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When the group-counting function assumes
a prescribed integer value at squarefree integers frequently,

but not extremely frequently

by

Claudia A. Spiro-Silverman (Boston, Mass.)

1. Introduction. Throughout the sequel, k,m, and n denote positive
integers, p, q, and r signify primes, and x and y represent sufficiently large
positive real numbers unless otherwise indicated. We denote the natural
logarithm of x by log x, and recursively define the functions Lk(x) by

L2x = log log x , Lk+1 = Lk log x for k ≥ 2 .

Write φ(n) for the number of m ≤ n with m and n relatively prime.
Put g(n) for the number of (isomorphism classes of) groups of order n. In

studying the local distribution of this function, one examines the quantities

Fk(x) = #{n ≤ x : g(n) = k},
Qk(x) = #{n ≤ x : n squarefree, g(n) = k}

as x tends to infinity with k fixed. Clearly, Fk(x) ≥ Qk(x).
If h(x) and l(x) are complex-valued functions, we write h(x) ∼ l(x) to

signify that

lim
x→∞

h(x)
l(x)

= 1,

and we put h(x) = o(l(x)) to indicate that

lim
x→∞

h(x)
l(x)

= 0.

The expressions h(x) = O(l(x)) and h(x) � l(x) both mean that there is a
positive constant C for which |h(x)| ≤ Cl(x), if x is sufficiently large. We
will write l(x) � h(x) to connote that 0 < h(x) � l(x) for all sufficiently
large x.
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In 1948, Erdős [1] demonstrated that

(1) F1(x) = Q1(x) ∼
e−γx

L3x
,

where γ = .577 . . . denotes Euler’s constant. He used the criterion that φ(n)
is coprime to n if and only if g(n) = 1 [1, 11, 12]. Later, M. K. Murty and
V. K. Murty [8] showed that

Q2(x) ∼ F2(x) �
xL4x

(L3x)2
,

and stated the conjecture that

(2) F2(x) ∼
e−γx

(L3x)2
.

Subsequently, Erdős, M. R. Murty and V. K. Murty established the
following two theorems (see Theorem 3, the remark immediately after the
theorem, and the proof of this theorem, in [2]).

(i) If k = 2l, with l a nonnegative integer, then we have

Fk(x) ∼ Qk(x) ∼
e−γx

l!(L3x)l+1
;

(ii) If k is not an integer power of 2, we have

0 ≤ Qk(x) ≤ Fk(x) = o

(
x

L2x

)
.

Result (i) contains both (1) and (2) as special cases. Independently,
M.-G. Lu [7] showed the more precise estimate

F2(x) =
e−γx

(L2x)2
+O

(
x(L4x)2

(L3x)3

)
.

For a somewhat more detailed account of the history of this type of
problem, we refer the reader to [10]. In this paper, we showed that

(3) Qk(x) ∼
K(k)x(L2x)2

(log x)1/(k−1)(L3x)(k−4)/(k−3)

for some positive constant K(k), whenever k − 2 is prime, and k fails to
belong to a certain set S [10, Theorem 1]. In particular, (3) holds when k
is contained in

{7, 19, 31, 49, 73, 91, 103}
(see the remark following Theorem 1 of [10]).

By contrast, in the present paper, we will show that if k belongs to the
set S, then we have

(4) Qk(x) =
x

(L2x)O(1)
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(see Theorem 1, below). To state the main theorem of this paper, we require
the definition of S, which we state here for completeness.

Definition. For each positive integer n and for each prime p, let ψ(n, p)
signify the number of primes q dividing n for which q ≡ 1 (mod p). Put

S = {g(n) : n odd, squarefree; ψ(n, p) ≤ 1 for all p | n}.
Theorem 1. For every element k of S, there is a computable constant

c(k) for which
Fk(x) ≥ Qk(x) � x(L2x)−c(k).

