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1. Introduction. This paper will consider results about the distribu-
tion and moments of some of the well known error terms in analytic number
theory. To focus attention we begin by considering the error term ∆(x) in
the Dirichlet divisor problem, which is defined as

∆(x) =
∑
n≤x

d(n)− x(log x+ 2γ − 1) .

We shall investigate the distribution of the function x−1/4∆(x) as x tends
to infinity and prove

Theorem 1. The function x−1/4∆(x) has a distribution function f(α)
in the sense that , for any interval I we have

X−1 mes{x ∈ [1, X] : x−1/4∆(x) ∈ I} →
∫
I

f(α) dα

as X →∞. The function f(α) and its derivatives satisfy the growth condi-
tion

dk

dαk
f(α) �A,k (1 + |α|)−A

for k = 0, 1, 2, . . . and any constant A. Moreover , f(α) extends to an entire
function on C.

Theorem 2. For any exponent k ∈ [0, 9] the mean value

X−1−k/4
X∫

0

|∆(x)|k dx

converges to a finite limit as X tends to infinity. Moreover , the same is true
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for the odd moments

(1.1) X−1−k/4
X∫

0

∆(x)k dx

for k = 1, 3, 5, 7 or 9.

An examination of the proof shows that the range [0, 9] may be extended
somewhat. For k = 2 it was shown by Cramér [3] that

(1.2) X−3/2
X∫

0

∆(x)2 dx→ (6π2)−1
∞∑

n=1

d(n)2n−3/2 .

Moreover, when k = 1 one has
X∫

0

∆(x) dx = o(X5/4) ,

as follows from the work of Voronöı [12]. The cases k = 3 and 4 of (1.1)
have been handled very recently by Tsang [11] who gives the value of the
limit explicitly, as the sum of an infinite series. When k = 3 the limit is
positive, contrasting with the case k = 1. The distribution function f(α) of
Theorem 1 must therefore be skewed towards positive values of α. It should
also be noted that the methods of the above papers all give reasonably good
estimates for the rate of convergence, whereas our approach will not.

The method applies equally well to certain other error terms. We have

Theorem 3. The conclusions of Theorems 1 and 2 apply verbatim with
∆(x) replaced by the error term P (x) in the circle problem, namely

P (x) =
∑
n≤x

r(n)− πx ;

or by the error term E(T ) for the mean value of the Riemann zeta-function,
namely

E(T ) =
T∫

0

|ζ( 1
2 + it)|2 dt− T

(
log

T

2π
+ 2γ − 1

)
.

Moreover , Theorems 1 and 2 also hold for the error term ∆3(x) in the Pilz
divisor problem, providing that x−1/4∆(x) is replaced by x−1/3∆3(x), and k
is restricted to the range [0, 3) in Theorem 2.

Of course for ∆3(x) we only handle the odd moment, analogous to (1.1),
for k = 1. Again we may note that

X−3/2
X∫

0

P (x)2 dx→ (3π2)−1
∞∑

n=1

r(n)2n−3/2 (Cramér [3]) ,
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X−1−k/4
X∫

0

P (x)k dx→ ck (k = 3, 4) (Tsang [11]) ,

T−3/2
T∫

0

E(t)2 dt→ 2
3 (2π)−1/2

∞∑
n=1

d(n)2n−3/2(1.3)

(Heath-Brown [4]),

T−1−k/4
T∫

0

E(t)k dt→ c′k (k = 3, 4) (Tsang [11])

and

(1.4) X−5/3
X∫

0

∆3(x)2 dx = (10π2)−1
∞∑

n=1

d3(n)2n−4/3 +O(X−1/9+ε)

(Tong [10], Ivić [6; (13.43)]).

It appears that the error terms ∆k(x) for k ≥ 4 cannot be handled by our
methods, since no result corresponding to (1.2) and (1.4) is available.

Our argument will consider a general function F (t) which is approxi-
mated in the mean by an oscillating series as follows.

Hypothesis (H). Let a1(t), a2(t), . . . be continuous real-valued functions
of period 1, and suppose that there are non-zero constants γ1, γ2, . . . such
that

lim
N→∞

lim sup
T→∞

1
T

T∫
0

min
{

1,
∣∣∣F (t)−

∑
n≤N

an(γnt)
∣∣∣} dt = 0 .

This condition already suffices to obtain a distribution for F (t), in a
weak sense.

Theorem 4. If F (t) satisfies (H) then the mean value

1
T

T∫
0

p(F (t)) dt

converges to a limit as T → ∞, for any continuous piecewise differentiable
function p(α) for which

∞∫
−∞

|p(α)| dα ,
∞∫

−∞
|p̂(α)| dα <∞ .

When the constants γi in Hypothesis (H) are linearly independent over
Q and the functions ai(t) are suitably behaved we can say rather more.
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Theorem 5. Let F (t) satisfy (H) and suppose that the constants γi are
linearly independent over Q. Suppose moreover that

1∫
0

an(t) dt = 0 (n ∈ N) ,

∞∑
n=1

1∫
0

an(t)2 dt <∞ ,

and that there is a constant µ > 1 for which

max
t∈[0,1]

|an(t)| � n1−µ

and

lim
n→∞

nµ
1∫

0

an(t)2 dt = ∞ .

Then F (t) has a distribution function f(α) with the properties described in
Theorem 1.

Lastly, in order to establish Theorem 2 we shall prove

Theorem 6. Let F (t) have a distribution in the sense of Theorem 4, and
suppose that

T∫
0

|F (t)|K dt� T

for some positive exponent K. Then the limits

lim
T→∞

1
T

T∫
0

|F (t)|k dt ,

for real k ∈ [0,K), and

lim
T→∞

1
T

T∫
0

F (t)k dt ,

for odd integers k ∈ [0,K), all exist.

