Systems of linear forms and covers for star bodies

by

M. M. Dodson and S. Hasan (York)

In this paper Diophantine approximation involving general distance and error functions will be considered for systems of linear forms. Distance functions will be denoted by $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and are continuous, non-negative and satisfy

$$
F(u \boldsymbol{x})=u F(\boldsymbol{x})
$$

for all $u \geq 0$ ([3], p. 103). An error function $\psi: \mathbb{R}^{n} \backslash\{\mathbf{0}\} \rightarrow \mathbb{R}$ is positive and satisfies $\psi(\boldsymbol{x}) \rightarrow 0$ as $|\boldsymbol{x}| \rightarrow \infty$, where $|\boldsymbol{x}|=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}$. An upper bound depending on a cover for a star body associated with the distance function F (see [8]) and a restriction ψ_{1} of the error function ψ for the Hausdorff dimension of sets of linear forms (regarded as points in $\mathbb{R}^{m n}$) is obtained. The Hausdorff dimension is also expressed in terms of the Hausdorff dimension of sets of vectors (in \mathbb{R}^{n}) and of the lower order (defined below) of the error function ψ_{1} (corresponding to the case $m=1$) when the functions ψ and ψ_{1} satisfy suitable decay conditions. This combines and extends the results of [4], [5] and [13]. Definitions and properties of Hausdorff dimension are given in [7].

First some notation and definitions are needed. Throughout m, n and N will be positive integers and $\boldsymbol{q} \in \mathbb{Z}^{m}$. The system

$$
a_{1} x_{1 j}+\ldots+a_{m} x_{m j}, \quad 1 \leq j \leq n
$$

of n real linear forms in m real variables a_{1}, \ldots, a_{m} will be written more concisely as $\boldsymbol{a} X$ where $\boldsymbol{a} \in \mathbb{R}^{m}$ and where X is an $m \times n$ real matrix. The set of real $m \times n$ matrices will be identified with $\mathbb{R}^{m n}$ in the usual way (i.e., by identifying the matrix $X=\left(x_{i j}\right)$ with the point $\left(x_{11}, \ldots, x_{1 n}, x_{21}, \ldots, x_{m n}\right)$ in $\mathbb{R}^{m n}$). For each \boldsymbol{x} in \mathbb{R}^{n}, denote the symmetrised fractional part of \boldsymbol{x} by $\langle\boldsymbol{x}\rangle=\boldsymbol{x}-\boldsymbol{k}$, where \boldsymbol{k} is the unique integer vector such that $\boldsymbol{x}-\boldsymbol{k} \in$ $\left(-\frac{1}{2}, \frac{1}{2}\right]^{n}$. Thus

$$
|\langle\boldsymbol{x}\rangle|=\max \left\{\left\|x_{1}\right\|, \ldots,\left\|x_{n}\right\|\right\}
$$

[^0]where for each real $u,\|u\|=\min \{|u-k|: k \in \mathbb{Z}\}$. Given an error function $\psi: \mathbb{R}^{n} \backslash\{\mathbf{0}\} \rightarrow \mathbb{R}^{+}$, define $\psi_{1}: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}^{+}$by
$$
\psi_{1}(u)=\psi(u, 0, \ldots, 0) .
$$

Thus the function ψ_{1} is essentially the restriction of ψ to $(\mathbb{R} \backslash\{0\}) \times\{0\} \times$ $\ldots \times\{0\}$, so that ψ_{1} is positive and $\psi_{1}(x) \rightarrow 0$ as $x \rightarrow \infty$. Functions $\Delta:[0, \infty) \rightarrow(0, \infty)$, where $\Delta(0)=1$ and $\Delta(x) \rightarrow \infty$ monotonically as $x \rightarrow \infty$, which satisfy the growth conditions

$$
\frac{\log \Delta(x)}{x} \rightarrow 0 \text { as } x \rightarrow \infty \quad \text { and } \quad \int_{1}^{\infty} \frac{\log \Delta(x)}{x^{2}} d x<\infty
$$

