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1. Introduction. Erdős and Turán have made a number of forays in
statistical group theory, investigating in particular the arithmetical structure
of the symmetric group Sn of order n. (See [2] and [3].) They posed many
problems, as usual, one of these being the following question of Turán: Is it
true that for almost all pairs of conjugacy classes of permutations of Sn, the
cycle representations of the permutations in these classes contain cycles of
the same length? From the one-to-one correspondence between conjugacy
classes of Sn and ordinary partitions of n, this amounts to the question
whether or not almost all pairs of ordinary partitions of n contain common
summands.

Let p(n) denote the number of ordinary partitions of n and let Π be a
generic partition of n. For a partition Π, the set of its summands (with
multiplicity) will be denoted by Π and the cardinality of Π by |Π|. Turán
[7] obtained the following result:

Theorem 1. Let ε > 0 be an arbitrarily small real number and k ≥ 2 be
a fixed integer. Suppose n ≤ n1 ≤ n2 ≤ . . . ≤ nk ≤ n(1+o(1)) with n →∞.
For sufficiently large n, the inequality

(1) |Π1 ∩ . . . ∩Πk| ≥
(

1
k
− ε

)
max(|Π1|, . . . , |Πk|)

holds for almost all k-tuples Π1,Π2, . . . ,Πk of ordinary partitions of n1,
n2, . . . , nk respectively (that is with the exception of o(p(n1)p(n2) . . . p(nk))
such k-tuples at most).

Essentially, the above theorem asserts that, for fixed k and for almost all
of the k-tuples of partitions in question, a positive percentage of summands
occurs in all the k partitions (independently of n). It is easy to see that for
almost all partitions (that is, with the exception of o(p(n)) at most), the
summand 1 appears at least [

√
n/ω(n)] times, where ω(n) is any function
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which tends to infinity with n. It seems reasonable to conclude that the
above phenomenon is due to the presence of a large number of repeated
small parts. However, this is not correct. For restricted partitions, Turán
obtained a completely analogous result. Here, q(n) denotes the number of
restricted partitions of n.

Theorem 2. Let ε, k, n, n1, . . . , nk be as in Theorem 1. For n →∞, the
inequality

(2) |Q1 ∩ . . . ∩Qk| ≥
(

1
k2k log 2

− ε

)
max(|Q1|, . . . , |Qk|)

holds for almost all k-tuples Q1, Q2, . . . , Qk of restricted partitions of n1,
n2, . . . , nk respectively (that is, with the exception of o(q(n1)q(n2) . . . q(nk))
such k-tuples at most).

In [7], Turán claimed that inequalities like (1) and (2) can be obtained for
partitions with summands taken from a general sequence of natural numbers.
However, no extension in this direction has appeared in the literature. In
this paper, we extend Theorem 2 to restricted partitions with summands
taken from a wider class of sequences which includes the set of sth powers.
We go on to determine the distribution of the number of common parts in
k-tuples of ordinary partitions under slightly more stringent conditions on
the ni’s, namely n ≤ n1 ≤ . . . ≤ nk ≤ n(1 + o((log n)−1−δ)) for some δ > 0.
This resolves another problem of Turán under these conditions and shows
that the constant 1/k appearing in (1) is optimal.

2. Generalisation of the result of Turán. Let Λ = {λ1, λ2, . . .} be
a strictly increasing sequence of positive integers. A restricted partition of
n is a partition of n into distinct parts. A restricted Λ-partition of n is a
restricted partition of n whose summands are taken from Λ. We denote the
total number of restricted Λ-partitions of n by Q(n;Λ).

In order to give asymptotic results for Q(n;Λ) and related quantities, it
is necessary to put some restrictions on the sequence Λ. We shall suppose
that Λ satisfies the following two conditions (compare [3] and [5]):

(I) DΛ(x) =
∑

λ in Λ
λ≤x

1 =
Axα

logβ x

(
1 + O

(
1

log x

))
,

where 0 < α ≤ 1 and β is real, and

(II) Jk = inf

{
1

log k

k∑
ν=1

||λνθ||2
}
→∞

as k →∞, where the infimum is taken over those θ satisfying 1
2λ−1

k < θ ≤ 1
2 .
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Notice that (I) implies that limk→∞ log λk/ log k = 1/α. Thus all the
results obtained in [5] are applicable to a sequence Λ satisfying (I) and (II).
In particular, from equation (1) of [5], by a routine calculation,

(3) Q(n;Λ) = exp{(1 + o(1))c1n
α/(α+1) log−β/(α+1) n},

with c1 = {AΓ (α + 1)ζ(α + 1)(1− 2−α)(α + 1)α+β+1α−α}1/(α+1) and A is
the constant in (I).