Results of the above nature have been obtained by Kueh [8], who con-
sidered both the general situation and, as particular cases, the distribution
of |ζ(1+ it)| and (on the Riemann Hypothesis) of

∑
n≤x n

−1/2Λ(n)− 2x1/2.
However, Kueh’s method appears not to apply to our examples. (Note that
in Kueh’s Theorem 1, the ambiguous expression “for any p > 1” must be
read as “for every p > 1”, rather than as “for some p > 1”.)
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It appears to be an open question whether

x−1/2M(x) = x−1/2
∑
n≤x

µ(n)

has a distribution function. To prove this one would want to assume the
Riemann Hypothesis and the simplicity of the zeros, and perhaps also a
growth condition on M(x).

2. Preliminary results. In this section we prove two results about
the mean value of certain almost periodic functions. If f(t) is a continuous
function from R to C, we define

mT (f) =
1
T

T∫
0

f(t) dt ,

and if mT (f) converges as T tends to infinity we write L(f) for the resulting
limit. As usual we shall define e(x) = exp(2πix).

We first prove

Lemma 1. Let bi(t) (1 ≤ i ≤ k) be continuous functions of period
1 from R to C. Then mT (e(γt)b1(γ1t) . . . bk(γkt)) converges for any real
γ, γ1, . . . , γk. Moreover , if γ is not an integral linear combination of the γi,
then the limit is zero.

The proof is by induction on k. When k = 0 we merely observe that

mT (e(γt)) →
{

1, γ = 0 ,
0, γ 6= 0 , (T →∞) .

Suppose now that the lemma holds for a particular value of k. For ease of
notation we shall write, temporarily,

f(t) = e(γt)b1(γ1t) . . . bk(γkt) .

We begin by observing that the function bk+1 has a Fourier series which
converges to it in the mean. Thus

lim
N→∞

1∫
0

|bk+1(t)− sN (t)| dt = 0 ,

where

(2.1) sN (t) =
N∑

n=−N

cne(nt) .



394 D. R. Heath-Brown

In general, if b(t) is a continuous function of period 1, then

mT (|b|) ≤ 1
[T ]

1+[T ]∫
0

|b(t)| dt =
1 + [T ]

[T ]
m1(|b|) ≤ 2m1(|b|)

for T ≥ 1. It follows that

mT (|bk+1(γk+1t)− sN (γk+1t)|) → 0 (N →∞)

uniformly for T ≥ γ−1
k+1. Now, since f(t) is bounded, by B say, we have

(2.2) |mT (f(t){bk+1(γk+1t)− sN (γk+1t)})|
≤ BmT (|bk+1(γk+1t)− sN (γk+1t)|) < ε ,

for some N = N(ε) and any T ≥ γ−1
k+1. However,

mT (f(t)sN (γk+1t)) =
N∑

n=−N

cnmT (e({γ + nγk+1}t)b1(γ1t) . . . bk(γkt)) .

Our induction assumption therefore yields

mT (f(t)sN (γk+1t)) → Lε (T →∞)

for some limit Lε depending on N(ε). Moreover, if γ is not an integral
linear combination of γ1, . . . , γk+1, then γ + nγk+1 cannot be an integral
combination of γ1, . . . , γk, whence Lε = 0. We now have

|mT (f(t)sN (γk+1t))− Lε| < ε

for T ≥ T (ε). It follows from (2.2) that

(2.3) |mT (f(t)bk+1(γk+1t))− Lε| < 2ε

for T ≥ T (ε) and hence that

|mT (f(t)bk+1(γk+1t))−mT ′(f(t)bk+1(γk+1t))| < 4ε

for T, T ′ ≥ T (ε). The Cauchy convergence criterion is therefore satisfied,
and so mT (f(t)bk+1(γk+1t)) converges to a limit L, say, as required. It
follows from (2.3) that |L − Lε| ≤ 2ε. However, our linear independence
condition would imply that Lε = 0, and hence L = 0, since ε is arbitrary.
This completes the proof of Lemma 1.

We now deduce

Lemma 2. Let bi(t) (1 ≤ i ≤ k) be continuous functions of period 1
from R to C. Then mT (b1(γ1t) . . . bk(γkt)) converges for any real constants
γ1, . . . , γk. Moreover , if the numbers γi are linearly independent over Q,
then the limit is

∏
i≤k L(bi).
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For the proof we again use induction on k, the results being trivial for
k = 0. We now write

f(t) = b1(γ1t) . . . bk(γkt) ,

for short. Suppose the lemma holds for a particular value of k. As before
we have

|mT (f(t){bk+1(γk+1t)− sN (γk+1t)})| < ε ,

for some N = N(ε) and any T ≥ γ−1
k+1. Moreover,

mT (f(t)sN (γk+1t)) → L(f(t)sN (γk+1t)) ,

by Lemma 1, and
L(f(t)sN (γk+1t)) = c0L(f) ,

in the notation (2.1), providing the linear independence condition holds.
Clearly

mT (bk+1) →
1∫

0

bk+1(t) dt = c0 = L(bk+1) ,

whence

c0L(f) = c0L(b1 . . . bk) =
k+1∏
i=1

L(bi) ,

by our induction assumption. The proof of Lemma 2 may now be completed
along the same lines as that of Lemma 1.

3. Proof of Theorems 4 and 6. We begin by using Lemma 2 to prove
Theorem 4. Since p(α) is continuous and piecewise differentiable we have

p(F (t)) = lim
A→∞

A∫
−A

p̂(α)e(αF (t)) dα .

Moreover, since
∫∞
−∞ |p̂(α)| dα < ∞, we have

∫
|α|>A

|p̂(α)| dα < ε for A ≥
A(ε). For such an A we therefore deduce that

(3.1)
∣∣∣mT (p(F ))−

A∫
−A

p̂(α)mT {e(αF (t))} dα
∣∣∣ < ε .