characterise a large class of functions arising in small denominator problems and are called approximation functions ([11], p. 95). In the applications considered below, $\psi_{1}(x)=x^{-\tau}$; its reciprocal $1 / \psi_{1}$ is essentially an approximation function in the sense of [11] (strictly speaking $(x+1)^{\tau}$ is an approximation function). The lower order $\lambda=\lambda(f)$ of the function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ is defined by

$$
\lambda=\liminf _{x \rightarrow \infty} \frac{\log f(x)}{\log x}
$$

([9], p. 16), so that given $\varepsilon>0, f(x) \geq x^{\lambda-\varepsilon}$ for all sufficiently large x.
Suppose that for each positive r, \mathcal{C}_{r} is a collection of hypercubes C in \mathbb{R}^{n} with $\ell(C) \ll R$ (as usual \ll denotes an inequality with an unspecified positive constant factor). The s-volume $\ell^{s}(\mathcal{C})$, where $s \geq 0$, of a collection \mathcal{C} of hypercubes C is given by

$$
\ell^{s}(\mathcal{C})=\sum_{C \in \mathcal{C}} \ell(C)^{s}
$$

(see [7]). For each s in $[0, n]$, the (upper) order $\omega(s)$ of the s-volume $\ell^{s}\left(\mathcal{C}_{r}\right)$ of \mathcal{C}_{r} will be defined as

$$
\omega(s)=\liminf _{r \rightarrow 0+} \frac{\log \ell^{s}\left(\mathcal{C}_{r}\right)}{\log r}
$$

so that given $\varepsilon>0, \ell^{s}\left(\mathcal{C}_{r}\right) \leq r^{\omega(s)-\varepsilon}$ for all sufficiently small r. It is shown in Lemma 1 of [5] that $\omega(s)$ increases with s and is concave (i.e., ω satisfies $\omega(t a+(1-t) b) \geq t \omega(a)+(1-t) \omega(b)$ for each a, b in $(0, n)$ and t in $[0,1])$ and hence continuous on $(0, n)$.

The Hausdorff dimension $\operatorname{dim} W(F, \psi ; m, n)$ of the set $W(F, \psi ; m, n)=\left\{X \in \mathbb{R}^{m n}: F(\langle\boldsymbol{q} X\rangle)<\psi(\boldsymbol{q})\right.$ for infinitely many $\left.\boldsymbol{q} \in \mathbb{Z}^{m}\right\}$ will be estimated in terms of the lower order λ_{1} of $1 / \psi_{1}$ and the lower order $\omega(s)$ of the s-volume of a cover for the star body

$$
S_{r}=F^{-1}([0, r)) \cap I^{n}=\left\{\boldsymbol{x} \in I^{n}: F(\boldsymbol{x})<r\right\},
$$

where $r>0$ and $I=\left[-\frac{1}{2}, \frac{1}{2}\right]$. It will then be determined in terms of the dimension of $W\left(F, \psi_{1} ; 1, n\right)$. This extends the simultaneous Diophantine approximation results of [5] to systems of linear forms and generalizes the results of [4] and [13]. It will also be used to determine the Hausdorff dimension of the set of real $m \times n$ matrices X for which the inequality

$$
\prod_{j=1}^{n}\left|\left\langle\sum_{i=1}^{m} q_{i} x_{i j}\right\rangle\right|^{\alpha_{j} / A}<\prod_{i=1}^{m}\left(\bar{q}_{i}\right)^{-\tau}
$$

where $\alpha_{1}, \ldots, \alpha_{n}>0, A=\alpha_{1}+\ldots+\alpha_{n}$ and $\bar{q}=\max \{1,|q|\}$, holds for infinitely many $\boldsymbol{q} \in \mathbb{Z}^{m}$ (in [13], $\alpha_{j}=1$ for each $j=1, \ldots, n$).