The main point of the first part of this paper is to establish the following
theorems generalising Theorem 2 above.

Theorem 3. Let Λ be a sequence of positive integers satisfying conditions
(I) and (II) above. Let k, n, n1, . . . , nk be as in Theorem 1. For sufficiently
large n, almost all k-tuples Q1, . . . , Qk of restricted Λ-partitions of n1, . . . , nk

have at least
1− o(1)

2kkα
c2n

α/(α+1) log−β/(α+1) n

common summands. Here c2 =
(

A(α + 1)βΓ (α + 1)
ααζα(α + 1)(1− 2−α)α

)1/(α+1)

.

If, in addition, the partition function satisfies the inequality

(III) log Q(n;Λ)

> c1n
α/(α+1) log−β/(α+1) n

(
1− 1

log1/(2α+2) n log log n

)
,

then Erdős and Turán [3] have shown that almost all restricted Λ-partitions
of n contain

c3n
α/(α+1) log−β/(α+1) n(1 + O(log−1/(4α+4) n))

summands, where

c3 =
A1/(α+1)Γ (α + 1)1/(α+1)(1− 21−α)ζ(α)(α + 1)β/(α+1)

(α(1− 2−α)ζ(α + 1))α/(α+1)
.

(Note that, when α = 1, the indeterminate (1−21−α)ζ(α) is equal to log 2.)
In view of this, the following is an immediate consequence of Theorem 3.

Theorem 4. Let Λ be a sequence of positive integers satisfying the con-
ditions (I), (II) and (III). Then, for any ε > 0, k ≥ 2 and for n → ∞,
almost all k-tuples Q1, . . . , Qk of restricted Λ-partitions of n1, . . . , nk with
n ≤ n1 ≤ . . . ≤ nk ≤ n(1 + o(1)) have at least(

1
2kkα(1− 21−α)ζ(α)

− ε

)
max(|Q1|, . . . , |Qk|)

common summands.
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It is known that the set of sth powers satisfies the three conditions (I),
(II) and (III) and so provides a concrete example for Theorem 4. (See [3],
p. 55.)

It is possible to work out the analogue of Theorem 3 for unrestricted Λ-
partitions. However, even in the case of unrestricted partitions into squares,
no analogue of Theorem 4 is known. The following question was put to the
authors by Erdős:

Problem 1. Let p2(n) denote the number of unrestricted partitions of
n into squares. Does there exist a function f(c) such that the number of
unrestricted partitions of n into squares in which the number of summands
is less than cn2/3 log n is asymptotic to f(c)p2(n)?

3. Variation on a problem of Turán concerning common sum-
mands. Asymptotically, almost all ordinary partitions of n have

√
6

2π

√
n log n

summands. Consequently, by Theorem 1, the typical k-tuple of ordinary
partitions of n has asymptotically at least

√
6

2πk

√
n log n common summands.

This leads to the following problem of Turán.

Problem 2 (Turán [9]). Let k ≥ 2 be a fixed integer and let λ be a fixed
real number. Suppose n ≤ n1 ≤ n2 ≤ . . . ≤ nk ≤ n(1 + o(1)). Denote by
K(n1, . . . , nk;λ) the number of k-tuples of ordinary partitions Π1, . . . ,Πk

of n1, . . . , nk with the property

|Π1 ∩ . . . ∩Πk| ≤
√

6
2πk

√
n log n + λ

√
n.

Does there exist a distribution function Φ(λ) such that

lim
n→∞

K(n1, . . . , nk;λ)
p(n1) . . . p(nk)

= Φ(λ)?

