then there is an € € OF such that
h(e"a) < cgmg(a), and h(e"a) <cgla|ls if a € Os\ {0},

where cg is an effectively computable number depending only on d, |Dk|, s
and P.

Proof. c¢7, cg will denote effectively computable numbers depending
only on d, |Dk|, s and P. Let a, b be the integral Og-ideals with (o) = ab™?
and a+ b = (1). By Lemma 3(i) we can choose v € b with 7 # 0 and
|7ls < c1lbls. Put 8 = a-~. Then 8 € a and |B|s < c1]|a|s. Note that
8,7 € Os. By Lemma 10 of [6] there are 1, € OF such that

h(n"B) < c7lBls < cglals,  h(¢"y) < erlrls < cglbls

Put € = /(. Then, by Lemma 3, h(¢"a) < cg|a|s|b|s = cfms(a). Further,
if @« € Os \ {0} then mg(a) = |a|s and the proof is complete. m

We apply Lemma 6 in the following situation. Let L/K be a finite,

normal extension, and let Ai,...,A; be finite, non-empty subsets of L*
such that
(4.9) o(A;) =Agqy fori=1,....t, oeGal(L/K),

where (o(1),...,0(t)) is a permutation of (1,...,t) for ¢ € Gal(L/K).
Consider the Gal(L/K)-orbits Cq,...,C, of {1,...,t} introduced in Sec-
tion 3 (where i, j belong to the same orbit if and only if o(i) = j for some
o € Gal(L/K)). Let T be the set of prime ideals in Oy, lying above those
in S. Assume that

mr(a) <C fora€ AyU...UA; and

4.10
(4.10) ha/B8) <C fora,f€ A; i=1,...,t.

LEMMA 7. For every nq,...,n, € Z\ {0} there are 1,...,e¢ € OF such
that

(4.11) o(ei) = €54 fori=1,...,t and for each o € Gal(L/K)
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and

h(e}?a) < cl,nle'2 forallaoe A withie€Cj, j=1,...,u,
where cqg is an effectively computable number depending only on d, [L : K],
|Drl|, s and P.

Proof. Let C be an arbitrary but fixed Gal(L/K)-orbit of {1,...,t}.
It suffices to prove that for every n € N, there are ¢; € Oy with ¢ € C such
that

(4.12) o(e;) = €5(;) foreach i€ Cando € Gal(L/K)
and
h(ela) < cgC?  for all @ € A; with i € C.
Let a; be the cardinality of A; for i € C. Put §; = HaeAi a for i € C. Then

by (4.9) we have o(8;) = B,(;) for each i € C and o € Gal(L/K). Let M;
(i € C) be the field defined by

Gal(L/M;) ={o € Gal(L/K) : 0(i) = i}.

Then (; € M/ for each i € C. By (4.9), Lemma 6, (3.4) and (4.10), we can
choose ¢; € Of N M7 (i € C) such that (4.12) is satisfied and

(4.13) h(ei Bi) < cigimr(B;) < {cgC}™

with some effectively computable number c¢;9 which depends only on d,
[L: K], |Drl|, s and P. By the second inequality of (4.10), for every a € A;
we have

h(a®/B;) < [ hla/B) <.
BEA;
By combining this with (4.13) we get

h(elra) < {h(el B;)h(a® /B;)} /% < BC?  forieC. m

The next result is our main tool in the proof of Theorem 2.
LEMMA 8. Let xg,x1,x2 € K* such that
xo+x1+22=0 and mg(x;) <A fori=0,1,2.

Then
(414) h(:ﬁZ/ZEJ) S CllAC12 fOT’ ’L,] (S {0, ]., 2},
where c11, c12 are effectively computable numbers depending only on d, |Dk|,
s and P.

Proof. Let a;, b; be the integral Og-ideals such that (x;) = aibi_l and
a;+b; = (1) (i =0,1,2) and put b = by bsbs. By Lemma 3 (i) we can choose
B € b such that 8 # 0 and |8|s < ¢1]b|s. Put y; = fz; for i = 0,1,2. Then

?/0‘|‘yl+y2:()a Yi GOS\{O}v |yi|S§B1201A4 fOTi:0,1,2.
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By Lemma 11 of [6], there are effectively computable numbers ¢13, ¢14 de-
pending only on d, |Dg|, s and P, such that
h(yl/y]) S 01336141 fOl" Za] € {07 17 2} .

This implies (4.14). We remark that Lemma 11 of [6] was a reformulation
of an effective result of Gy6ry on S-unit equations ([10], Lemma 6), and
that Gy6ry proved this result by applying Baker’s theory on linear forms in
logarithms and its p-adic analogue. m

5. Effective reduction of matrices. As before, let K be an algebraic
number field and S a finite set of prime ideals of Ox. The parameters d,
Dy, s and P have the same meaning as in the previous sections. If V is
any set then V"™ denotes the collection of m x n matrices with entries in
V. If A, B € K™" then we write A = B mod a if the entries of A — B
belong to the Os-ideal a, and A = B mod + if a = () for some v € K*. For
every integral Os-ideal a, let G(n, a) be the multiplicative group of matrices
U with the following properties:

UeOg"™; detU e 05
€1 0
U= mod a  for some ¢€1,...,, € 05 .

0 En
It easily follows from (1.5) that if a = («a,5) and 9 is the Os-lattice
(e1,...,e,_1,a€,, fe,) then
(5.1) G(n,a) CG(OM).
In this section we shall prove the following result.

LEMMA 9. Let n > 2 be an integer. For every non-singular matriz A in
0", there is a matriz U in G(n,a) such that

h(AU) < c15{| det Al - |a|g}

where c15, ¢i5 are effectively computable numbers such that c15 depends only
ond, |Dkl|, s, P and n, and 5 only on n.

In the proof of Lemma 9 we need some auxiliary results.

LEMMA 10. Let Ai, Ay € O™ be two non-singular matrices with
(det Ay)/(det Az) € O and Ay = Az mod (det Ay)a. Then there is a matric
U € G(n,a) with Ay = A, U.

Proof. Let U = AflAz. By assumption, there is a matrix C' € a™"
such that Ay = Ay 4 (det A;)C'. Hence

U=A7"(A; + (det A})C) = T 4 {(det A})A7*}C =1 mod a,
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where I is the n x n identity matrix. Further, detU € OF. Hence U €
G(n,a). m

LEMMA 11. Let A € K™" be a matriz of rank m, b € K™ and assume
that the system of linear equations
(5.2) Ax=b inxe O
is solvable. Then (5.2) has a solution x € O with
h(x) < crg{h(A)h(b)} e,

where c16, ¢ig are effectively computable numbers such that c16 depends only
on d, |Dk| and n, and ¢4 only on n.

Proof. For i = 17,...,20, ¢;, ¢; will denote effectively computable
numbers such that ¢; depends only on d, |Dk| and n, and ¢; only on n. We
assume that the matrix C formed by the first m columns of A is non-singular,
which is no restriction. Then

C1A=(I,4)

where I is the m X m unit matrix and A’ € K™"~ ™. For every solution
x € OF of (5.2), let y, z be the vectors consisting of the first m coordinates
of x and the last n — m coordinates of x, respectively. Put b’ = C~'b.
Then (5.2) is equivalent to

(5.3) y+Az=b" inyeOf, zeO/™™.