However, if we set

SN (t) =
∑
n≤N

an(γnt) ,

then
|e(αF (t))− e(αSN (t))| ≤ 2πAmin{1, |F (t)− SN (t)|}
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uniformly for |α| ≤ A. Moreover, Hypothesis (H) implies that

1
T

T∫
0

min{1, |F (t)− SN (t)|} dt < δ ,

for any N ≥ N(δ) and any T ≥ T0 = T0(δ,N). It follows that

|mT {e(αF (t))} −mT {e(αSN (t))}| ≤ 2πAδ

for N ≥ N(δ) and T ≥ T0(δ,N), and hence that

(3.2)
∣∣∣ A∫
−A

p̂(α)mT {e(αF (t))} dα−
A∫

−A

p̂(α)mT {e(αSN (t))} dα
∣∣∣

< 2πAδ
A∫

−A

|p̂(α)| dα .

We now choose

δ = ε
{

2πA
A∫

−A

|p̂(α)| dα
}−1

.

Then (3.1) and (3.2) yield

(3.3)
∣∣∣mT (p(F ))−

A∫
−A

p̂(α)mT {e(αSN (t))} dα
∣∣∣ < 2ε

for A ≥ A(ε), N ≥ N(ε,A) and T ≥ T0(ε,A,N).
We are now ready to apply Lemma 2, taking

bi(t) = e(αai(t)) ,

whence mT {e(αSN (t))} converges to a limit L(α,N), say. Moreover, if the
numbers γi are linearly independent over Q, we have

L(α,N) =
∏

n≤N

χn(α) ,

where

(3.4) χn(z) =
1∫

0

e(zan(t)) dt .

Since

|p̂(α)mT {e(αSN (t))}| ≤ |p̂(α)|
for any T , we may apply Lebesgue’s Dominated Convergence Theorem and
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deduce that
A∫

−A

p̂(α)mT {e(αSN (t))} dα→
A∫

−A

p̂(α)L(α,N) dα ,

as T tends to infinity. Thus

(3.5)
∣∣∣ A∫
−A

p̂(α)mT {e(αSN (t))} dα−
A∫

−A

p̂(α)L(α,N) dα
∣∣∣ < ε ,

for T ≥ T1 = T1(ε,A,N) say, so that

|mT {p(F (t))} −mT ′{p(F (t))}| < 6ε

for

T, T ′ ≥ max(T0{ε,A(ε), N(ε,A(ε))} , T1{ε,A(ε), N(ε,A(ε))}) ,

by (3.3) and (3.5). We now see that mT {p(F (t))} converges as T tends to
infinity, by the Cauchy convergence criterion. This completes the proof of
Theorem 4.

The proof of Theorem 6 is now straightforward. Let A > 0 be given.
We choose a continuous non-negative function of compact support, p(α)
say, which is twice continuously differentiable except possibly at α = 0, and
which satisfies

p(α)
{

= |α|k , |α| ≤ A ,
≤ |α|k , |α| > A .

Then

|p(α)− |α|k| ≤ Ak−K |α|K ,

for every α, whence

|mT {p(F (t))} −mT (|F (t)|k)| ≤ Ak−KmT (|F (t)|K) .

The hypothesis of Theorem 6 therefore yields

|mT {p(F (t))} −mT (|F (t)|k)| < ε

for sufficiently large A = A(ε) , uniformly for T > 0. The conditions on the
function p clearly ensure that

∞∫
−∞

|p(α)| dα <∞ .

Moreover, we have
∞∫

0

e(αt)p(t) dt = − 1
2πiα

∞∫
0

e(αt)p′(t) dt� |α|−θ ,
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for some θ > 1, since
A∫

0

e(αt)tk−1 dt� |α|−k

and
∞∫

A

e(αt)p′(t) dt = −e(αA)
2πiα

p′(A)− 1
2πiα

∞∫
A

e(αt)p′′(t) dt� |α|−1 .

Thus the second condition
∞∫

−∞
|p̂(α)| dα <∞

of Theorem 4 is also satisfied. Thus mT {p(F (t))} converges as T tends
to infinity, and we see that mT (|F (t)|k) satisfies the Cauchy convergence
criterion. The first part of Theorem 6 now follows. To handle the odd
moments we proceed in exactly the same way after making the obvious
modifications in the choice of the function p(α).

4. Proof of Theorem 5. To prove Theorem 5 we shall require the
following properties of the functions χn given by (3.4).

Lemma 3. Let an(t) be continuous real-valued functions of period 1, such
that

(4.1)
1∫

0

an(t) dt = 0 (n ∈ N)

and

(4.2)
∞∑

n=1

1∫
0

an(t)2 dt <∞ .

Suppose further that there is a constant µ > 1 for which

(4.3) max
t∈[0,1]

|an(t)| � n1−µ

and

(4.4) lim
n→∞

nµ
1∫

0

an(t)2 dt = ∞ .

Define

(4.5) χ(z) =
∞∏

n=1

χn(z) ,
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where χn(z) is given by (3.4). Then the product (4.5) converges absolutely
and uniformly for z in any compact set

K0 ⊆ K = {z = x+ iy ∈ C : |y| ≤ min(1, |x|−1/(µ−1))} .

The function χ(z) is therefore holomorphic on K. Moreover ,

(4.6) χ(z) �A e−A|z| (z ∈ K)

for any real positive constant A, and

dk

dxk
χ(x) �A,k e

−A|x|

for any real x, any integer k ≥ 0, and any real positive constant A.

Since e(α) = 1 + 2πiα+O(|α|2) for any α� 1, we see from (4.1) that

χn(z) = 1 +O
(
|z|2

1∫
0

an(t)2 dt
)

for

(4.7) n ≥ |z|1/(µ−1) .