Since

$$
\begin{equation*}
\operatorname{dim}\left\{A_{1} \cup A_{2} \cup \ldots\right\}=\sup \left\{\operatorname{dim} A_{k}: k=1,2, \ldots\right\} \tag{1}
\end{equation*}
$$

in order to determine the Hausdorff dimension of $W(F, \psi ; m, n)$ it suffices to consider the dimension of the set

$$
\begin{aligned}
\widetilde{W}(F, \psi ; m, n) & =\left\{X \in I^{m n}: F(\langle\boldsymbol{q} X\rangle)<\psi(\boldsymbol{q}) \text { for infinitely many } \boldsymbol{q} \in \mathbb{Z}^{m}\right\} \\
& =W(F, \psi ; m, n) \cap I^{m n}
\end{aligned}
$$

Theorem 1. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a distance function and suppose that for each $r>0$, the starbody $F^{-1}([0, r)) \cap I^{n}$ has a cover \mathcal{C}_{r} of n-dimensional hypercubes C with sides of length $\ell(C) \ll r$. Let $\omega(s)$ be the order of the s-volume $\ell^{s}\left(\mathcal{C}_{r}\right)$. Let $\psi: \mathbb{R}^{n} \backslash\{\mathbf{0}\} \rightarrow \mathbb{R}$ be an error function and suppose that the reciprocal $1 / \psi_{1}$ of $\psi_{1}: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}^{+}$has lower order λ_{1} satisfying

$$
\lim _{s \rightarrow 0+} \frac{\omega(s)}{n+1}<\frac{1}{\lambda_{1}}<\lim _{s \rightarrow n-} \omega(s) .
$$

Suppose further that for every $v>\omega\left(s_{0}\right)$,

$$
\begin{equation*}
\sum_{| |=q} \psi(\boldsymbol{q})^{v} \ll \psi_{1}(q)^{v} \tag{2}
\end{equation*}
$$

Then

$$
\operatorname{dim} W(F, \psi ; m, n) \leq(m-1) n+s_{0}=m n+1-\lambda_{1} \omega\left(s_{0}\right),
$$

where $s_{0} \in(0, n)$ is the unique solution of

$$
\lambda_{1} \omega(s)=n-s+1
$$

Proof. Choose t such that $(m-1) n+s_{0}<t<m n$ and put $s=$ $t-(m-1) n$ so that $s_{0}<s<n$. The number $\eta=\lambda_{1} \omega(s)-n+s-1>0$ since $\omega(s)$ increases with s and $s>s_{0}$. Let ε be an arbitrary number satisfying

$$
0<\varepsilon<\eta / 2\left(\lambda_{1}+\omega(s)\right)
$$

The set $\widetilde{W}(F, \psi ; m, n)$ can be expressed in the 'lim-sup' form

$$
\widetilde{W}(F, \psi ; m, n)=\bigcap_{N=1}^{\infty} \bigcup_{q=N}^{\infty} \bigcup_{\mid=q} \bigcup B(\boldsymbol{p}, \boldsymbol{q} ; \psi(\boldsymbol{q}))
$$

where \boldsymbol{p} runs through all integer vectors in $\boldsymbol{q}\left(-\frac{1}{2}, \frac{1}{2}\right]^{m n}$ (i.e., $\boldsymbol{p}=\boldsymbol{q} X$ for some X in $\left.\left(-\frac{1}{2}, \frac{1}{2}\right]^{m n}\right)$ and for each $\boldsymbol{p} \in \mathbb{Z}^{n}, \boldsymbol{q} \in \mathbb{Z}^{m}$ and $r>0$,

$$
B(\boldsymbol{p}, \boldsymbol{q} ; r)=\left\{X \in I^{m n}: F(\boldsymbol{q} X-\boldsymbol{p})<r, \boldsymbol{q} X-\boldsymbol{p} \in\left(-\frac{1}{2}, \frac{1}{2}\right]^{n}\right\} .
$$