Let (yo,z0) be a solution of (5.3). By (2.1), (4.4) and (4.6), there is a
non-zero rational integer a such that aA’ has integral entries in K and

lals < e17h(A')7 < c1gh(A)%s |
By Lemma 4, there is a vector z € O™ with
(5.4) z=1zomod a, h(z) < czlals < croh(A)%

Put y = b’ — A’z. It is easy to see that y € OF'. Further, (y, z) is a solution
of (5.3), and, by (4.4) and (5.4),

h(y) < cao{h(A)h(2)h(b)}% < crg{h(A)h(b)}Fe .

If B is any n x n matrix then we denote by B;; the matrix obtained by
removing the ¢th row and jth column from B. For n = 1, we shall take
det B1; = 1. If p is any prime ideal of Ok outside S and o;,...,a,, € K
then we put ordy (a1, ..., a,) = min(ordy(aq),...,ordy(oy,)).

LEMMA 12. Let n > 1 be an integer, let A € O™ be a non-singular
matriz, let S” be a finite set of prime ideals of Ok outside S, and let b be
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an Og-ideal with

ordy(b) =0  forallp € Mg\ (SUS'),

ordy (b) > ordy(det A)  for allp € S’.

Then there exists a matrizc B € O™ with the following properties:
(5.6) B=Amod b;

(5.7) h(B) < c21b| 3",

(5.5)

where ca1, ¢y are effectively computable numbers such that co1 depends only
on d, |Dk| and n, and ch; only on n;

(5.8) det B #0;
(5.9) ordy (det By, ...,det Byy,) =0 forallp € Mg\ (SUS’).

Proof. cog,...,cor will denote effectively computable numbers of the
form c|b|§', where ¢ depends only on d, | Dk |, n, and ¢’ only on n. We proceed
by induction on n. For n = 1, our assertion means that if & € Ogs \ {0}
and b is an integral Og-ideal with ord,(b) = 0 for all p € Mg \ {SU S’}
and ord,(b) > ordy(«) for all p € S’ then there is a § € Og \ {0} with
B = a mod b and h(() < co2; by Lemma 4 we know that this is true. Hence
let n > 2 and assume that Lemma 12 holds for n — 1.

By Lemma 4, there is a matrix A’ € Og"" such that

(5.10) A'=Amodb and h(A) <cos.

Then det A" = det A mod b. Since ord,(b) > ord,(det A) for all p € S’, this
implies that det A’ # 0. Hence at least one of the determinants det(A ,,), ..

.,det(Aj, ,,) must be non-zero; we assume that det(A4, ) # 0, which is
no restriction. Put A = A/, . Since h(A) < h(A") < ca3, by (4.6) we have
|det Als < h(A) < ca3. Tt is easy to see that there is an integral Os-ideal b
such that

ordy () = ordy (6);
(5.11) ordy(b) > m (01"dp (det A),ord,(det A’)) forp e S,
' ordp(E)Z forallp e Mg\ (SUS’),
bls <c

By the induction hypothesis, there is a matrix B € Og_l’n_l such that
B=Amodb, h(B)<cy, detB#0,

OI’dp (det El,n—l; N ,det En—l,n—l) =0
for allp e Mg\ (SUS").

(5.12)

Here we put By,,—1 := 1 if n = 2. By the Chinese Remainder Theorem, we
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can choose £ € Og such that

((ord, (&) > ord,(b) for all p € S;
ord,(§) =0 forallp e Mg\ (SUS’)
(5.13) with ordy (y1,...,7m) > 0;
’ ordy(§) >0 for all p € Mg \ (SUS’) with ordy(v,) >0
and ordy (y1,...,Yn—1) = 0;
ordy(§) >0 for the other prime ideals p in Mg \ (SUS").

Then, by (5.5) and (5.11), £ € b. It is easy to check that if §, satisfies
(5.13), then so does every & € Os with £ = £y mod (det B)b. By (5.10),
(5.12), (4.6) and Lemma 4, we can choose £ such that

(5.14) h(§) < c26 -

Let C be the n x n matrix obtained from A’ by replacing A by B and leaving
the nth row and nth column of A’ unchanged. Let C' = (c¢;j)1<i,j<n. We
construct B from C' by replacing ¢, ,—1 by ¢, n—1 + & with the above £ and
leaving the other entries of C' unchanged. Write

Bi = det Ei,n_l, v; = det Cip, beta; = det By, .
Then
(5.15) Br=m+E&B, oy Buo1=7Vn-1+EBn_1, Bn=1"m =detB.
By construction, we have B = A mod b, hence
ordy (det B) = ord,(det A) for allp e S,
which implies that det B # 0. Further, h(B) < co7 by (5.10), (5.12) and

(5.14).
It remains to prove (5.9), i.e.
(5.16) ordy(B1,...,0n,) =0 forallpe Mg\ (SUS).

This is obvious if ord,(83,) = ord,(det B) = 0. Let p € My \ (SUS’) be
such that ordy(det B) > 0. If ordy(y;) = 0 for some i € {1,...,n — 1}
then by (5.15) and (5.13) we have ord,(5;) = 0. By (5.12) we know that
there is an ¢ € {1,...,n — 1} with ord,(5;) = 0. Hence if ord,(vy;) > 0 for
j=1,...,n—1, then by (5.15) and (5.13), ord,(3;) = 0. This proves (5.16)

and completes the proof of Lemma 12. =u

Proof of Lemma 9. By Lemma 3(ii), we can choose a € a with
a # 0 and h(a) < c¢1]alg. Further, by Lemma 6, we can choose ¢ € Of such
that h(edet A) < cg|det A|s. Put

€ 0
A=A . and A =detA;;
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then
h(A) < C@‘ det A‘S .
Since
€ 0
1
€ G(n,a),
0 1

by Lemma 10 it suffices to prove that there is a matrix C' € Og"" with
(517)  C=A; mod ad, h(C) < cos(h(a)h(A))s, detC = A,

where cog, chg are effectively computable numbers such that cog depends
only on d, |Dkl, s, P and n, and chg only on n. In what follows, cag, ..., 32
denote effectively computable numbers of the form ¢(h(a)h(A))¢ where ¢
depends only on d, |Dk|, s, P and n, and ¢’ only on n; we shall frequently
use the fact that, by (4.6), |als < h(a) and |A|s < h(A).

By Lemma 12, there is a matrix B € O§"" such that

B=A; mod aA?  h(B) <cy, detB#0,

ordy(det Bin,...,det By,) =0
for every p € Mg \ S with ord,(ad) =0.