Thus (4.2) implies the absolute convergence of the product (4.5), uniformly
on any compact set. Similarly, since e(α) = 1 + 2πiα− 2π2α2 +O(|α|3), for
α� 1, we have

χn(z) = 1− 2π2z2
1∫

0

an(t)2 dt+O
(
|z|3

1∫
0

|an(t)|3 dt
)

= 1− 2π2z2{1 +O(n1−µ|z|)}
1∫

0

an(t)2 dt

for n in the range (4.7), by (4.3). Moreover,

Re(z2) ≥ |z|2/2

for large enough z ∈ K, and

|1− α| ≤ exp{−Re(α) +O(|α|2)}

for α� 1. Thus, if n ≥ N , where N = c|z|1/(µ−1) and c is a suitably large
constant, we have

|χn(z)| ≤ exp
(
− |z|2

1∫
0

an(t)2 dt
)
.
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For other values of n we use the trivial bound

|χn(z)| ≤ exp{2π| Im(z)| max
t∈[0,1]

|an(t)|}

≤ exp{O(|z|−1/(µ−1)n1−µ)} ≤ exp{O(|z|−1/(µ−1))} .
It then follows that

(4.8) |χ(z)| ≤ exp
{
O(|z|−1/(µ−1)N)− |z|2

∑
n≥N

1∫
0

an(t)2 dt
}
.

According to (4.4), for any value of B we have
1∫

0

an(t)2 dt ≥ Bn−µ

for n ≥ N and N ≥ N(B). Hence (4.8) is at most

exp(O(1)− |z|2B′N1−µ) � exp(−B′′|z|)
for constants B′, B′′ which tend to infinity with B. Thus (4.6) holds. It
remains to estimate the derivatives of χ on the real axis. This can be done
in the familiar way, using Cauchy’s integral formula for the kth derivative,
choosing a circular contour of radius proportional to |z|−1/(µ−1), and esti-
mating χ(z) by means of (4.6).

We now re-examine the proof of Theorem 4. It follows from Lemma
3 that L(α,N) → χ(α) as N → ∞, and since |L(α,N)| ≤ 1, Lebesgue’s
Dominated Convergence Theorem shows that

lim
A→∞

lim
N→∞

A∫
−A

p̂(α)L(α,N) dα =
∞∫

−∞
p̂(α)χ(α) dα .

Taken in conjunction with (3.3) and (3.5) this produces

L{p(F (t))} =
∞∫

−∞
p̂(α)χ(α) dα =

∞∫
−∞

p(α)χ̂(α) dα ,

the conditions on the function χ needed for Parseval’s identity following
from Lemma 3. The function L{p(F (t))} is real and non-negative whenever
p is. Moreover, χ̂(α) is continuous. Thus using a suitable test function p
we conclude that χ̂(α) is necessarily real and non-negative. We now choose
a finite interval I, and write ψ(x) for its characteristic function. We apply
Theorem 4 with p chosen so that ψ(x) ≤ p(x) for all x ∈ R and such
that

∞∫
−∞

|ψ(x)− p(x)| dx < ε.
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Then

lim sup
T→∞

mT (ψ(F (t))) ≤ lim
T→∞

mT (p(F (t))) =
∞∫

−∞
p(α)χ̂(α) dα

<
∞∫

−∞
ψ(α)χ̂(α) dα+ εmax

α
|χ̂(α)|

=
∫
I

χ̂(α) dα+ εmax
α
|χ̂(α)| .

Since ε is arbitrary we conclude that

lim sup
T→∞

mT (ψ(F (t))) ≤
∫
I

χ̂(α) dα .

Similarly one finds that

lim inf
T→∞

mT (ψ(F (t))) ≥
∫
I

χ̂(α) dα .

The required result, with f(α) = χ̂(α), now follows.

5. Proof of Theorems 1 and 2. In this section we shall show how
Theorems 4, 5 and 6 may be applied to ∆(x). Our starting point is the
formula

(5.1) ∆(x) =
x1/4

π
√

2

∑
n≤X

d(n)
n3/4

cos{4π
√
nx− π/4}+O(Xε) ,

for any fixed ε > 0, which holds uniformly forX ≤ x ≤ 4X. (See Titchmarsh
[9; (12.4.4)], for example.) We shall define

F (t) = t−1/2∆(t2) ,

an(t) =
µ2(n)
n3/4

1
π
√

2

∞∑
r=1

d(nr2)
r3/2

cos{2πrt− π/4} ,

and

γn = 2
√
n .

In particular, we see that

F (t) =
1

π
√

2

∑
n≤T 2

d(n)
n3/4

cos{4πt
√
n− π/4}+O(T−1/2+ε) ,
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uniformly for T ≤ t ≤ 2T . Then for any integer N ≤ T 1/2 we have

F (t)−
∑
n≤N

an(γnt)

�
∣∣∣∣ ∑′

n≤T 2

d(n)
n3/4

cos{4πt
√
n− π/4}

∣∣∣∣ +
∑
n≤N

1
n3/4

∑
r>T/

√
n

d(nr2)
r3/2

�
∣∣∣∣ ∑′

n≤T 2

d(n)
n3/4

e(2t
√
n)

∣∣∣∣ +N1/2T−1/2+ε

uniformly for T ≤ t ≤ 2T , where
∑′ indicates that n is restricted to have

square-free kernel greater thanN.Moreover, if one calculates the mean value
termwise, as in Ivić [6; Theorem 13.5] for example, one finds that

2T∫
T

∣∣∣∣ ∑′

n≤T 2

d(n)
n3/4

e(2t
√
n)

∣∣∣∣2 dt = T
∑′

n≤T 2

d(n)2

n3/2
+O(T ε)

≤ T
∑
n>N

d(n)2

n3/2
+O(T ε)

� TNε−1/2 + T ε .

It therefore follows that
2T∫

T

∣∣∣F (t)−
∑
n≤N

an(γnt)
∣∣∣2 dt� T (T ε−1/2N1/2)2 + TNε−1/2 + T ε(5.2)

� TNε−1/2

if ε is small enough. Thus Cauchy’s inequality implies that

lim sup
T→∞

1
T

2T∫
T

∣∣∣F (t)−
∑
n≤N

an(γnt)
∣∣∣ dt� Nε−1/4 ,

and Hypothesis (H) follows. Moreover, Theorem 1 is now an immediate
consequence of Theorem 5, if one takes µ = 5/3, for example.