In this section, we give an affirmative answer to a slight variation on this
question. Our theorem settles the original problem when λ = o(log log n)
and n ≤ n1 ≤ n2 ≤ . . . ≤ nk ≤ n(1 + θ(n)), where θ(n) = o((log n)−1−δ) for
some δ > 0.

Theorem 5. Let k ≥ 1 be a fixed integer and K(n1, . . . , nk;λ) be defined
as above. Suppose n ≤ n1 ≤ n2 ≤ . . . ≤ nk ≤ n(1 + θ(n)), where θ(n) =
o((log n)−1−δ) for some δ > 0. Then, as n →∞,

K(n1, . . . , nk;λ)
p(n1) . . . p(nk)

∼ Φ(λ) = exp
(
− 1

kd
e−kdλ

)
,

where d = π/
√

6 and λ = o(log log n).

Note that the case k = 1 is the classical result of Erdős and Lehner
[1]. Notice further that Φ(λ) → 1 as λ → ∞ and Φ(λ) → 0 as λ → −∞.
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It follows from Theorem 5 that the number of common parts in almost
all k-tuples of partitions of n1, . . . , nk (that is, with the exception of at
most o(p(n1) . . . p(nk)) partitions) lies between the extremes

√
6

2πk

√
n log n±

ω(n)
√

n, where ω(n) → ∞ with n arbitrarily slowly. This, together with
equation (1.4) in [1], shows that Theorem 1 is best possible in the sense that
we cannot replace 1/k in the theorem by a larger constant.

We are unable to obtain the analogue of the above theorem for restricted
partitions and we propose the following problem:

Problem 3. Is the lower bound in (2) optimal? In particular , let N(n1,
n2;λ) be the number of pairs of unequal partitions Q1, Q2 of n1, n2 such
that n ≤ n1 ≤ n2 ≤ n(1 + o(1)) and |Q1 ∩Q2| ≤

√
3

4π

√
n + λn1/4. Is there a

distribution function Ψ(λ) such that

lim
n→∞

N(n1, n2;λ)
q(n1)q(n2)

= Ψ(λ)?

In view of Problem 1, it would be interesting to extend Theorem 5 to
partitions with parts drawn from more general sequences as in Section 2.
Our method fails because of the lack of a suitable generating function. (See
equation (9) below.)

4. Proof of Theorem 3. In the course of the proof, we will need two
simple lemmas which are consequences of hypothesis (I).

Lemma 1. Let Λ be a sequence of positive integers satisfying (I). For
r → 0+,

(4)
∑

λ in Λ

e−rλ ∼ AΓ (α + 1)r−α log−β

(
1
r

)
.

P r o o f. For r → 0+, we can estimate∑
λ in Λ

e−rλ =
∞∫

0

e−rxd DΛ(x) = [e−rxDΛ(x)]∞0 + r
∞∫

0

e−rxDΛ(x) dx

= r
∞∫

2

Axαe−rx

logβ x

(
1 + O

(
1

log x

))
dx + O(r).

After substituting y = rx in the integral, we see that the above is asymptotic
to

Ar−α log−β

(
1
r

) ∞∫
0

e−yyα dy

and this is the required result.
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By a similar calculation, we also obtain the second lemma.

Lemma 2. Let gΛ(r) =
∏

λ in Λ(1 + e−rλ), with Λ as in Lemma 1. For
r → 0+,

(5) log gΛ(r) ∼ c4r
−α log−β

(
1
r

)
,

where c4 = A(1− 2−α)Γ (α + 1)ζ(α + 1).

Now we proceed to the proof proper. Let hΛ(n1, . . . , nk, nk+1) denote
the number of k-tuples of restricted Λ-partitions Q1, . . . , Qk of n1, . . . , nk

respectively such that |Q1 ∩ . . . ∩Qk| = nk+1. We are done if we can show
that whenever

nk+1 <
1− ε

2kkα
c2n

α/(α+1) log−β/(α+1) n,

we have
nk+1∑
n=0

hΛ(n1, . . . , nk, n) = o(Q(n1;Λ) . . . Q(nk;Λ)).