(5.18)

Let k1,..., Kk, be the entries in the last column of B, and put 4; = det B;,
for i = 1,...,n. We shall construct C' by replacing x; by k; + {aA for
certain & € Og, © = 1,...,n, and leaving the other entries of B unchanged.
Then, by (5.18), C = A; mod aA. We have to choose &1, ...,§, such that
det C' = A, that is,

n
(5.19) > (1) Ak + &ad) = A

i=1

Since B = A; mod aA? and det A; = A, there is a v € Og such that

(5.20) det B = A — yaA?.
Hence
(5.21) > (1) Ak = A= yaA® = A(1 - aA).

i=1

By inserting this into (5.19) we get

(5.22) (—1)"tAL =~A.
i=1
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If p is a prime ideal of Ox outside S with ord,(aA) > 0, then ord,(1 —
~yaA) = 0, hence, by (5.21),

Ordp(A]_, ey An) S OI‘dp(A> .

Together with (5.18) this implies that A € (A4,...,4,,). Hence (5.22) is
solvable in &;,...,&, € Os. By (5.18) and (5.20) we have

max(h(A1),...,h(A,),h(yA)) < e30.

Now Lemma 11 implies that there are &i,...,&, satisfying (5.22) with
h(&) < ey for i =1,...,n. We conclude that h(C) < ¢32. =

6. Proof of Theorem 2. Let K be an algebraic number field and
S a finite set of prime ideals of Og. Further, let (91, F') be an Os-lattice
decomposable form pair such that rank 9t = n, deg(F') = r, F has splitting
field L and ©(9M, F') = 0. In what follows, ¢33, ..., cg3 will denote effectively
computable numbers of the form c|0|g~/, where ¢, ¢ depend only on d =
[K :Q)],|DLl|,n,r, the cardinality s of S and the maximum P of the prime
numbers lying below the prime ideals in S.

Since every Og-lattice is isomorphic to a reduced one, we may assume
that 991 is reduced. Then, as was seen in Section 2, F' can be considered as
a polynomial in K[X;,...,X,]. We shall prove that there are u € K* and
a matrix U € G(9M) such that the polynomial F'(X) = pF(UX) has height

(6.1) h(F') < cs3.

This obviously implies Theorem 2. Since this is trivial for n = 1, we shall
assume n > 2.
It follows from our assumption that either

(6.2) M=0F or M= (e1,...,e,_1,a€y,0e,),
where a = (a, ) is an integral Og-ideal and

(63) h(Oé) S C34, h(ﬂ) S C34 .

Let T be the set of prime ideals of O, lying above those in S. For Q(X) €
L[Xy,...,X,], let (Q) be the Op-ideal generated by the coefficients of @,
and put |Q|r = NL/Q(b)l/[L:Q], where b is the Op-ideal composed of prime
ideals outside T, such that bOr = (Q). Further, for 0 € Gal(L/K) we
denote by o(Q) the polynomial obtained by applying o to the coefficients
of @. We claim that the decomposable form F' (considered as a polynomial
in K[X1,...,X,]) can be factored as

(6.4) FX) = AJJux)*
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where A\ € K*, li,...,l; are pairwise non-proportional linear forms in
L[Xy,...,X,] and kq, ..., k; are positive integers such that
(6.5.a) o(ls) =low), ki=kou fori=1,...,t
and for all o € Gal(L/K),
and
(6.5.b) 1;(X)€eOp[Xy,...,X,] and |lijr <eg5 fori=1,....¢t,

where (o(1),...,0(t)) is a permutation of (1,...,t) for all ¢ € Gal(L/K).
Namely, it is obvious that there exist \' € K* and linear forms {,...,[;
which satisfy (6.4) and (6.5.a). Then I(X) € M;[Xq,...,X,], where the
field M; is defined by

Gal(L/M;) = {0 € Gal(L/K) : o(i) = i} .

Let (1) be the Op-ideal generated by the coefficients of ;. By Lemma 3(i)
and (3.4) there exist o; € (I})™' N M; with o; # 0, |ailr < cs6|lf]7" and
o(a;) = oy fori=1,...,t and o € Gal(L/K). Put

t
A=NTJ]o;™ and =0} fori=1,....¢t.
=1

Then obviously A € K* and [y, ...,[; satisfy (6.5.a) and (6.5.b).

Let A, l1,...,1; satisfy (6.4), (6.5.a), (6.5.b) and let Z(F') be the collec-
tion of linearly independent subsets {l;,,...,l; } (n = rank 9) of {ly,...
..., 1t }. We denote by det(l;,,...,l;, ) the coefficient determinant of I, ...

LEMMA 13. For each {l;,,...,l;, } € Z(F'), we have
’ det(lil, ce ,lin)

T < ¢37.

Proof. By assumption, 91 is one of the Os-lattices given in (6.2); we
put o« =1, 8 =0,a=(1)if M =0¢. For L = {l;,,....l;, } € I(F),
let 9(9M, £) be the Op-ideal generated by the numbers det(l;, (x;))1<k,j<n
for x1,...,x%, € M. Since M C OF, the ideal d(M, L) must be divisible by
det(l;,,..., 1, ). Let (I;(9N)) be the Op-ideal generated by the numbers /;(x)
with x € M. Then (1;(9M)) is generated by l;(e1),...,li(en—1),ali(e,) and
Bl;i(ey), hence it divides a(l;). Together with (4.6), (6.3) and (6.5.b) this
implies that

|(l1(9n))"f§ |Oé|T-|li’T§638 forizl,...,t.
By the definition of ©(9M, F') we have
2
( I1 det(lil,...,lin)) O ] o, 2> =0~ J[ (e ()1, ()2,

(F) (F) (F)
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hence

(6.6) ( H et (I, - - 7lin)|T)2 < c39,

I(F)

where the products are taken over all sets £ = {l;,,...,1; } in Z(F'). Since
1;(X) € Op[Xy,...,X,], each factor |det (l;,,...,l;,)|r is > 1. Now Lem-
ma 13 follows at once from (6.6). m

We define a hypergraph G as follows: take as vertices 1,...,¢ and as edges
those subsets I of {1,...,t} for which {l; : ¢ € I} is linearly dependent over
L, while {l; : i € I'} is linearly independent over L for every proper, non-
empty subset I’ of I. Thus, for each edge I of G we have a linear relation

(6.7) S Pl =0 identically in X,
el

where ¢! € L* for i € I. Put cg) = cgl)/cg-l) for any distinct ¢,j € I. Then

%

(6.8) L=— Y forjel.
i€\{j}
Since {l; : i € I\ {j}} is linearly independent for j € I, this implies that
the numbers cg) are uniquely determined by 4, ...,l;. We claim that
6.9 mrp b < ¢y for each edge I of G
ij

and for any distinct 7,7 € I,

where mp(«) is defined similarly to mg(«) in Section 4. Indeed, assume for
convenience that I = {1,...,k}U{j} with some j > n and that {l;,...,0,}
is linearly independent. Then

C(I) _ _det(ll, e 7li—17 lj, li—l—la cey ln)

i det(ln, -1 0n)

and (6.9) follows from Lemma 13. We remark that if the linear forms I;
are replaced by I, = g;l; for i = 1,...,t, then by (6.8), the numbers cg)

will change into c;gl) = f;‘ja;lcg). The most important part in the proof of

Theorem 2 is to show that 1, ..., &; can be chosen so that the linear forms [/
still satisfy (6.5.a) and (6.5.b) and that the numbers cgg-j) have small heights.
For this, we shall have to use frequently (6.9) and Lemma 8.