Now $B(\boldsymbol{p}, q ; r)=\left\{\boldsymbol{x} \in I^{n}: F(q \boldsymbol{x}-\boldsymbol{p})<r, q \boldsymbol{x}-\boldsymbol{p} \in\left(-\frac{1}{2}, \frac{1}{2}\right]^{n}\right\}$, where $q>0$, is a starbody centred at \boldsymbol{p} / q and is contained in $S_{r} / q+\boldsymbol{p} / q$, since if $y \in q B(\boldsymbol{p}, q ; r)-\boldsymbol{p}$, then $F(\boldsymbol{y})=F(q \boldsymbol{x}-\boldsymbol{p})<r$. The cover \mathcal{C}_{r} for S_{r} gives a cover $\mathcal{B}(\boldsymbol{p}, q ; r)$ for $B(\boldsymbol{p}, q ; r)$ consisting of n-dimensional hypercubes C with $\ell(C) \ll r / q$ and, by the definition of $\omega(s)$, with s-volume $\ell^{s}(\mathcal{B}(\boldsymbol{p}, q ; r))$ satisfying

$$
\begin{equation*}
\ell^{s}(\mathcal{B}(\boldsymbol{p}, q ; r)) \ll \ell^{s}\left(\mathcal{C}_{r}\right) q^{-s} \ll r^{\omega(s)-\varepsilon} q^{-s} \tag{3}
\end{equation*}
$$

for any $\varepsilon>0$ and sufficiently small r. By Lemma 2 of [4] or by [13] there is a cover $\mathcal{H}(\boldsymbol{p}, \boldsymbol{q} ; r)$ say of $B(\boldsymbol{p}, \boldsymbol{q} ; r)$ by $m n$-dimensional hypercubes H with $\ell(H) \ll r /|\boldsymbol{q}|$ and t-volume

$$
\ell^{t}(\mathcal{H}(\boldsymbol{p}, \boldsymbol{q} ; r)) \ll \ell^{s}(\mathcal{B}(\boldsymbol{p},|\boldsymbol{q}| ; r))
$$

Hence for each $N=1,2, \ldots, \widetilde{W}(F, \psi ; m, n)$ has a cover Λ_{N} of hypercubes C with $\ell(C) \ll 1 / N$ and with t-volume $\ell^{t}\left(\Lambda_{N}\right)$ satisfying

$$
\begin{aligned}
\ell^{s}\left(\Lambda_{N}\right) & \ll \sum_{q=N}^{\infty} \sum_{|=q|} \sum_{|\leq| |} \ell^{t}(\mathcal{H}(\boldsymbol{p}, \boldsymbol{q} ; \psi(\boldsymbol{q}))) \\
& \ll \sum_{q=N}^{\infty} \sum_{|=q|} \sum_{|\leq| |} \ell^{s}(\mathcal{B}(\boldsymbol{p},|\boldsymbol{q}| ; \psi(\boldsymbol{q}))) \\
& \ll \sum_{q=N}^{\infty} \sum_{||=q|} \sum_{|\leq| |}|\boldsymbol{q}|^{-s} \psi(\boldsymbol{q})^{\omega(s)-\varepsilon}
\end{aligned}
$$

by (3) with $r=\psi(\boldsymbol{q})$ and $q=|\boldsymbol{q}|$. Hence for all $t>(m-1) n+s_{0}\left(\right.$ or $\left.s>s_{0}\right)$ and N sufficiently large,

$$
\begin{aligned}
\ell^{t}\left(\Lambda_{N}\right) & \ll \sum_{q=N}^{\infty} q^{-s} \sum_{| |=q} \psi(\boldsymbol{q})^{\omega(s)-\varepsilon} \sum_{||\leq|} 1 \\
& \ll \sum_{q=N}^{\infty} q^{n-s} \sum_{| |=q} \psi(\boldsymbol{q})^{\omega(s)-\varepsilon} \ll \sum_{q=N}^{\infty} q^{n-s} \psi_{1}(q)^{\omega(s)-\varepsilon}
\end{aligned}
$$

by (2). Hence by the definition of the lower order λ_{1} of $1 / \psi_{1}$, for sufficiently
large N,