The generating function for hΛ is
∞∑

n1,...,nk+1=0

hΛ(n1, . . . , nk, nk+1)xn1
1 . . . xnk

k tnk+1

=
∏
λ

{(1 + xλ
1 ) . . . (1 + xλ

k)− (1− t)xλ
1 . . . xλ

k}.

On putting xi = e−ri for 1 ≤ i ≤ k and t = e−rk+1 , with each ri > 0, the
above expression becomes

(6)
∞∑

n1,...,nk+1=0

hΛ(n1, . . . , nk, nk+1)e−(n1r1+...+nk+1rk+1)

= gΛ(r1) . . . gΛ(rk)
∏
λ

(
1− (1− e−rk+1)e−λ(r1+...+rk)

(1 + e−λr1) . . . (1 + e−λrk)

)
.

Let us denote the last infinite product in (6) by T (r). For ri → 0+, we have

log T (r) < −(1− e−rk+1)
∑

λ

e−λ(r1+...+rk)

(1 + e−λr1) . . . (1 + e−λrk)
(7)

≤ −1− e−rk+1

2k

∑
λ

e−λ(r1+...+rk)

< − (1 + o(1))rk+1

2k
AΓ (α + 1)

( k∑
i=1

ri

)−α

log−β
( k∑

i=1

ri

)−1

,
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using Lemma 1. In (6), the coefficientshΛ(n1, . . . , nk, nk+1) are non-negative
and so the sum of any group of terms from the left-hand side is less than
the product on the right. In particular,

(8)
nk+1∑
n=0

hΛ(n1, . . . , nk, n)e−(n1r1+...+nk+1rk+1)

< exp
{

c4(1 + o(1))
( ∑

r−α
i log−β

(
1
ri

))
− (1 + o(1))rk+1

2k
AΓ (1 + α)

( ∑
ri

)−α

log−β

(
1∑
ri

)}
.

(All the sums on the right run from i = 1 to k.) Choose

ri =
α

α + 1
c1n

−1/(α+1)
i log−β/(α+1) ni (1 ≤ i ≤ k).

Rearranging (8) then gives
nk+1∑
n=0

hΛ(n1, . . . , nk, n)

< exp
{∑

c1(1 + o(1))nα/(α+1)
i log−β/(α+1) ni

+ rk+1

(
nk+1 −

1 + o(1)
2kkα

c2n
α/(α+1) log−β/(α+1) n

)}
.

If

nk+1 <
1− ε

2kkα
c2n

α/(α+1) log−β/(α+1) n,

rk+1 is sufficiently small and fixed and n is sufficiently large, then (3) gives
nk+1∑
n=0

hΛ(n1, . . . , nk, nk+1, n) = o(Q(n1;Λ) . . . Q(nk;Λ)).

This completes the proof of Theorem 3.

5. Common summands in a pair of partitions. We now begin the
proof of Theorem 5. For simplicity, we give the details for the case k = 2
and indicate the changes required for the general case later. More precisely,
we shall prove the following theorem.

Theorem 6. Let K(n1, n2;λ) denote the number of pairs of ordinary
partitions Π1,Π2 of n1, n2 with the property

|Π1 ∩Π2| ≤
√

6
4π

√
n log n + λ

√
n ,

where λ = o(log log n), n ≤ n1 ≤ n2 ≤ n(1+θ(n)) and θ(n) = o((log n)−1−δ)
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for some δ > 0. Then, for n →∞,
K(n1, n2;λ)
p(n1)p(n2)

∼ exp
(
− 1

2d
e−2dλ

)
, d =

π√
6
.

Let f(x) =
∏∞

ν=1(1− xν)−1 and L = [
√

6
4π

√
n log n + λ

√
n ]. As shown in

[7], pp. 193–195, K(n1, n2;λ) is the coefficient of xn1yn2 in

(9) G(x, y) = f(x)f(y)
∞∏

ν=L+1

(1− (xy)ν) =
f(x)f(y)

f(xy)

L∏
ν=1

1
1− (xy)ν

.