To prove Theorem 2 we require an estimate of the form

(5.3)
X∫

0

|∆(x)|K dx� X1+K/4+ε .

Such a bound has been given by Ivić [6; Theorem 13.9], who showed that
one may take K = 35/4. If one injects the estimate

∆(x) � x7/22+ε
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of Iwaniec and Mozzochi [7] into Ivić’s argument one finds that (5.3) holds
even for K = 28/3. The deduction of Theorem 2 is now completed by means
of the following result, used in conjunction with Theorem 6.

Lemma 4. Suppose that (5.3) holds for some K > 2. Then

X∫
0

|∆(x)|k dx� X1+k/4 ,

for any positive k < K.

In fact, we shall show that
2T∫

T

|F (t)|k dt� T ,

from which Lemma 4 immediately follows.
We choose an even integer L > K and we define

(5.4) N = T 2−(2L+2)
.

Then ∑
n≤N

an(γnt) =
1

π
√

2

∑′′

n≤N4

d(n)
n3/4

cos{4πt
√
n− π/4}

+O

( ∑
n≤N

1
n3/4

∑
r≥N2n−1/2

d(nr2)
r3/2

)

=
1

π
√

2

∑′′

n≤N4

d(n)
n3/4

cos{4πt
√
n− π/4}+O(1) ,

where
∑′′ restricts n to have square-free kernel at most N . Thus

(5.5)
2T∫

T

∣∣∣ ∑
n≤N

an(γnt)
∣∣∣2L

dt

�
2T∫

T

∣∣∣∣ ∑′′

n≤N4

d(n)
n3/4

cos{4πt
√
n− π/4}

∣∣∣∣2L

dt+ T .

We now have recourse to the following result, which we shall prove later.

Lemma 5. Let n1, . . . , n2L be positive integers all at most N4. Then

|
√
n1 ± . . .±

√
n2L| � N−22L+1

,

unless the product n1 . . . n2L is square-full.
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Thus if n1 . . . n2L is not square-full we have

2|
√
n1 ± . . .±

√
n2L| ≥ 1/4T ,

by (5.4), if T is large enough. However,
∞∫

−∞
e(αt)

(
sin(πt/4T )

t/4T

)2

dt = 0 (|α| ≥ 1/4T ) ,

so that

(5.6)
2T∫

T

∣∣∣∣ ∑′′

n≤N4

d(n)
n3/4

cos{4πt
√
n− π/4}

∣∣∣∣2L

dt

�
∞∫

−∞

∣∣∣∣ ∑′′

n≤N4

d(n)
n3/4

cos{4πt
√
n− π/4}

∣∣∣∣2L(
sin(πt/4T )

t/4T

)2

dt

� T
∑ d(n1) . . . d(n2L)

(n1 . . . n2L)3/4
,

where the final sum is for all sets of positive ni ≤ N4 whose product q, say,
is square-full. Now, for a given value of q there are O(qε) possible sets of
factors ni. Moreover,

d(n1) . . . d(n2L) � qε .

It follows from (5.5) and (5.6) that
2T∫

T

∣∣∣ ∑
n≤N

an(γnt)
∣∣∣2L

dt� T

∞∑
q=1

q−3/4+2ε ,

where q runs over square-full integers only. The infinite sum above con-
verges, since there are only O(Q1/2) square-full integers q ≤ Q. We conclude
therefore that

2T∫
T

∣∣∣ ∑
n≤N

an(t)
∣∣∣2L

dt� T ,

whence also

(5.7)
2T∫

T

∣∣∣ ∑
n≤N

an(t)
∣∣∣k dt , 2T∫

T

∣∣∣ ∑
n≤N

an(t)
∣∣∣K dt� T ,

by Hölder’s inequality.
On the other hand, if 2 < k < K,

2T∫
T

∣∣∣F (t)−
∑
n≤N

an(γnt)
∣∣∣k dt
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≤
( 2T∫

T

∣∣∣F (t)−
∑
n≤N

an(γnt)
∣∣∣2 dt)(K−k)/(K−2)

×
( 2T∫

T

∣∣∣F (t)−
∑
n≤N

an(γnt)
∣∣∣K dt

)(k−2)/(K−2)

,

again by Hölder’s inequality. Here
2T∫

T

∣∣∣F (t)−
∑
n≤N

an(γnt)
∣∣∣2 dt� TNε−1/2 ,

by (5.2), while

2T∫
T

∣∣∣F (t)−
∑
n≤N

an(γnt)
∣∣∣K dt

�
2T∫

T

|F (t)|K dt+
2T∫

T

∣∣∣ ∑
n≤N

an(γnt)
∣∣∣K dt� T 1+ε ,

by our hypothesis in Lemma 4, together with the second of the bounds (5.7).
Hence

2T∫
T

∣∣∣F (t)−
∑
n≤N

an(γnt)
∣∣∣k dt� T ,

since N , given by (5.4), is a positive power of T . This bound, taken in con-
junction with the first of the estimates (5.7), completes the proof of Lemma
4, since values of k ≤ 2 can be handled by applying Hölder’s inequality to
values k > 2.

We now prove Lemma 5. If p is a prime not dividing any of the integers
m1, . . . ,mk then

√
p cannot be a rational linear combination of

√
m1, . . . ,√

mk. This follows from a classical result of Besicovich, to the effect that
the square roots of distinct square-free integers are linearly independent over
the rationals. Now suppose that the product n1 . . . n2L has a prime factor p
which occurs to the first power only, so that p divides n1, say, and no other
ni. Then any linear relation

(5.8) ±
√
n1 ± . . .±

√
n2L = 0

would yield
√
p = ∓

√
n2√
m
∓ . . .∓

√
n2L√
m

,

where m = p−1n1. As noted above such a relation is impossible, so that
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(5.8) can hold only when the product n1 . . . n2L is square-full. We now set

P =
∏
σ

{ 2L∑
i=1

σi
√
ni

}
,

where σ runs over all vectors (σ1, . . . , σ2L) with σi = ±1. Then P is an
integer, and P can only be zero when n1 . . . n2L is square-full. If S is any
factor in P then S � N2. Hence, if S0 is the particular factor occurring in
Lemma 5, we have

1 ≤ |P | � |S0|(N2)2
2L

,

providing that P 6= 0. Lemma 5 now follows.