$$
\begin{aligned}
\ell^{t}\left(\Lambda_{N}\right) & \ll \sum_{q=N}^{\infty} q^{n-s} q^{-\left(\lambda_{1}-\varepsilon\right)(\omega(s)-\varepsilon)} \\
& \ll \sum_{q=N}^{\infty} q^{n-s-\lambda_{1} \omega(s)-\varepsilon\left(\lambda_{1}+\omega(s)\right)} \ll \sum_{q=N}^{\infty} q^{-1-\eta / 2}
\end{aligned}
$$

by the choice of η and ε. Thus $\ell^{t}\left(\Lambda_{N}\right) \rightarrow 0$ as $N \rightarrow \infty$ and it follows that $\operatorname{dim} W(F, \psi ; m, n) \leq(m-1) n+s_{0}$.

By using the above result and the following general lower bound, the Hausdorff dimension of $W(F, \psi ; m, n)$ can be expressed in terms of the dimension of $W\left(F, \psi_{1} ; 1, n\right)$. To do this a slight additional restriction on the order ω is needed. It suffices to assume that $\omega(s)$ is strictly increasing, or that in the cover $\mathcal{C}_{r}, \ell(C) \gg r$, or that since $\omega(s)$ is a convex function of s, for some $\delta>0, \omega(s)$ is not constant for $s>s_{0}-\delta$ or that $\ell(C)^{s} \ll r^{\omega(s)}$. In the applications made, each of these conditions is fulfilled.

Lemma 1. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a distance function and let $\psi: \mathbb{R}^{n} \backslash\{\mathbf{0}\} \rightarrow \mathbb{R}$ be any function. Then

$$
\operatorname{dim} W(F, \psi ; m, n) \geq(m-1) n+\operatorname{dim} W\left(F, \psi_{1} ; 1, n\right)
$$

Proof. [4], Lemma 1 .
Theorem 2. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a distance function and suppose that for each $r>0$, the starbody $F^{-1}([0,1)) \cap I^{n}$ has a cover \mathcal{C}_{r} of n-dimensional hypercubes C with sides of length $\ell(C) \ll r$. Let $\omega(s)$ be the lower order of the s-volume $\ell^{s}\left(\mathcal{C}_{r}\right)$ and suppose that $\omega(s)$ is strictly increasing. Let $\psi: \mathbb{R}^{n} \backslash$ $\{\mathbf{0}\} \rightarrow \mathbb{R}$ be an error function and suppose that for $s>\operatorname{dim} W\left(F, \psi_{1} ; 1, n\right)$,

$$
\begin{equation*}
\sum_{| |=q} \psi(q)^{\omega(s)} \ll \psi_{1}(q)^{\omega(s)} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{q=1}^{\infty} q^{n-s} \psi_{1}(q)^{\omega(s)}<\infty \tag{5}
\end{equation*}
$$

Then

$$
\operatorname{dim} W(F, \psi ; m, n)=(m-1) n+\operatorname{dim} W\left(F, \psi_{1} ; 1, n\right)
$$

Proof. The proof is similar to that of Theorem 1 except that the lower bound of the lemma coincides with the upper bound. Write $h=$ $\operatorname{dim} W(F, \psi ; m, n)$ and assume without loss of generality that $h<n$. Choose t such that $(m-1) n+h<t<m n$ and put $s=t-(m-1) n$ so that $h<s<n$. Since $\omega(s)$ increases strictly with $s, \omega(s)-\omega(h)>0$. Let ε be an arbitrary number satisfying $0<\varepsilon<\omega(s)-\omega(h)$.

As in Theorem 1 , for each $N=1,2, \ldots, \widetilde{W}(F, \psi ; m, n)$ has a cover Λ_{N} consisting of hypercubes C with $\ell(C) \ll 1 / N$ and with t-volume satisfying

$$
\ell^{t}\left(\Lambda_{N}\right) \ll \sum_{q=N}^{\infty} \sum_{|=q|} \sum_{|\leq| |}|\boldsymbol{q}|^{-s} \psi(\boldsymbol{q})^{\omega(s)-\varepsilon}
$$