In G, a path of length v from i to j with 4,5 € {1,...,t} is a tuple

(6.10)

C — (i17[1)i27-[27' . "iU)I’U7Z.’U+1)’

where i1,...,0,41 € {1,...,t}, i1,...,14, are pairwise distinct, i; =i, i,41 =
Jy ty 7 tus1 and gy, 9,41 € I, for some edge I, of G for u = 1,...,v. The
length of C' is denoted by [(C'). A shortest path from i to j is a path from
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i to j of minimal length. Put

g(C) = ) - (I)

2172 1213 B2 VN
. 71 _ . . . . o . .
We write C = (Zv+1,Iv,Zv,...712,11,11). If 01 = (’517[17-'-,1—1)721)—&-1)
and Cg = (iv+17.[v+1, . .,Im,/l:nlJrl) then we write Clcg = (il,Il, N ,Z'U+1,
Iyi1,ips1s ooy Iinyime1). Thus

(6.11) g(C™H)=g(C)™" and g(C1C2) = g(C1)g(Cy).

LEMMA 14. Let Cy, Cs be two paths in G from i to j withi,j € {1,...,t}.
Then

h(g(C1)/g(Cs2)) < Ci(lc‘l)ﬂ(cz) .

Proof. A path (i1, I1,...,1,,i1) is called a cycle. It is easily seen that,
by (6.11), it suffices to show Lemma 14 for paths Cy, C5 which have no
common vertices apart from ¢ and j. If Cy, Cs are two such paths from i to
4, then C1C5 ! is a cycle. So in view of (6.11) it is enough to prove that for
every cycle C in G,

(6.12) h(g(C)) < .

Fix a subset J of {1,...,t} of cardinality n such that {l; : j € J} is lin-
early independent. For each edge I of G, {l; : i € I} is linearly depen-
dent, hence (3) |I'\ J| > 1. We say that a cycle C = (i1, I1,...,1,,i1)

is J-admissible if |I; \ J| = ... = |I, \ J| = 1. We first prove (6.12) for
J-admissible cycles.
A J-admissible cycle C' = (i1, I3, ..., iy, I, 1) is called minimal if either

v =2or v > 3 and there are no p,q € {1,...,v} with p < ¢ and {p,q} #
{1,2},{2,3},...,{v —1,v},{1,v} and an edge I of G such that |\ J| =1
and i7,,1, € I. For such a minimal J-admissible cycle with v > 3 we must
have i1, ...,1, € J. Indeed, suppose that i,, € J for some u with 1 < u < v.
Then there is a unique subset H of J such that

L, = Y duln
heH
for some dj, € L*. Now I,_1 = I, = {i,} U H (with the convention that
Iy :=1,) and 80 iy —1 and 4,41 (with i,41 := 7;) belong to {i,, } N H, which
is impossible by the minimality of C.
We shall prove that for every J-admissible cycle C of length > 3 there
are minimal J-admissible cycles C, ..., C,, such that w <[(C) — 2 and

(6.13) g(C) =g(Cy)...9(Cu).

(3) By |A| we denote the cardinality of a set A.
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We proceed by induction on I(C). Every J-admissible cycle of length 3
must be minimal, which proves (6.13) for such cycles C. Assume that
(6.13) holds for all J-admissible cycles of length < v where v > 4, and
let C = (i1, I1,...,1,,i1) be a J-admissible cycle. If C' is minimal then
(6.13) obviously holds with C; = C. Hence we assume that C is not min-
imal. Then there are p,q € {1,...,v} with p < q and {p,q} # {1,2},...
..., {v—1,v},{1,v} and an edge I of G with |I \ J| =1 containing 4, and
’L.q. Put C' = (il,Il, ey ip, I,’L.q, N ,il), C" = (ip, Ip+1, PN ,iq, I,ip). Then
C’, C" are J-admissible cycles with 3 < [(C") < I(C), 3 <(C") < I(C) and
I(C") +1(C") =1(C) + 2. Further, g(C) = g(C")g(C"). Now (6.13) follows
for C, by applying the induction hypothesis to C’ and C”'.

In view of (6.13), (6.12) follows for J-admissible cycles, once we have
proved that for every minimal J-admissible cycle C,

(6.14) h(g(C)) < caz.

The only minimal J-admissible cycles of length 2 are of the form (i1, 1,12,
I,iy) and for such cycles C' one has g(C) = 1. So we only consider min-
imal J-admissible cycles of length > 3. As we showed above, all ver-
tices of such a minimal cycle C belong to J. For convenience we assume
that J = {1,...,n} and that C = (1,1;,2,l5,...,v,1,,1) is a minimal
J-admissible cycle with v > 3. Let p, be the element of I, not belong-
ing to J, and let I, = I, N{v +1,...,n} for w = 1,...,v. Then, by
(6.8),

bp, = duuly + duurlupr + Y dygly  foru=1,...,v—1,

Jer,
and
b, = duly + dols + Y dugly,
JeL
where d,; = —cg;j for w =1,...,v. This implies that
(6.15) det(lp,, - s lpy s Loty -5 ln)
' det(ly,...,1l,)
di1  di 0
d2o  das
0 dv—l,v—l dv—l,v
dlv dvv

= dlldgg . dm) + d12 e dv—l,vdlv .
Put £ = di1...dyy, 7 = di2...dy—1,d1y, and denote the left-hand side of
(6.15) by . Then, by (6.15), € £ = (. Since dy;/dur, = ) for j,k € I,
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we have

(6.16) §/n==%g(C).
Further, by (6.9) and (4.2), mr(§) < ca3, mr(n) < ca3 and by Lemma 13
we also have mp(¢) < cg3. If ¢ = 0, then {/n = +1. If ¢ # 0 then by
Lemma 8, h(¢/n) < cqa. Now (6.16) implies that h(g(C)) < cq2. This
proves (6.14).

For every path C' = (i1, 11, ..., 4y, Ly, iy4+1) in G we put

m(C) =max{|I, \ J|: 1 <u<wv}.

Obviously, m(C) > 1. We shall prove that for every cycle C' in G with
m(C) = m > 1, there is a J-admissible cycle C’ in G with [(C") < 2™~ 1(C)
and

(6.17) h(g(C)/g(C")) < .

Since m < n, this implies Lemma 14.

We shall prove (6.17) by induction on m(C). For m(C) = 1 we are
done. Let m > 2 and assume that (6.17) holds for all cycles C' in G with
m(C) <m. Let C = (i1, 1, ..., 4y, Ly, 11) be a cycle with m(C') = m and put
iy41 :=141. In view of (6.11), it suffices to prove that for each u € {1,...,v}
with |I,, \ J| = m, there is a path C,, from 4, to i, such that

(6.18) h(W) < HCH <2 m(C)<m—1.