Combining this estimate with (i) and (ii) yields the immediate corollary
that (4) holds whenever k ∈ S. Here, the implied constant depends upon k.
Similarly, Fk(x) = x/(L2x)O(1). In a forthcoming paper, we will show that
if k is not in S, then we have

Qk(x) =
x

(log x)λ(k)
(L2x)O(1)

for some positive constant λ(k) not exceeding 1, provided that there exists
a squarefree positive integer n satisfying g(n) = k. The sentence containing
(3) gives a special case of that result. Thus, if k and m are fixed, with k ∈ S
but with m 6∈ S, then g(n) assumes the value k more frequently than the
value m. So, the values of S are assumed—in this sense—more frequently
than the other integers. Thus, in view of (i) and (ii) above, the title of this
paper refers to elements of S which are not integer powers of 2.

We remark that all positive integers not exceeding 100 are contained in
S, except for

7, 11, 19, 29, 31, 47, 49, 53, 67, 71, 73, 79, 87, 91,

which are not. This fact can be verified computationally by the methods of
[10] (see the discussion at the end of the introduction of that paper). We
will give superior methods in a forthcoming paper, where we will show that
S is closed under multiplication. Thus, S contains all integers of the form
2α3β5δ13η.

2. Preliminary results. The foundation upon which the proof of
Theorem 1 is built is the following result of O. Hölder from the end of the
last century [5].

Lemma 1. For every squarefree positive integer n, we have

g(n) =
∑
d|n

∏
p|d

pψ(n/d,p) − 1
p− 1

,

where the sum extends over the positive integers d dividing n, and the product
runs over the primes p which divide d.
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We note that the factor

pψ(n/d,p) − 1
p− 1

vanishes whenever ψ(n/d, p) = 0, and equals 1 when ψ(n/d, p) = 1. Thus,
we have the following corollary.

Corollary 1. If n is an odd , squarefree positive integer satisfying
ψ(n, p) ≤ 1 for every prime divisor p of n, then g(n) does not exceed the
number d(n) of positive integers dividing n. Furthermore, let m be an odd ,
squarefree positive integer , and assume that there exists a bijective mapping
f from the prime divisors of n to the primes dividing m, such that

(5) p | q − 1 if and only if f(p) | f(q)− 1 .

(Here, p and q are required to divide n.) Then g(n) = g(m).

P r o o f. Since ψ(n, p) can never exceed 1 for any prime p dividing n, we
deduce that each exponent ψ(n/d, p) must be 0 or 1. Accordingly, Lemma
1 implies that

g(n) ≤
∑
d|n

∏
p|d

1 ≤
∑
d|n

1 .

This is the first statement of the corollary. For the remainder of the result,
let m and n, and the map f , satisfy the hypotheses of the corollary. Then,
extend f to a map f∗ from the set of positive integer divisors of n to the
set of positive divisors of m, by defining

f∗(d) =
∏
p|d

f(p)

for every divisor d of n. Since m and n are squarefree, and f is a bijection,
we can conclude from the Fundamental Theorem of Arithmetic that f∗

bijectively maps the set {d : d |n} to the set {d : d |m}. In addition, (5)
implies that

ψ(n/d, p) = ψ(m/f∗(d), f(p)) if d | n and p | n .

The rest of the corollary is now a consequence of Lemma 1.

One way to indicate what the corollary means is to say that if ψ(n, p) ≤ 1
for every prime p | n, then g(n) depends only upon relationships of the form
q ≡ 1 (mod p) (where p | n and q | n), and not upon the prime divisors of
n themselves. This result does not hold if ψ(n, q) ≥ 2 for some prime q
dividing n. Indeed, Lemma 1 implies that

g(n) ≥ qψ(n/q,q) − 1
q − 1

,



Group-counting function 5

where the right-hand side just corresponds to the divisor d = q of n.
Since q 6≡ 1 (mod q), we can conclude from the definition of ψ(n, p) that
ψ(n/q, q) = ψ(n, q). Hence,

g(n) ≥ qψ(n,q) − 1
q − 1

.

By assumption, the exponent is at least 2, so that g(n) ≥ q+1. In particular,
g(n) will depend upon q, and the second statement of Corollary 1 cannot be
made to hold for such n. (The first statement is also false, in general—for
example, g(7 · 29 · 43) = 9, while d(7 · 29 · 43) = 8.)