Hence for all $t>(m-1) n+h$ (i.e., $s>h$) and N sufficiently large,

$$
\ell^{t}\left(\Lambda_{N}\right) \ll \sum_{q=N}^{\infty} q^{n-s} \psi_{1}(q)^{\omega(s)-\varepsilon} \ll \sum_{q=N}^{\infty} q^{n-s^{\prime}} \psi_{1}(q)^{\omega\left(s^{\prime}\right)},
$$

where $\omega\left(s^{\prime}\right)=\omega(s)-\varepsilon$, so that by the choice of ε and since ω is strictly increasing, $h<s^{\prime}<s$. Thus $\ell^{t}\left(\Lambda_{N}\right) \rightarrow 0$ as $N \rightarrow \infty$ by (5) and it follows that $\operatorname{dim} W(F, \psi ; m, n) \leq(m-1) n+h$.

The complementary inequality $\operatorname{dim} W(F, \psi ; m, n) \geq(m-1) n+h$, and hence the theorem, follow from the lemma.

From now on take $\psi_{1}(x)=x^{-\tau}$ for $x, \tau>0$, so that $\lambda_{1}=\tau$, and write

$$
W\left(F, \psi_{1} ; 1, n\right)=W_{F}(\tau ; n)
$$

It is shown in [5] that when $\omega(s) \tau>1, \operatorname{dim} W_{F}(\tau ; n) \leq s_{0}$, where $\tau \omega\left(s_{0}\right)=$ $n-s_{0}+1$. When $F(\boldsymbol{x})=|\boldsymbol{x}|$ or more generally when F is a gauge function (i.e., when $F^{-1}(0)=\{\mathbf{0}\}$, see [8], p. 8), then $\omega(s)=s$ and $\operatorname{dim} W_{F}(\tau ; n)=$ $(n+1) /(\tau+1)$ for $\tau>1 / n$. Since $(n+1) /(\tau+1)$ is a continuous decreasing function of τ which equals n when $\tau=1 / n$, since $\operatorname{dim} W_{F}(\tau ; n) \leq n$ and since $\tau \geq \tau^{\prime}$ implies that $W_{F}(\tau ; n) \subseteq W_{F}\left(\tau^{\prime} ; n\right)$, it follows that

$$
\operatorname{dim} W_{F}(\tau ; n)=(n+1) /(\tau+1)
$$

holds for $\tau \geq 1 / n$. For if $\operatorname{dim} W_{F}(1 / n ; n)=\theta<n$, then for $\tau-1 / n>0$ and sufficiently small, $W_{F}(\tau ; n)>\theta$, a contradiction. The estimate (4) is essential for Theorem 2 and does not hold for the error function $\psi(\boldsymbol{x})=$ $|\boldsymbol{x}|^{-\tau}$ when $m \geq 2$; indeed, in this case the Hausdorff dimension is larger and $\operatorname{dim} W(F, \psi ; m, n)=(m-1) n+(m+n) /(\tau+1)$ when $\tau \geq m / n$ [2].

Corollary 1. Suppose that $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a gauge function and that $\psi: \mathbb{R}^{n} \backslash\{\mathbf{0}\} \rightarrow \mathbb{R}$ satisfies $\psi_{1}(x)=\psi(x, 0, \ldots, 0)=x^{-\tau}$ and

$$
\sum_{| |=q} \psi(\boldsymbol{q})^{s} \ll q^{-\tau s}
$$

for each $s>(n+1)(\tau+1)$. Then for $\tau \geq 1 / n$,

$$
\operatorname{dim} W(F, \psi ; m, n)=(m-1) n+\frac{n+1}{\tau+1}
$$

Proof. By [5], $\omega(s)=s$ and by [6] or [10] and by the above remarks on the continuity of the dimension, $\operatorname{dim} W_{F}(\tau ; n)=(n+1) /(\tau+1)$ when
$\tau \geq 1 / n$. The estimate (5) holds since when $s>(n+1) /(\tau+1)$,

$$
\sum_{q=1}^{\infty} q^{n-s} q^{-\tau s}<\infty
$$

and the corollary follows.
This result was obtained in [4] but the condition corresponding to (5) was omitted; this does not affect the applications made there. Note that since $\tau s_{0}=n-s_{0}+1$ when $s_{0}=(n+1)(\tau+1)$, it follows from Theorem 1 and the above remarks on the continuity of the dimension that $\operatorname{dim} W(F, \psi ; m, n) \leq$ $(m-1) n+(n+1) /(\tau+1)$ when $\tau \geq 1 / n$.