For convenience, we write i,, = i, 1441 = j, I, = I. First assume that there
are an edge I’ of G and a subset J’ of {1,...,t} of cardinality n such that
{l; : j € J'} is linearly independent, and

ijell, [INJ]=1, ['\J|=1, |[I'\J <m-1.
Then the cycle Cy = (i, 1,7,1',4) is J'-admissible and, by (6.11) and (6.12),

h(g(i, 1,5)/9(i, I', j)) = h(g(Co)) < eur,
which proves (6.18). Now assume that there are no sets I’, J' with the
properties specified above. Choose p from I with p ¢ J. Let H be a subset
of J of cardinality n—|I|+1 such that if G := (I\{p})UH, then {l}, : k € G}
is linearly independent and has cardinality n. Then by (6.8)

—D for ke I\ {p}
(6.19) L= dil, withdj = { Crp 0T Py
i ,;; d,=0 fork¢I\{p}
Since |GNJ| = |(I\{p})\J|=m—12>1, thereis a g € J with ¢ ¢ G. We
can express [, uniquely as

(6.20) lg=Y exly withey €L,
keG
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There is a z € I\ {p} with e, # 0 since {l; : k € J} is linearly independent.
Since z € I\ {p} we also have d, # 0. From (6.19) it follows that

L=d'l,— Y (di/d.)lk.

keG\{z}

By substituting this into (6.20) we get

lg=Y_ fuls  with @' = GU{p}\ {2},
(6.21) recr

fp:ez/dza fk:ek_fpdk fork‘;ép.

Note that |G| = n and that {l;, : £ € G’} is linearly independent. The sets
I'={q}u{keG:e, #0} and I”" = {q} U{k € G’ : fr # 0} are edges of
G. Further,

ING|=1, |I'\G|=1, |[I'\J<m-1,
ING'|=1, |[I["\G|=1, |[I"\J<m—1.

By our assumption, neither I’ nor I"” contains both i and j. Assume for
instance that j ¢ I’. Then either j # p, in which case we have e; = 0, so
Jj # z, whence f; = —fpd; # 0, that is j € I”; or j = p, in which case
fi = fp # 0 and also j € I”. Therefore, i ¢ I" and 0 = f; = e; — fpd;. But
then e; # 0 and ¢ € I'. Let C,, = (¢,1',¢,1", 7). Then in view of ¢; = f,d;,
fi = —fpd; (with d, :== —1) we have

fpdi o dz

=—>=-9 i7]7j .
frd; d; ( )

This implies (6.18). The proof of Lemma 14 is now complete. m

g(C) = U — et =

iq qj

LEMMA 15. There are €1,...,&¢ € Of such that
(6.22) o(ei) =€54) fori=1,...,t and for each o € Gal(L/K),

(6.23) h<?c(][)> < cag
for every edge I of G and for all distinct i,j € I.

Proof. We apply Lemma 7. For distinct 4,5 € {1,...,t}, let P(i,7) be
the collection of shortest paths in G from 4 to j and set P(i,j) = 0 if no
path between ¢ and j exists. For a non-isolated vertex i of G, let A; be the
set consisting of all numbers of the form

IT 9@,
JiP(i,5)#0

where Cj; is any path in P(i,j), and for an isolated vertex ¢ in G let A; =
{1}. By (6.5.a), each 0 € Gal(L/K) maps linearly (in)dependent subsets
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of {l1,...,1;} onto linearly (in)dependent subsets, hence it maps edges of G
onto edges of G, and
Ny _ o)
7(€5°) = Coi) 005)
for each edge I of G and each distinct 4,5 € I. This implies that
(6.24) o0(A;) = Ay;y fori=1,...,t and for each 0 € Gal(L/K).
Further, if 7 is not isolated then each element « of A; is the product of

numbers of the form cz(,z), and each shortest path between two vertices has

length at most r. Hence we have, by (6.9) and (4.2),

(6.25) mr(a) <cgg foreacha € A;andi=1,...,t.
Further, by Lemma 14 we have

(6.26) h(a/B) < cs50 foreach o, € A; and i =1,...,¢t.

Each ¢ € Gal(L/K) maps connected components of G onto connected
components. Let C be a Gal(L/K)-orbit of {1,...,t} as defined in Section 3.
The connected components of G containing an element of C as vertex have
the same cardinality which will be denoted by n¢. By Lemma 7, (6.24),
(6.25) and (6.26), there are €1, ...,&; € O satisfying (6.22) and

(6.27) h(e;"a) <cs1 foreach a€ A;,ieC.

We now prove that these €1, ..., ¢ satisfy (6.23). Let I be an edge of G and
i,7 € 1. Suppose that i € C, j € C’' for Gal(L/K)-orbits C, C'. Then n¢ and
ne: have the same value, say n'. It is clear that n’ <t < r. Take

Q= H 9(Cik) and a; = H g( J/k),
k:P(i,k)#0 k:P(j,k)#£0

where Cjj, is any shortest path from ¢ to k£ and C’;  any shortest path from
j to k. By Lemma 14 and (6.11) we have k # i, j,

h(cg-)/g(Cij)) < ¢52,
hel) - 9(C5) < esa. hle) - a(CHCLY) < esa.
hence
h((cg))q caj/a;) < cs3, whereg=mn'—1.
Together with (6.27) this yields

£ (D) & "o CNTAYTRS
(2p) < () ()] e
1 ] ] 1

This proves Lemma 15. m

In what follows, we put I} = ¢;l; for i =1,...,¢, and c;](I) = (ej/ei)cg).

ij
Note that 11, ...,1; satisfy (6.5.a) and (6.5.b).
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LEMMA 16. There are a linearly independent set of linear forms {mq, ...
cooymy} with m; € Os[ Xy, ..., X,] and numbers d;; € L such that

l;:Zd”mJ forizl,...,t,
j=1
h(dij)§054 forizl,...,tandjzl,...,n.

Proof. Partition {1,...,¢} into Gal(L/K)-orbits as in Section 3. As-
sume for the moment that {1,...,u} is such an orbit. Define M; by
Gal(L/M;) = {0 € Gal(L/K) : o(1) = 1}. By [16], Satz 6, M; has a
Q-basis {w1,...,wn} with

(6.28) |a(wz)| < cs55, w; € OM1
fori=1,...,m and for each o € Gal(L/K).

We may assume that {wq,...,w,} is a K-basis of M;. Then there are linear
forms nq,...,n, € K[Xy,...,X,] such that

u
(6.29) =) wing.
j=1

Pick o; € Gal(L/K) such that o;(1) =i for i = 1,...,u and put

d == (det (0 (w;))1<ij<u)® -
Then d € K* and the linear forms m; = dn; (j = 1,...,u) have their
coefficients in Og. Put w;; = d~'o;(w;) fori,j € {1,...,u}. Then, by (6.28)

u
Il = E wiym;  fori=1,...,u,
J=1

h(wij) <ese  for 1 <id,j <u.

By applying this argument to the other Gal(L/K)-orbits we find linear
forms mq,...,m; € Os[X1,...,X,] and an invertible matrix 2 = (w;;)
with entries in L such that

t
(6.30) I, = Zwijmj fori=1,...,t and h(2) <csr.

j=1
We assume that {l},...,0},} and {m,...,m,} are linearly independent,
which is no restriction. Every linear form I} (i = n+ 1,...,t) can be ex-

pressed uniquely as

(6.31) l; = Zeijl; ;
j=1



268 J. H. Evertse and K. Gyory

where E := (e;;) € L'™™. The sets [; = {i} U{j : e;; # 0} are edges of
G, hence, in (6.31), either e;; = 0 or e;; = —cﬁi) by (6.8). Now Lemma 15
implies that

h(E) S Cs8 .