Therefore, by Cauchy’s theorem,

(10) K(n1, n2;λ) = − 1
4π2

∫∫
G(z, w)

zn1+1wn2+1
dzdw,

where the integral is taken over the product of two circles z = e−α+iθ, w =
e−β+iφ with −π < θ, φ ≤ π. Here, α and β are chosen to satisfy the saddle-
point conditions

(11)

∞∑
ν=1

ν

eαν − 1
−

∞∑
ν=L+1

ν

e(α+β)ν − 1
= n1 ,

∞∑
ν=1

ν

eβν − 1
−

∞∑
ν=L+1

ν

e(α+β)ν − 1
= n2 .

We choose
α =

π√
6n1

, β =
π√
6n2

.

By the Euler–Maclaurin formula, the two saddle-point equations hold up to
errors of O(

√
n1 log2 n1) and O(

√
n2 log2 n2) respectively.

Now (10) can be written in the form

(12) K(n1, n2;λ) =
eαn1+βn2

4π2

π∫
−π

π∫
−π

G(e−α+iθ, e−β+iφ)e−in1θ−in2φdθ dφ .

Set θ0 = n−5/7. We split the double integral into four pieces: the main term
I1 corresponds to the major arc |θ| ≤ θ0, |φ| ≤ θ0 and the error terms I2, I3

and I4 correspond to the respective minor arcs θ0 < |θ| ≤ π, θ0 < |φ| ≤ π
for I2, θ0 < |θ| ≤ π, |φ| ≤ θ0 for I3 and |θ| ≤ θ0, θ0 < |φ| ≤ π for I4. The
integrand in these double integrals can be written as

H(θ, φ) = exp
{
−
∞∑

ν=1

log(1− e−αν)−
∞∑

ν=1

log(1− e−βν)

+
∞∑

ν=L+1

log(1− e−(α+β)ν)
}

exp{S1 + S2 − in1θ − in2φ},
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where

S1 = −
∞∑

ν=1

log
(

1− e−αν+iνθ

1− e−αν

)
−

∞∑
ν=1

log
(

1− e−βν+iνφ

1− e−βν

)
,

S2 =
∞∑

ν=L+1

log
(

1− e−(α+β)ν+iν(θ+φ)

1− e−(α+β)ν

)
.

6. The major arc. Suppose (θ, φ) lies in the region of integration of
I1. By a Taylor expansion,

S1 = iθ
∞∑

ν=1

ν

eαν − 1
+ iφ

∞∑
ν=1

ν

eβν − 1
− θ2

2

∞∑
ν=1

ν2eαν

(eαν − 1)2

−φ2

2

∞∑
ν=1

ν2eβν

(eβν − 1)2
+ O

(
|θ|3

α4
+
|φ|3

β4

)
,

S2 = −i(θ + φ)
∞∑

ν=L+1

ν

e(α+β)ν − 1

+
(θ + φ)2

2

∞∑
ν=L+1

ν2e(α+β)ν

(e(α+β)ν − 1)2
+ O

(
|θ + φ|3

(α + β)4

)
.

The contributions of the two error terms are at most o(1). The saddle-point
equations (11) are satisfied with error at most O(

√
n log2 n), so the above

expansion gives

H(θ, φ) = exp
{
−
∞∑

ν=1

log(1− e−αν)−
∞∑

ν=1

log(1− e−βν)

+
∞∑

ν=L+1

log(1− e−(α+β)ν)

− θ2

2

∞∑
ν=1

ν2eαν

(eαν − 1)2
− φ2

2

∞∑
ν=1

ν2eβν

(eβν − 1)2

+
(θ + φ)2

2

∞∑
ν=L+1

ν2e(α+β)ν

(e(α+β)ν − 1)2
+ o(1)

}
.

Now
∞∑

ν=L+1

ν2e(α+β)ν

(e(α+β)ν − 1)2
≤ 2

∞∑
ν=L+1

ν2

e(α+β)ν
∼ 2

∞∫
L

t2e−(α+β)t dt

∼ 2e−(α+β)L

(
L2

α + β
+

2L

(α + β)2
+

2
(α + β)3

)
.
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Since both α and β are equal to
π√
6n

(1 + o((log n)−1−δ)) ,

we have

(13) (α + β)L =
1
2

log n +
2π√

6
λ + o((log n)−δ).