6. Proof of Theorem 3 for P (x) and E(T ). The method of the
previous section requires little modification to handle the functions P (x)
and E(T ). For P (x) we replace (5.1) by the estimate

P (x) = −x
1/4

π

∑
n≤X

r(n)
n3/4

cos{2π
√
nx+ π/4}+O(Xε) ,

which holds uniformly for X ≤ x ≤ 4X. This formula may be proved by
the method of Titchmarsh [9; §12.4], starting with the function

∑
r(n)n−s.

We can then establish Hypothesis (H) for an appropriate F (t), using the
method of Section 5. To prove the analogue of Theorem 2 we also require a
bound

X∫
0

|P (x)|K dx� X1+K/4+ε

of the type given by Ivić [6; Theorem 13.2]. If one inserts the estimate

P (x) � x7/22+ε

of Iwaniec and Mozzochi [7] into Ivić’s argument one finds that one may take
K = 28/3. This allows for the range [0, 9] when one forms the analogue of
Theorem 2 for P (x).

We turn now to the function E(T ). Our starting point here is the formula
of Atkinson [2], which approximates E(T ) by a sum of functions

An(T ) =
1√
2
(−1)nd(n)

(
nT

2π
+
n2

4

)−1/4{
sinh−1

(
πn

2T

)1/2}−1

cos f(n, T ) ,

where

f(n, T ) = 2T sinh−1

(
πn

2T

)1/2

+ (π2n2 + 2πnT )1/2 − π/4 .
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Specifically, we have

E(t) =
∑
n≤X

An(t) +Σ2(t) +O(log2 t)

uniformly for X ≤ t ≤ 4X, where
4X∫

X

Σ2(t)2 dt� X(logX)4 ,

by Heath-Brown [4; Lemma 3]. We choose an integer N ≤ X1/16, and define

S = {n = mr2 : µ2(m) = 1 ,m ≤ N ,mr2 ≤ N4} .

Then the non-diagonal terms of
4X∫

X

{ ∑
n≤X,n 6∈S

An(t)
}2

dt

contribute a total O(T 1+ε), as in the proof of Heath-Brown [4; Lemma 1],
whereas the diagonal terms are

� X3/2
∑
n 6∈S

d(n)2n−3/2 � X3/2
∑
n>N

d(n)2n−3/2 � X3/2Nε−1/2 ,

since An(t) � d(n)X1/4n−3/4. It follows that

4X∫
X

∣∣∣E(t)−
∑
n∈S

An(t)
∣∣∣ dt

� X(logX)2 +
4X∫

X

∣∣∣ ∑
n≤X,n 6∈S

An(t)
∣∣∣ dt+

4X∫
X

|Σ2(t)| dt

� X(logX)2 +X5/4Nε−1/4 � X5/4Nε−1/4 ,

by Cauchy’s inequality. We therefore conclude that

X−5/4
4X∫

X

∣∣∣E(t)−
∑
n∈S

An(t)
∣∣∣ dt� Nε−1/4 .

However, for n ∈ S and X ≤ t ≤ 4X we have

An(t) = Bn(t) +O(n3/4+εX−1/4) ,

where

Bn(t) =
(

2t
π

)1/4

(−1)n d(n)
n3/4

cos{
√

8πnt− π/4} .
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Thus

X−5/4
4X∫

X

∣∣∣E(t)−
∑
n∈S

Bn(t)
∣∣∣ dt� Nε−1/4 +X−1/2(N4)7/4+ε � N−1/8 .

Taking X = T 2, F (t) = t−1/2E(t2) and Cn(t) = t−1/2Bn(t2) we conclude
that

(6.1)
1
T

2T∫
T

∣∣∣F (t)−
∑
n∈S

Cn(t)
∣∣∣ dt� N−1/8

uniformly in T . However, if

an(t) = µ2(n)
(

2
π

)1/4 ∞∑
r=1

(−1)nr d(nr2)
(nr2)3/4

cos{2πrt− π/4} ,

with γn =
√

2n/π, then

sup
t

∣∣∣∑
n∈S

Cn(t)−
∑
n≤N

an(γnt)
∣∣∣ ≤ ∑

m≤N

∑
r>N2/

√
m

d(mr2)
(mr2)3/4

.(6.2)

�
∑

m≤N

m−1/2+εN−1 � N−1/2+ε

It follows from (6.1) that

1
T

2T∫
T

∣∣∣F (t)−
∑
n≤N

an(γnt)
∣∣∣ dt� N−1/8 ,

from which Hypothesis (H) may be deduced in the usual way. We can now
proceed to prove versions of Theorems 1 and 2 for E(T ), just as before. We
shall require the bound

T∫
0

|E(t)|K dt� T 1+K/4+ε

with K = 28/3. However, this follows from the argument given by Ivić [6;
Theorem 15.7], on inserting the estimate

E(T ) � T 7/22+ε

of Heath-Brown and Huxley [5] into the argument.

7. Proof of Theorem 3 for ∆3(x). For the function ∆3(x) it would
be nice to use the estimate

∆3(x) =
x1/3

π
√

3

∑
n≤T 3/x

d3(n)
n2/3

cos{6π 3
√
nx}+O(x1+ε/T ) ,
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of Atkinson [1], as quoted by Titchmarsh [9; (12.4.6)]. Unfortunately, Titch-
marsh omits the condition x1/2+ε ≤ T ≤ x2/3−ε required by Atkinson for
the proof of his formula. The upper bound on T prevents us getting an
error term o(x1/3) in the formula, and there appears to be no simple way of
extending the range for T . We must therefore return to first principles.