Since {m1,...,m,} is linearly independent there is a matrix D = (d;;) €
L*" such that

l;:Zdijmj forz'zl,...,t.
j=1

We can express the entries of D as rational functions in the entries of (2
and E: first, by expressing mq,...,m; as linear combinations of /1,...,[},
which is possible since {2 is invertible; secondly, by expressing my,...,my,
as linear combinations of /},...,l/,, which can be done by (6.31); thirdly,
by expressing 1}, ...,l, as linear combinations of mq,...,m,; and finally,
by expressing [}, ...,l; as linear combinations of mq,...,m,, using (6.31).

Hence it follows that h(D) < cs4.

Proof of Theorem 2. Let d;; be numbers and mq,..., m,, linear
forms with the properties specified in the statement of Lemma 16. Let
B e Og '™ be the matrix whose ith row consists of the coefficients of m; and
put

t n

(6.32) ax) =] (Z dinj) :
i=1  j=1
where X = (Xi,...,X,)?. From Lemma 16 and the construction of 1}, ...
..., 1y, it follows that there is a p € K* with
(6.33) uF(X) = G(BX).

Assume that {l},...,0/,} is linearly independent and let A € L™™ be the
matrix whose ith row consists of the coefficients of ;. By Lemma 13 we
have |det A|p = |det (I1,...,1,)|T < c37. Further, by Lemma 16, there is an
invertible matrix D € L™"™ with A = DB and h(D) < cs9. Then, by (4.6),
|det D~!|p < h(det D) = h(det D) < cgo. Hence

\det B’S < Cg1 -

By our assumption, the Og-lattice 9 is equal to either O or (eq,...
cep_1, 0y, fe,) with h(a) < ¢34 and h(B) < cgq. Put a = (1) if M = OF
and a = (a, 3) otherwise. In the second case we have, by (4.6),

lals < max(|als, |Bls) < max(h(a), h(3)) < c2;

in the first case, this evidently holds. By Lemma 9, there is a matrix U €
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G(n,a) such that the matrix B’ = BU satisfies

(6.34) h(B') < cg3 .

Note that by (5.1), the matrix U belongs to G(91). Put
F'(X)=G(B'X);

then, by (6.33), uF'(UX) = F'(X). Finally, by (6.32), Lemma 16 and (6.34),

we have h(F") < c33. This proves (6.1) and hence Theorem 2. m

7. Proof of Corollaries. As above, K is an algebraic number field of
degree d and S is a finite set of prime ideals of Ok of cardinality s such that
the largest of the prime numbers lying below prime ideals of S' is equal to P.
Let (M, F') be an Og-lattice decomposable form pair such that rank 9t = n,
deg(F) = r, F has splitting field L and D(O, F') = .

Proof of Corollary 1. By Theorem 2, (9, F') is weakly equivalent
to a pair (9, F'), where M’ is a reduced Ogs-lattice, and h(F"') < cgq with
an effectively computable number cg4 depending only on d, |Dyr|, s, P, n, r

and [0|s. Hence it suffices to prove the following lemma.

LEMMA 17. We have |Dp| < cg5, where cgs is an effectively computable
number depending only on d, |Dk|, s, P, n, r and |9|s.

Proof. cgg and cgr will denote effectively computable numbers depend-
ing only on the parameters listed in Lemma 17. F can be factored as in
(3.1), into linear functions ly,...,[; satisfying (3.2). Define the fields M;
(t=1,...,t) asin (3.3). Let Cq,...,C, be the Gal(L/K)-orbits of {1,...,t}
relative to the Gal(L/K)-action defined in (3.2) and assume that i € C;
for i = 1,...,u. Let Og; be the integral closure of Os in M;, and 0; the
discriminant of the ring extension Og ;/Og. Then, by Lemma 2,

(7.1) 01 ... 0uls < PIY? < s
By Lemma 14 of [6], we have
(7.2) |Dar,| < cgrldls  fori=1,...,u.

Let m; = [M; : K] for i =1,...,u. Since L is the composite of Mq,..., M,
we have, by a result of Stark ([19], Lemma 7),

t (L:M;] - m; [L:M;] “ [L:K]
D[ [T o8 =TT 25 = (T o)
i=1 i=1 i1

Together with (7.1), (7.2) and the inequality [L: K] < r!, this proves Lem-
ma 17. m

Proof of Corollary 2. We shall frequently use the following facts:
(i) for every C' > 1 it is possible to determine effectively a finite set con-
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taining all o € K with h(a) < C (see e.g. [7]), and (ii) for every Os-ideal a
given by a set of generators and every a € K, it is possible to decide whether
a € a or not. We remark that by Lemma 11, it can be decided effectively
whether a system of linear equations Ax = b is solvable in x € O, and fact
(ii) is a special case of this.

By Corollary 1, for given n, r and 0, each weak equivalence class con-
tains an Og-lattice decomposable form pair (90, F') such that 91 is reduced,
rank M = n, deg(F) = r, DM, F) = 0 and h(F) < cgs, where cgg is an
effectively computable number depending only on d, s, P, n, r, |Dg| and
[0|s. It is possible to determine effectively a finite set containing all pairs
(9, F') with these properties; what remains is to find an effective method
to decide whether any two pairs (9, Fy), (9Ms, F») in that finite set are
weakly equivalent or not.

First we give a procedure to determine effectively whether any two re-
duced lattices are isomorphic. This is trivial if 9; or My is OF. Hence we
may assume that 9y = (e,...,e,_1,0e,,fe,), My = (e1,...,e,-1,7€n,
de,), where a, 3, 7, § are given elements of Og with h(«), h(53), h(7), h(d) <
ceg for some effectively computable number cgg depending only on d and
|Dg|. If there is an a € K* with a(«, 3) = (7, 0) then, by (4.6), mg(a) < o
where c7q is also an effectively computable number depending only on d and
|Dk|. By Lemma 6, there is an ¢ € O with h(ea) < ¢71, where ¢7; is an
effectively computable number depending only on d, |Dg|, S and P. This
implies that there is a b € K* with (ba, b3) = (v,d) and h(b) < ¢71. Hence
in order to decide whether («, ), (7, d) belong to the same ideal class it suf-
fices to check, for each b in some effectively computable finite set, whether
the Og-ideals (ba, b3) and (vy,0) are equal.

So we can restrict ourselves to pairs (9, F') where 9 is a fixed, given
reduced Os-lattice, and hence a reduced Os-sublattice of OF of rank n.
Two Ogs-lattice decomposable form pairs (90, Fy) and (9, Fy) are weakly
equivalent if and only if there are A\ € K* and a matrix U € G(9) such
that F»(X) = AF1(UX) (cf. Section 1). For a given matrix U € K™™ it can
be decided whether U € G(M) and F5(X) = AF1(UX) for some A\ € K*.
Therefore, it suffices to prove the following lemma.