Also
L2

α + β
∼ cn3/2 log2 n,

L

(α + β)2
∼ cn3/2 log n ,

1
(α + β)3

∼ cn3/2

and so

(θ+φ)2
∞∑

ν=L+1

ν2e(α+β)ν

(e(α+β)ν − 1)2
≤ cn−10/7 ·n−1/2e−2πλ/

√
6 ·n3/2 log2 n = o(1).

Here, and later, c denotes an absolute positive constant which may vary
from instance to instance. Hence, within the region of integration of I1,

H(θ, φ) = exp
{
−
∞∑

ν=1

log(1− e−αν)−
∞∑

ν=1

log(1− e−βν)

+
∞∑

ν=L+1

log(1− e−(α+β)ν)− A2θ
2

2
− B2φ

2

2
+ o(1)

}
,

where

A2 =
∞∑

ν=1

ν2eαν

(eαν − 1)2
∼ π2

3α3
, B2 =

∞∑
ν=1

ν2eβν

(eβν − 1)2
∼ π2

3β3
.

From all this, A2θ
2
0 ∼ cn1/14 and B2θ

2
0 ∼ cn1/14, so we can replace the limits

of integration ±θ0 in I1 by ±∞ without altering the asymptotic estimation
of I1. Observe that

∞∫
−∞

∞∫
−∞

exp
(
−A2θ

2

2
− B2φ

2

2

)
dθ dφ ∼ π2

√
6n

3/4
1 n

3/4
2

.

Thus, finally,

(14) I1 ∼
π2

√
6n

3/4
1 n

3/4
2

exp
{
−
∞∑

ν=1

log(1− e−αν)−
∞∑

ν=1

log(1− e−βν)

+
∞∑

ν=L+1

log(1− e−(α+β)ν)
}

.

7. The minor arcs. We now show that I2, I3 and I4 are negligible
compared to I1.
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To deal first with I2, it suffices to show that

J(θ, φ) = exp{S1 + S2 − in1θ − in2φ} = o(n−3/4
1 n

−3/4
2 ) = o(n−3/2)

when θ0 ≤ |θ|, |φ| ≤ π. The real parts of the sums S1 and S2 are given by

Re S1 = −1
2

∞∑
ν=1

log
(

1 +
4eαν sin2(νθ/2)

(eαν − 1)2

)

−1
2

∞∑
ν=1

log
(

1 +
4eβν sin2(νφ/2)

(eβν − 1)2

)
and

Re S2 =
1
2

∞∑
ν=L+1

log
(

1 +
4e(α+β)ν sin2(ν(θ + φ)/2)

(e(α+β)ν − 1)2

)
.

The last sum is positive and bounded by

1
2

∞∑
ν=L+1

4e(α+β)ν

(e(α+β)ν − 1)2
≤ 8

∞∑
ν=L+1

e−(α+β)ν ≤ c(α + β)−1e−(α+β)L.

But e−(α+β)L ∼ n−1/2e−cλ and λ = o(log log n) by hypothesis, so |Re S2| ≤
ce−cλ = o(nε), for every ε > 0. Thus

|J(θ, φ)| ≤ exp
{
−1

2

∑
ν≤
√

n

log
(

1 +
4eαν sin2(νθ/2)

(eαν − 1)2

)

− 1
2

∑
ν≤
√

n

log
(

1 +
4eβν sin2(νφ/2)

(eβν − 1)2

)
+ o(nε)

}
.

Following the argument in [6] or [4], pp. 267–269,

|J(θ, φ)| ≤ exp(−cn
1/14
1 − cn

1/14
2 + o(nε)) = o(n−3/4

1 n
−3/4
2 )

when θ0 ≤ |θ|, |φ| ≤ π, as required. This gives |I2| = o(I1).
For I3 and I4, we can combine the techniques used for I1 and I2. Let Sα

and Sβ denote the two constituent sums in S1, that is

S1 = −Sα − Sβ .