So far, we have considered odd, squarefree n. If n is even and squarefree,
and ψ(n, 2) ≤ 1, then either n = 2, or n = 2p for some prime p > 2. In
the first case we have g(n) = 1, and in the second we have g(n) = 2. We
noted earlier that both 1 and 2 are in S. In view of this remark, the last
paragraph, and Corollary 1, it follows from the definition of S that S is the
set of values of g(n), for n such that g(n) depends only upon relations of the
form q ≡ 1 (mod p) (where p | n and q | n), and not upon the actual primes
dividing n.

The proof of Theorem 1 will lead us to construct a set of primes satis-
fying appropriate relations of the type q ≡ 1 (mod p), and failing to fulfill
other relations of this form. To bound the size of the product of these
primes from above, if we put constraints on how small they can be, we will
require the following theorem of Linnik on the least prime in an arithmetic
progression [6].

Lemma 2. There is a positive, absolute constant c1 such that if h and
m are any coprime integers with m > 0, then the minimal prime p ≡ h
(modm) satisfies p = O(mc1).

One of the main components of the proof of Theorem 1 is the construction
of an integer n, all of whose prime divisors are near L2x, satisfying g(n) = k.
We state the (apparently more general) form of this construction as our next
lemma.

Lemma 3. Let k ∈ S, and assume that y is a sufficiently large positive
real number (where the sufficiently large constraint depends upon k). Then
there are constants c2, c3, and ω, depending only on k, such that there exists
a positive integer n fulfilling the following three conditions.

(i) g(n) = k;
(ii) n is squarefree, and has exactly ω prime divisors;
(iii) if the prime p divides n, then we have y < p < c2y

c3 .

P r o o f. Assume that y is at least 3. By the last lemma, there is a
constant c4 > 0 such that if h and m are any coprime integers with m > 0,
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then there is a prime q congruent to h modulo m for which q < c4m
c1 . Now

since k ∈ S, there must be an odd, squarefree integer l such that

(6) g(l) = k,

and

(7) ψ(l, p) ≤ 1 for every prime p | l.
Suppose that q1, . . . , qω are the distinct prime divisors of l, and that q1 <
. . . < qω. Recursively select primes p1, . . . , pω to satisfy the following criteria:

(8) y ≤ p1 ≤ 2y ;

if p1, . . . , pi−1 are selected (i ≤ ω), choose pi so that

pi ≡ 1 (mod pj) if j < i and if qi ≡ 1 (mod qj) ,(9)
pi ≡ −1 (mod pj) if j < i and if qi 6≡ 1 (mod qj) .(10)

Bertrand’s Postulate guarantees that the inequality (8) has a solution, and
we choose p1 accordingly. To show that we can select pi so that (9) and
(10) hold (for p1, . . . , pi−1 chosen), we observe that the Chinese Remainder
Theorem allows us to rewrite the resulting system of congruences as a single
congruence of the form

pi ≡ hi (mod p1 . . . pi−1) ,

with (hi, p1 . . . pi−1) = 1. Hence, the minimal solution pi must fulfill the
condition

(11) pi < c4(p1 . . . pi−1)c1 .

We further observe from (9) and (10) that

(12) pi ≡ 1 (mod pj) if and only if qi ≡ 1 (mod qj) ,

for j < i. Furthermore, since pi ≡ ±1 (mod pi−1), we have

(13) pi > pi−1,

unless pi−1 = 2. Now, by construction, p1 is odd, and hence, the recursive
selection of the primes pj gives (13) for all i. Consequently, (12) holds for
all i and j. It follows from (6), (7), (12), and Corollary 1 that

(14) g(p1 . . . pω) = k .

Furthermore, (13) implies that

p1 . . . pi−1 < pi−1 . . . pi−1 = pi−1
i−1 .

Thus, (11) yields

pi < c4p
(i−1)c1
i−1 ≤ c4p

(ω−1)c1
i−1 ,

since i ≤ ω. We can argue by induction on i to get

(15) pi ≤ c4p
((ω−1)c1)

i−1

1 .
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Let

(16) n = p1 . . . pω

be the product of the primes pi. Then Condition (i) follows from (14),
Condition (ii) is an immediate consequence of (13) and 16), and Condition
(iii) can be deduced from (8) and (15).