LEMMA 18. Let 9 be a reduced Og-lattice, and let F1(X), F5(X) be two
decomposable forms on KM of degree r and mazximal rank n such that

(7.3) F(X) = A (UX)

for some A € K* and U € G(9M). Then there are N € K* and U' € G(IM)
such that

FQ(X) = AIFl(U/X) and h(U’) S Cro,
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where cro is an effectively computable number depending only on d, |Dk], s,
P, n, r, h(Fy) and h(F3).

Proof. cr3,...,cs1 will denote effectively computable numbers depend-
ing only on the parameters specified in Lemma 18. By (7.3), we can express
Fl, F2 as

t t
(7.4) (X)) =p][u@X)r,  FX)=v]]mX)*,

i=1 i=1
where p,v € K*, ky,...,k; are positive integers, [y, ...,[; are pairwise non-
proportional linear forms and mq, ..., m; are pairwise non-proportional lin-

ear forms with coefficients in the common splitting field L of F} and F5. Let
Or be the integral closure of Og in L. We claim that ly,...,l;, mq,...,my
can be chosen such that

li(X)EOT[Xl,...,Xn], mi(X)GOT[Xl,...,Xn],
h(ll) < C73, h(mz) < Cr3 for i = 1,...,t;
(75b) )\,mZ(X) :l,(UX) (Z: 1,...,7f) for some A1,..., A\t € L*;
(7.5.C) O'(li) = lg(i), a(ml) = ma(i), kg(i) = /Ci
fori=1,...,t, 0 € Gal(L/K),

where (o(1),...,0(t)) is a permutation of (1,...,t) for each o € Gal(L/K).
Namely, choose linear forms 1;,...,1;, m},...,m; satisfying (7.4), (7.5.b),
(7.5.c) such that at least one of the coefficients of each of these forms is
equal to 1. Construct polynomials fi(X), f2(X) from F;(X) and F»(X),
respectively, by setting X; = X, Xo = X" ... X, = X0+D"™" where
r = deg(F1) = deg(Fz). Then h(f1) = h(Fy) and h(f2) = h(F). Now the
coefficients of lf,...,l;, m},...,m}, are rational functions of the zeros of f;
and fo. Hence by (4.7) and (4.5),

h(l;) < C74, h(m;) < cpy for i = 1, R
Choose a € Og \ {0} such that h(a) < ¢75 and

ali, am; € Or[Xy,...,X,] fori=1,... t.

Then the linear forms I; := al}, m; := am} (i = 1,...,t) satisfy (7.5.a,b,c).
By (7.5.b,c), (1.5) and (4.6), we have

(7.6) mr(X) <cre, (X)) =Aoy fori=1,...,t, 0 € Gal(L/K).

Let G be the hypergraph with vertices 1,...,t whose edges are those subsets
I of {1,...,t} for which {l; : ¢ € I} is linearly dependent and each proper,
non-empty subset of {l; : ¢ € I} is linearly independent. The hypergraph
corresponding to myq, ..., my is exactly the same, by (7.5.b). Let Gi,...,G,
denote the connected components of G (two vertices belong to the same

(7.5.a)
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connected component if and only if there is a path connecting them). By

(6.8), there are uniquely determined numbers cz(;), dg) € L* such that

iel\{5} ieI\{j}
for each edge I of G and each j € I. By (6.10) and (7.5.a) we have

(7.8) h(cl))), h(dS))) < err
From (7.5.b) and (7.7) it follows that

I
my=— > ) (/A)ms.
i€I\{j}

Hence

ij
Together with (7.8) this implies the following: if 7,5 belong to the same
connected component then

(79) h()\z/)\]) S c7s .

We assume that {l;,...,l,} and hence {mq,...,m,} is linearly independent,
which is no restriction. Put A = det(ly,...,l,,). By assumption, I =
(e1,...,en_1,0€,,3e,), and by (2.3) and (4.6), the ideal a = (a,3) has
lals < ¢79. Let h be the cardinality of the unit group of the residue class
ring Op/Aa. Then, by (7.5.a), (4.6) and |a|s < c79, we have

(710) h S Cs -

Let Aj ={\;:i€g;}for j=1,...,v. Each o0 maps linearly (in)dependent
linear forms onto linearly (in)dependent linear forms, hence there is a per-
mutation o* of 1,...,v such that 0(G;) = G,«(;) for j = 1,...,v. Therefore,
by (7.6) and (7.5.c), 0(A;) = Ay-(j) for j = 1,...,v and 0 € Gal(L/K).
Further, (7.9) holds. Hence we can apply Lemma 7 with v instead of ¢ and
we infer that there are 7,...,n, € Oy such that

o(nj) =Ny forj=1,...,vand o€ Gal(L/K)
and
h(?];l)\l) < cg1 for \; € Aj .

We note that in order to use Lemma 7 we must have an estimate |Dy,| < cso
where Dy, is the discriminant of the splitting field L of F; and F> over K.
However, this can be done by using Example 4 from Section 1, (7.5.a) and
Lemma 17.
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For each i € {1,...,t}, put ¢; =n; ifi € G; for j =1,...,v. Then
€; = €k if i,k € G; for some j € {1,...,v};
(7.11) o(e;) = €54 fori=1,...,tand for all 0 € Gal (L/K);
h(efX;) <ecgy fori=1,...,t.
We claim that there is a matrix U” € G(n, a) such that
(7.12) ehy(X) =1,(U"X)  fori=1,...,t.

Let B € O™ be the matrix whose ith row consists of the coefficients of
l;, and B’ € Op" the matrix whose ith row consists of the coefficients of
ell; for i = 1,...,n. By our choice of h we have ¢! = 1 mod Aa, hence
B' = Bmod Aa (in Or). Further, (det B')/(det B) = (g1...€,)" € Of.
Hence by Lemma 10 with K replaced by L, there is a matrix U” € O™
such that det U"” € O3,

G 0
(7.13) U’ = mod a  with some (3,...,(, € O

0 Cn
and

B' = BU".
This matrix U” satisfies (7.12) for i = 1,...,n. For everyi € {n+1,...,t}
there is a unique subset [; of {1,...,n} such that [; = > . ¢;l; for certain
¢; € L*. Now I; U {i} is an edge of G, hence by (7.11), ¢; = ¢; for j € I.
Therefore,
ehl; = ch(sz-‘lj) forj=n+1,...,t.
Jj€l;

We conclude that (7.12) holds also for i =n+1,...,¢. By (7.11) and (7.5.c)
we have

o(ehly) = Eg(i)la(i) fori=1,...,t and for each o € Gal(L/K).

Thus the matrix U” satisfying (7.12) must have its entries in K. Together
with (7.13) this implies that U” € G(n,a), whence, by G(n,a) C G(IM),
U” € G(IM) holds.

Put A\, = el); for i = 1,...,t. Then, by (7.5.b) and (7.12), there is a
matrix U’ € G(9) such that

Nomy(X) = L,(U'X)  fori=1,...,t.