We consider a non-negative function ω(x), supported in [ 12 ,
17
2 ], with

derivatives of all orders and which satisfies ω(x) = 1 on [1, 8]. Our aim will
be to show that

lim sup
T→∞

1
T

∞∫
0

∣∣∣F (t)−
∑
n≤N

an(γnt)
∣∣∣2ω((t/T )3) dt→ 0

as N tends to infinity, where F (t) = t−1∆3(t3) and

an(t) =
ε(n)
π
√

3

∞∑
r=1

d3(nr3)
(nr3)2/3

cos{6πrt} , γn = 3
√
n ,

with ε(n) = 1 if n is cube-free, and ε(n) = 0 otherwise. On integration by
parts, the asymptotic formula (1.4) yields

(7.1)
∞∫

0

F (t)2ω((t/T )3) dt =
1

6π2

{ ∞∑
n=1

d3(n)2n−4/3
}
J +O(T 2/3+ε) ,

where

J =
∞∫

0

ω((t/T )3) dt .

We proceed to estimate
∞∫

0

∣∣∣ ∑
n≤N

an(γnt)
∣∣∣2ω((t/T )3) dt ,

where N ≤ T 1/6, by termwise integration. Since
Y∫

0

cos{6πy 3
√
n} cos{6πy 3

√
m} dy =

{
Y/2 +O(1) , m = n ,
O(| 3

√
m− 3

√
n|−1) , m 6= n ,

an integration by parts yields

(7.2)
∞∫

0

(cos{6πt 3
√
n})2ω((t/T )3) dt = 1

2J +O(1) ,

and

(7.3)
∞∫

0

cos{6πt 3
√
n} cos{6πt 3

√
m}ω((t/T )3) dt� | 3

√
m− 3

√
n|−1

(m 6= n) .
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Moreover, if m 6= n, we have

(7.4) | 3
√
m− 3

√
n|−1 �

{
(mn)1/3|m− n|−1 , m� n� m,
min(m−1/3 , n−1/3) , otherwise.

A straightforward estimate then shows that

(7.5)
∞∫

0

∣∣∣ ∑
n≤N

an(γnt)
∣∣∣2ω((t/T )3) dt =

∑
n≤N

Sn +O(N1/3+ε) ,

where

Sn = J
ε(n)
6π2

∞∑
r=1

d3(nr3)2(nr3)−4/3 .

We now consider the cross terms
∞∫

0

F (t)an(γnt)ω((t/T )3) dt ,

and we therefore examine
∞∫

0

∆3(x) cos{6π 3
√
nx}ω(x/X)

dx

x
= I(n,X) ,

say, where X = T 3. Let γ(T ) denote a path from 2− iT to 2 + iT , passing
to the left of s = 1. Then Perron’s formula shows that

1
2πi

∫
γ(T )

ζ3(s)
xs

s
ds

tends to ∆3(x) as T tends to infinity, for all non-integer values of x. More-
over, the discrepancy is bounded uniformly in T for all x ∈ [X/2, 17X/2].
Thus Lebesgue’s Bounded Convergence Theorem shows that

(7.6) I(n,X) = lim
T→∞

1
2πi

∫
γ(T )

ζ3(s)K(s)
ds

s
,

where

K(s) =
∞∫

0

xs−1 cos{6π 3
√
nx}ω(x/X) dx .

Clearly K(s) is an entire function. If we integrate by parts k times we find

(7.7) K(σ + it) =
(−1)k

(1 + it)(2 + it) . . . (k + it)

×
∞∫

0

xk+it d
k

dxk
{xσ−1 cos{6π 3

√
nx}ω(x/X)} dx

�k,σ,ω (1 + |t|)−kXσ(nX)k/3 .
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The path of integration in (7.6) may therefore be moved to Re(s) = −1,
giving

I(n,X) = ζ(0)3K(0) +
1

2πi

−1+i∞∫
−1−i∞

ζ3(s)K(s)
ds

s

= ζ(0)3K(0) +
1

2πi

−1+i∞∫
−1−i∞

ζ3(1− s)χ3(s)K(s)
ds

s

where

χ(s) = 2sπs−1 sin(πs/2)Γ (1− s) .

The bound (7.7) yields K(0) � 1. We now expand ζ3(1− s) as a Dirichlet
series

∑
d3(m)ms−1 and integrate termwise. When m > X1/2 the contri-

bution is

� d3(m)m−2
{ (nX)1/3∫

0

(1 + t)7/2X−1 dt+
∞∫

(nX)1/3

t−3/2n5/3X2/3 dt
}

� d3(m)m−2n3/2X1/2 ,

on using (7.7) with k = 0 and k = 5. The total contribution to I(n,X)
arising from terms m > X1/2 is therefore O(n3/2Xε) = O(X1/4+ε).

For the remaining terms we move the line of integration to Re(s) =
1/6 + ε. Then

(7.8)
1

2πi

−1+i∞∫
−1−i∞

ms−1χ3(s)K(s)
ds

s

=
∞∫

0

cos{6π 3
√
nx}ω(x/X)

{
1

2πi

1/6+ε+i∞∫
1/6+ε−i∞

(mx)s−1χ3(s)
ds

s

}
dx .

In the inner integral we note that

χ(s)3s−1 =
1
2π

33s−1/2χ(3s){1 +O(|s|−1)}

=
1
2π

33s−1/2χ(3s) +O(|s|−1−ε)

on the line of integration, by Stirling’s approximation. Moreover,

1
2πi

σ+i∞∫
σ−i∞

xsχ(s) ds = 2x cos(2πx)

for 1/2 < σ < 1 and any real positive x.