From the integer n given in our third lemma, it is possible to get a large
number of positive integers m ≤ x for which g(m) = k. Here, “large”, in
practice, will be x/(L2x)c5 for some appropriate power c5 (depending on k),
when we choose y appropriately. We delay the details until the proof of our
main theorem. The construction begins with the next lemma.

Lemma 4. If m and n are odd , squarefree, positive integers such that

(φ(m),m) = (φ(m), n) = (φ(n),m) = (m,n) = 1,

then mn is an odd , squarefree, positive integer with g(mn) = g(n).

P r o o f. Recall that

(17) φ(l) =
∏
p|l

pνp(l)−1(p− 1)

for every positive integer l, where νp(l) denotes the exponent to which the
prime p occurs in the canonical decomposition of l. Hence, if p is any prime
divisor of l, then p−1 divides φ(l). Thus, the condition (m,φ(n)) = 1 yields
the relation (m, p − 1) = 1. So, if q is a prime divisor of m, and p is any
prime dividing n, then q does not divide p− 1. That is,

(18) ψ(n, q) = 0 for all q | m.

Similarly, the equation (m,φ(m)) = 1 implies that

(19) ψ(m, q) = 0 for all q | m ;

and the relation (φ(m), n) = 1 gives

(20) ψ(m, p) = 0 for all p | n .

Since (m,n) = 1, the product mn is squarefree. Moreover, mn is odd,
because m and n are odd. We use Lemma 1 to compute g(mn). It follows
from (18) and (19) that

(21) ψ(l, q) = 0 whenever l | mn and q | m.

Since
pψ(mn/d,p) − 1

p− 1
= 0
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whenever ψ(mn/d, p) = 0, we conclude from (21) and Lemma 1 that

(22) g(mn) =
∑
d|mn

∏
p|d

pψ(mn/d,p) − 1
p− 1

=
∑
d|n

∏
p|d

pψ(mn/d,p) − 1
p− 1

.

If the prime p contributes to the last product, then p is a divisor of n. By
(20) and the definition of ψ(l, p), we have

ψ(mn/d, p) = ψ

(
n

d
·m, p

)
=

∑
q|n/d or q|m;q≡1 ( mod p)

1

= ψ(n/d, p) + ψ(m, p) = ψ(n/d, p) .

Here, we have utilized the fact that (m,n) = 1, and d | n. Thus, (22) gives

g(mn) =
∑
d|n

∏
p|d

pψ(n/d,p) − 1
p− 1

,

and the lemma is now an immediate consequence of Lemma 1.

Before we prove Theorem 1, we state two more lemmas.

Lemma 5. If m is any positive integer , then we have∑
p≤x;p≡1 ( mod m)

1
p

=
L2x

φ(m)
+O

(
log(2m)
φ(m)

)
as x tends to ∞, where the implied constant does not depend on m.

P r o o f. This result is a special case of Lemma (6.3) of Norton [9].

Lemma 6. If y tends to ∞ with x, and y ≤ log x, then the number N(x, y)
of positive integers n ≤ x which have no prime divisors less than y satisfies

N(x, y) =
e−γx

log y
(1 + o(1)).

P r o o f. This result is discussed in Halberstam and Roth’s book [4] (cf.
equation (3.2)). For a proof, see the first two paragraphs on that page.

More general results are known. For an example, we refer the reader to
Theorem 1.1 on p. 30 of Halberstam and Richert’s book [3], and indeed, this
entire book is related to this subject, at least in some sense.

3. The proof of the main theorem. Let k be in S. Let x be
sufficiently large, and put y = (L2x)2. By Lemma 3, there are positive
constants c2 and c3, and a positive integer ω, such that there is a positive
integer n satisfying conditions (i)–(iii) of that lemma. Write

(23) n = p1p2 . . . pω, y < p1 < p2 < . . . < pω < c2y
c3 .
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Since g(n) = k, we can deduce from Lemma 4 that

(24) Qk(x) ≥
∑

m∈A(x,n)

1,

where
A(x, n) = {squarefree m : mn ≤ x, (φ(m),m) = (φ(m), n)

= (m,φ(n)) = (m,n) = 1} .
If P (m) denotes the smallest prime divisor of m, then (24) implies that

(25) Qk(x) ≥
∑

m∈A(x,n), P (m)>z

1 ,

where

(26) z = (L2x)3c3 > c2y
c3 .