By (7.11) we have h(X}) < cg1, and by (7.5.a), h(l;) < cr3, and h(m;) < c73
for i = 1,...,t. This implies that A(U") < c¢72. Further, by (7.5.c), (7.6)
and (7.11), we get [['_,(\))* € K*. Hence there is a N € K* such that
F5(X) = N F1(U'X), which proves Lemma 18. m
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Proof of Corollary 3. Immediate consequence of (1.12) and Corol-
lary 1 with D(O, F) = (1). m

In the proofs of Corollaries 4 and 5, cga, ..., cg3 will denote effectively
computable numbers of the form ¢’[9|¢ , where ¢/, ¢” depend only on d, |Dy|,
s, P, nand r.

Proof of Corollary 4. By Theorem 2, (9, F) is weakly equiva-
lent to a pair (9, "), where 9 is a reduced Os-lattice and h(F") < cgs.
Choose A € K* and an isomorphism ¢ : 9 — 9 such that A\F"(x) =
F(p(x)) for x € M. Then (A) = ¢(IM, F)ec(IM', F”")~L. By using some argu-
ments from the proof of Lemma 18 one can show that F”(X) has a factor-
ization F"(X) = \ H:f:l 1;(X)*: where the I; are pairwise non-proportional
linear forms with ;(X) € Op[Xy,..., Xy, h(l;) < cgg for i = 1,...,t and
h(\) < csa. Hence mg(c(M, F")) < cs5 and so

ms(A) < ms(e(M, F))ms(c(M', F")) < csgms (c(M, F)).

By Lemma 6, we can choose € € OF such that

(7.14) h(e"A) < cgrmg(c(IM, F)) .

We note that in Lemma 6, |Dg| was involved, but |Dg| < |Dp|. Put F' =

e"A\F". Since the mapping x — £¢(x) is an isomorphism 9t — 9, the pairs

(M, F') and (M, F') are equivalent. Further, by (7.14) and ¢(9M, F) = ¢,
h(F’) S ngms(c) .

This proves the first inequality of Corollary 4. The second one follows by

applying Lemma 17. m

Proof of Corollary 5. By Corollary 4, there are a reduced Os-
lattice 9’ of rank n and a decomposable form F’ on K™ such that (9, F')
and (M, F') are equivalent and h(F’) < cggmg(c). This implies

(7.15) h(F'(e;)) < cggmg(c) forj=1,...,n.

Further, by (2.3) we have either (i) 9" = (eq,...,e,) where 9’ is free, or
(ii) M = (e1,...,en_1, €y, fe,) with a, f € Ogs \ {0} satisfying (2.3). By
a well-known argument (see e.g. the proof of Lemma 1 in [2], Ch. II, §1) it

follows that there are uay, ..., u,1 with F'(e; +uz1e2+...+uy1€,) # 0 such
that u;; € {0,1,...,r} in case (i) and u;; € {0,a,2q,...,ra} in case (ii)
for j =2,...,n. Put €| :==e; + >, ui1e;. We can inductively construct

ey, ...,e, such that F'(e}) # 0 and that
e;- = ulje/l + ...+ uj_l,je;_l —+ Ej + uj+17je]—+1 + ...+ umjen

with w;; € {0,1,...,7} in case (i) and u;; € {0,,2¢a,...,ra} in case (ii)
/

fori=2,...,n,7=2,...,n. It is easy to check that 9’ = (e},...,€),) in

’n

case (i) and MM’ = (e},...,e,,_,, e, fe}) in case (ii). Let V = (v;;) be the
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n xn matrix defined by €, = Ve, fori =1,...,n and put F(X) = F'(VX).
Then (9, F") is equivalent to (9, F’) and hence to (I, F'). Further, it is
easy to see that h(V') < cgo. Hence we get h(EF") < cgymg(c), which implies
that

(7.16) h(F"(ej)) < coimgs(c) forj=1,....n.

Further, F"'(e1)...F"(e,) = F'(e}) ... F'(e],) # 0.

There is an Ogs-module isomorphism ¢ : MM’ — I such that F”(x) =
F(p(x)) for each x € M. In case (i) we put w; = p(e;) for j =1,...,n,
while in case (ii) we put w; = ¢(e;) for j = 1,...,n — 1, w, = ¢(ae,),
wWn+1 = p(Be,) = yw, where v = §/a and, by (2.3), h(y) < cge with some
effectively computable cgo which depends only on d and |Dg|. Therefore
M = (w1,...,wn) where either M is free and m = n, or M is not free,
m =n+ 1 and w,+1 = yw, with the above v, F(w1) ... F(wy,) # 0, and, by
(7.16) and (2.3), we get in both cases

hMF(w;)) <cgg forj=1,...,m.

This proves the first inequality of (2.4). The second one follows by applying
Lemma 17.

Proof of Corollary 6. If there are u € M* and a subfield M’ of
M such that u9t C M’, then

NM/K(OZ) :NM/K(M)_INM//K(MOZ)[MM/} for all o € 91.

Hence DM, N/ ) = D(uIN, Napr /i ). Therefore we may, and shall, as-
sume that there is no p € M* such that p91 is contained in a proper subfield
of M. Note that in this case, the normal closure L of M /K is the splitting
field of the restriction of Njs gk to KIN.

Next cgq, Co5, cos Will denote effectively computable numbers of the form
d[0|&" where 0 = D(M) and ¢, ¢ depend only on d,r = [M : K], |Dyz], s,
P and n = rank 9. By Theorem 2, there are a reduced Os-lattice 9" of
rank n, a decomposable form F’ on K", an isomorphism ¢ : 9" — 9 and

A € K* such that
(7.17) F'(X) = ANy (p(x))  for all x € M” and h(F) < coy.

 can be extended uniquely to a K-linear mapping K™ — M. Denote the
conjugates of @« € M over K by a = oM, ... o and define the linear
functions l; : K™ — L (j =1,...,r) by

1;(x) = {p(e1) to(x)}¥)  forallx e K™.
Then, by (7.17),
h(x). . 1e(x) = Nyyre((en) " Nay i (p(x) = F'(en) T F' (x) = G(x).
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Now (7.17) implies that
h(G) < Cos with Cogr = 034 .

By a similar argument to the proof of Lemma 18, and using the fact that
each [; is a linear form one of whose coefficients is equal to 1, it follows that

(7.18) h(l;) <ecgg forj=1,...,r.

Let M = p(er) 1. If M” = OF then take w; = l1(e;) fori = 1,...,n, and
it M’ = (e1,...,e,_1,ae,, fe,) with o, € Og satisfying (2.3), then take

wi =li(e;) fori=1,....,n—1, w, = ali(e,) and wy+1 = Bli(e,) = Ywy,
with v = f/a. Put m = n in the first case and m = n + 1 in the second
case. Then 9 is similar to M and we have M’ = (w1, ...,w,). Further, as

we have seen in the proof of Lemma 17, |Dy| can be estimated from above
in terms of |Dys| and [M : K] only. Hence, by (7.18) and by (2.3) in the
second case, we get the first inequality of (2.5). The second one follows by
using Lemma 17.
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