412 D. R. Heath-Brown

It follows that

1
2πi

1/6+ε+i∞∫
1/6+ε−i∞

(mx)sχ3(s)
ds

s

=
1

2πi

1/2+3ε+i∞∫
1/2+3ε−i∞

1
6π
√

3
(3(mx)1/3)sχ(s) ds+O((mx)1/6+ε)

=
(mx)1/3

π
√

3
cos{6π(mx)1/3}+O((mx)1/6+ε) .

The error term above contributes O(mε−5/6Xε+1/6) to (7.8), and hence, on
summing over m ≤ X1/2, a total O(X1/4+2ε) to I(n,X). To handle the
main term we note that

∞∫
0

cos{6π 3
√
nx} cos{6π 3

√
mx}x−2/3ω(x/X) dx

= 3
∞∫

0

cos{6πt 3
√
n} cos{6πt 3

√
m}ω((t/T )3) dt ,

on recalling that X = T 3. In view of (7.2), (7.3) and (7.4) the contribution
to (7.8) is

√
3

2π
n−2/3J +O(n−2/3) ,

for m = n,
� |m− n|−1 ,

if m 6= n and m� n� m, and

� m−2/3 min(m−1/3, n−1/3)

otherwise. When we sum over m ≤ X1/2 the contribution to I(n,X) arising
from the error terms is therefore O(Xε), and we conclude, finally, that

I(n,X) =
√

3
2π

d3(n)n−2/3J +O(X1/4+ε) .

A change of variable now shows that
∞∫

0

F (t) cos{6πt 3
√
n}ω((t/T )3) dt =

1
2π
√

3
d3(n)n−2/3J +O(T 3/4+ε) ,

uniformly for n ≤ N ≤ T 1/6. It follows that
∞∫

0

F (t)
ε(n)
π
√

3

∑′

r

d3(nr3)
(nr3)2/3

cos{6πtr 3
√
n}ω((t/T )3) dt
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=
ε(n)
6π2

J
∑′

r

d3(nr3)2

(nr3)4/3
+O(n−2/3+εT 3/4+ε)

= Sn +O(n−1/3+εT−1/6+εJ) +O(n−2/3+εT 3/4+ε)

= Sn +O(n−1/3+εT 5/6+ε) ,

where
∑′ indicates the condition nr3 ≤ T 1/6. Moreover,

an(t)− ε(n)
π
√

3

∑′

r

d3(nr3)
(nr3)2/3

cos{6πrt} � n−1/3+εT−1/18+ε ,

whence
∞∫

0

F (t)an(γnt)ω((t/T )3) dt

= Sn +O(n−1/3+εT 5/6+ε) +O
(
n−1/3+εT−1/18+ε

∞∫
0

|F (t)|ω((t/T )3) dt
)
.

Cauchy’s inequality applied to (7.1) shows that
∞∫

0

|F (t)|ω((t/T )3) dt� T ,

whence the second error term above is O(n−1/3+εT 17/18+ε). It therefore
follows that

∞∫
0

F (t)
∑
n≤N

an(γnt)ω((t/T )3) dt =
∑
n≤N

Sn +O(T 35/36+ε)

for N ≤ T 1/24. Combining this result with (7.1) and (7.5) we see that
∞∫

0

∣∣∣F (t)−
∑
n≤N

an(γnt)
∣∣∣2ω((t/T )3) dt =

∑
n>N

Sn +O(T 35/36+ε)

� TNε−1/3 + T 35/36+ε � TN−1/4 ,

for N ≤ T 1/24. Hypothesis (H) now follows. Moreover, on applying The-
orem 5 with µ = 3/2 we obtain a result corresponding to Theorem 1 for
∆3(x).

An analogue of Lemma 4 can be obtained by mimicking the argument
of Section 5. However, the bound

(7.9)
X∫

0

|∆3(x)|K dx� X1+K/3+ε
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corresponding to (5.3), which is needed for the proof of the relevant version
of Theorem 2, is not immediately available in the literature. Theorem 13.10
of Ivić [6] comes close to what is required, and, as indicated in Titchmarsh
[9; p. 327] the argument can be modified so as to establish (7.9) with K = 3.
We complete our treatment of ∆3(x) by supplying the necessary details.

Lemma 6. For any ε > 0 we have
X∫

0

|∆3(x)|3 dx� X2+ε .

Note that, in contrast to the situation with ∆(x), the above result does
not seem to be susceptible to small improvements through the use of upper
bounds for ∆3(x).

We adapt Ivić’s argument [6; pp. 368–372] by observing that if |∆3(t)| ≥
V with T/2 ≤ t ≤ T , then

(7.10)
∣∣∣ ∑
M<n≤2M

d3(n)n−2/3e(3 3
√
nt)

∣∣∣ � T−1/3(log T )−1V

for some M = 2m ≤ T 2+εV −3, as is shown by [6; (13.51)]. Moreover, (7.10)
yields

M1/3(logM)2 � T−1/3(log T )−1V ,

whence in fact

(7.11) T−1+εV 3 �M � T 2+εV −3 .

We now divide the points t1, . . . , tR considered by Ivić into sets for which
(7.10) holds. If each such set has R(M) elements then there will be some
value of M for which

R� R(M) log T .

The advantage of this procedure is that we may choose the parameter T0 in
Ivić’s argument to depend on M . Indeed, we shall select T0 = c(TM)2/3,
with a suitable constant c > 0. With this choice the exponential sums that
occur can all be bounded via the “first derivative estimate”, and one obtains

R(M) � (1 + T/T0){(TM)2/3 + T 4/3M1/3V −1}V −2T ε

� {(TM)2/3 + T + T 4/3M1/3V −1 + T 5/3M−1/3V −1}V −2T ε .

The bounds (7.11) then yield

R(M) � {T + T 2V −2}V −2T 2ε � T 2+3εV −4 ,

whence R � T 2+4εV −4. The proof of the lemma is now readily completed
as in Ivić’s work.
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