Now (17) and (23) imply that φ(n) =
∏ω
i=1(pi − 1) has no prime divisor

exceeding z. And, clearly n does not have a prime factor greater than z.
Accordingly, (25) implies that

(27) Qk(x) ≥
∑

m∈B(x,n), P (m)>z

1 ,

where

B(x, n) = {squarefree m ≤ x/n : (φ(m),m) = (φ(m), n) = 1}.
If we replace the condition (φ(m),m) = (φ(m), n) = 1 by the weaker con-
straint (φ(m),m) = 1, the resulting error we incur in the sum on the right-
hand side of (27) is

O
( ∑
m≤x/n, (φ(m),n)>1

1
)
.

Since m is squarefree, it follows from (17) that if (φ(m), n) > 1, then there
must be a prime divisor q of m with (q− 1, n) > 1. So, (23) implies that we
have q ≡ 1 (mod pi) for some i. Consequently, our error is

O
( ω∑
i=1

∑
q≡1 ( mod pi)

∑
m≤x/n, q|m

1
)
.

Clearly, if q exceeds x then the inner sum is void. Thus, our error is

O

( ω∑
i=1

∑
q≡1 ( mod pi), q≤x

x

qn

)
.

We can deduce from Lemma 5 and equation (23) that this error is

O

(
x

n

ω∑
i=1

(
L2x

pi
+

log pi
pi

))
= O

(
xL2x

ny
+
x log y
ny

)
.
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Since y = (L2x)2, the error is

O

(
x

nL2x

)
.

Hence, (27) yields

(28) Qk(x) ≥
∑

m≤x/n, (φ(m),m)=1,m squarefree, P (m)>z

1 +O

(
x

nL2x

)
.

By (17) we must have m squarefree whenever (φ(m),m) = 1, so that the
condition that m be squarefree can be deleted from beneath the last sum.
If we also delete the constraint (φ(m),m) = 1, the error we make is

O
( ∑
m≤x/n, P (m)>z, (29) and/or (30) hold

1
)
,

where conditions (29) and (30) respectively state that

m contains two prime divisors q and r with r ≡ 1 (mod q);(29)
there is a prime q with q2 | m.(30)

If q | m, and P (m) > z, then q > z. So, the last error is

O
( ∑
q>z

∑
r≡1 ( mod q)

∑
m≤x/n, q|m, r|m

1 +
∑
q>z

∑
m≤x/n, q2|m

1
)
.

First, we observe that the penultimate sum over m is void if r > x. Then
we estimate the last two sums on m trivially, to get the bound

O

(
x

n

∑
q>z

1
q

∑
r≤x, r≡1 ( mod q)

1
r

+
x

n

∑
q>z

1
q2

)
for this error. We can conclude from Lemma 5 that this error is

O

(
x

n

∑
q>z

(
L2x

q2
+

log q
q2

)
+
x

n

∑
q>z

1
q2

)
.

Next, we ignore the primality of q and recall that∑
q>z

1
q2
�

∞∫
z

1
u2

du =
1
z

;

∑
q>z

log q
q2

�
∞∫
z

log u
u2

du ≤
∞∫
z

log z√
z

1
u3/2

du =
2 log z√

z

1√
z
.

(In the last integral we have written (log u)/u2 as the product of (log u)/
√
u

and 1/u3/2, and majorized the first factor.)
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We obtain the estimate

O

(
x

n

(
L2x

z
+

log z
z

)
+
x

n

1
z

)
for our error, in this manner. According to (26), this error is

O

(
x

n(L2x)3c3−1

)
.

Hence, (28) becomes

Qk(x) ≥
∑

m≤x/n, P (m)>z

1 +O

(
x

nL2x

)
.

An application of Lemma 6 yields

Qk(x) ≥
e−γx

3c3nL3x
(1 + o(1)) +O

(
x

nL2x

)
=
e−γ

3c3
x

nL3x
(1 + o(1)) ,

in view of (26).
The theorem is now a consequence of (24).
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