Over the region of integration for I3, namely θ0 < |θ| ≤ π, |φ| ≤ θ0, we have

| exp(−Sα + S2 − in1θ)| ≤ exp(−cn1/14),

as in the treatment of I2, and
θ0∫

−θ0

| exp(−Sβ − in2φ)|dφ ∼ π

61/4n
3/4
2

,

as in the treatment of I1. So I3 = o(I1) and similarly for I4.
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8. Return to the major arc. By (12), (14) and the estimates of the
last section,

(15) K(n1, n2;λ)

∼ eαn1+βn2

4
√

6n
3/4
1 n

3/4
2

f(e−α)f(e−β)
f(e−α−β)

exp
{
−

L∑
ν=1

log(1− e−(α+β)ν)
}

,

where f(x) =
∏∞

ν=1(1 − xν)−1. To estimate f , we use the well-known
estimate

(16) f(e−x) = exp
(

π2

6x
+

1
2

log
x

2π
+ o(1)

)
as x → 0+. This gives

(17) K(n1, n2;λ)

∼ eαn1+βn2

4
√

6n
3/4
1 n

3/4
2

exp
{

π2

6α
+

1
2

log
α

2π
+

π2

6β
+

1
2

log
β

2π
− π2

6(α + β)

−1
2

log
(

α + β

2π

)
−

L∑
ν=1

log(1− e−(α+β)ν)
}

.

By the Euler–Maclaurin formula,

(18)
L∑

ν=1

log(1− e−(α+β)ν) = − π2

6(α + β)
+

e−(α+β)L

α + β
− 1

2
log

α + β

2π
+ o(1) .

Also, from the choice of α and β and the hypotheses on n1 and n2,

1
α + β

=
(

π√
6n1

+
π√
6n2

)−1

=
√

6n

2π
(1 + o((log n)−1−δ))

and, by (13),

e−(α+β)L

α + β
=
√

6n

2π
· e−2πλ/

√
6

√
n

(1 + o((log n)−δ))

=
e−π

√
2/3λ

π
√

2/3
+ o(1),

since λ = o(log log n). Substituting into (17) gives

K(n1, n2;λ) ∼ 1
48n1n2

exp
{

2π√
6
(
√

n1 +
√

n2)−
e−π

√
2/3λ

π
√

2/3

}

∼ p(n1)p(n2) exp
{
−e−π

√
2/3λ

π
√

2/3

}
,

which proves Theorem 6.
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9. Common summands in k-tuples of partitions. To obtain The-
orem 5, we modify the argument of the preceding sections as follows. Set

Lk =
[ √

6
2πk

√
n log n + λ

√
n

]
.

The generating function for K(n1, . . . , nk;λ) is

Gk(x1, . . . , xk) =
f(x1) . . . f(xk)

f(x1 . . . xk)

Lk∏
ν=1

1
1− (x1 . . . xk)ν

and Cauchy’s theorem yields

K(n1, . . . , nk;λ) =
1

(2πi)k

∫
. . .

∫
Gk(z1, . . . , zk)
zn1+1
1 . . . znk+1

k

dz1 . . . dzk,

where the integral is taken over the product of k circles

zi = e−αi+iθi , −π < θi ≤ π (1 ≤ i ≤ k)

and α1, . . . , αk are chosen to satisfy the saddle-point conditions
∞∑

ν=1

ν

eαiν − 1
−

∞∑
ν=Lk+1

ν

eαν − 1
= ni (1 ≤ i ≤ k)

and

α = α1 + . . . + αk.

We choose αi = π/
√

6ni, so that the saddle-point conditions are satisfied
up to an error O(

√
n log2 n). This leads, as before, to

K(n1, . . . , nk;λ) ∼ 1
(2π)k

∞∫
−∞

. . .
∞∫

−∞
exp

(
−1

2

k∑
i=1

Aiθ
2
i

)
dθ1 . . . dθk

× exp
{ k∑

i=1

αini −
k∑

i=1

∞∑
ν=1

log(1− e−αiν)

+
∞∑

ν=1

log(1− e−αν)−
Lk∑

ν=1

log(1− e−αν)
}

,

where

Ai =
∞∑

ν=1

ν2eαiν

(eαiν − 1)2
∼ π2

3α3
i

(1 ≤ i ≤ k).

The various sums here can be estimated by (16) and (18), leading finally to

K(n1, . . . , nk;λ) ∼ p(n1) . . . p(nk) exp
(
− e−πkλ/

√
6

πk/
√

6

)
.
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