The function F given by $F(\boldsymbol{x})=\prod_{j=1}^{n}\left|x_{j}\right|^{1 / n}$ is evidently a distance function; F is also of interest in the geometry of numbers ([8], Chapter 4) and Diophantine approximation ([12], p. 69). In [13], Yu extended [1] to systems of linear forms and showed (using different notation) that when $\psi(\boldsymbol{x})=$ $\prod_{i=1}^{m}\left(\bar{x}_{i}\right)^{-\tau}$, where $\tau>1 / n$ and where for each real $x, \bar{x}=\max \{|x|, 1\}$, then

$$
\operatorname{dim} W(F, \psi ; m, n)=m n-1+\frac{2}{\tau n+1}
$$

Using Theorem 2, we now extend Yu's result.
Corollary 2. Let $\alpha_{1}, \ldots, \alpha_{n}$ be positive numbers with $\alpha=\max \left\{\alpha_{j}\right.$: $1 \leq j \leq n\}$ and $A=\alpha_{1}+\ldots+\alpha_{n}$. Let $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given by

$$
\Phi(\boldsymbol{x})^{A}=\prod_{j=1}^{n}\left|x_{j}\right|^{\alpha_{j}}
$$

and $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
\psi(\boldsymbol{x})=\prod_{i=1}^{m}\left(\bar{x}_{i}\right)^{-\tau}
$$

Then if $\tau \geq \alpha / A$, the set

$$
W_{\Phi}(\tau ; m, n)=\left\{X \in \mathbb{R}^{m n}: \Phi(\langle\boldsymbol{q} X\rangle)<\psi(\boldsymbol{q}) \text { for infinitely many } \boldsymbol{q} \in \mathbb{Z}^{m}\right\}
$$

has Hausdorff dimension

$$
\operatorname{dim} W_{\Phi}(\tau ; m, n)=m n-1+\frac{2 \alpha}{\tau A+\alpha}
$$

Proof. Evidently Φ is a distance function and the restriction ψ_{1} of ψ is given by $\psi_{1}(q)=q^{-\tau}, q \in \mathbb{N}$. Now $\omega(s)=A /(s-n+1) / \alpha$ for $n-1<s<n\left([5]\right.$, Lemma 2) and is strictly increasing and $\operatorname{dim} W_{\Phi}(\tau ; 1, n)=$ $n-1+2 \alpha /(\tau A+\alpha)$ when $\tau>\alpha / A$ ([5], Theorem 2$)$. By continuity this
formula also holds when $\tau=\alpha / A$. The sum corresponding to (5) is

$$
\sum_{q=1}^{\infty} q^{n-s} q^{-\tau A(s-n+1) / \alpha},
$$

which is finite since $\tau A(s-n+1) / \alpha>n-s+1$ when $s>n-1+2 \alpha /(\tau A+\alpha)$. Finally, it has to be shown that the inequality

$$
\begin{equation*}
\sum_{| |=q} \prod_{i=1}^{m}\left|\bar{q}_{i}\right|^{-\tau A(s-n+1) / \alpha} \ll q^{-\tau A(s-n+1) / \alpha} \tag{6}
\end{equation*}
$$

corresponding to (4) holds when $s>n-1+2 \alpha /(\tau A+\alpha)$. Now for each $q \in \mathbb{N}$,

$$
\begin{aligned}
\sum_{| |=q} \prod_{i=1}^{m}\left|\bar{q}_{i}\right|^{-\tau A(s-n+1) / \alpha} & \ll q^{-\tau A(s-n+1) / \alpha} \sum_{i=1}^{m} \prod_{j \neq i} \sum_{q_{j}=-q}^{q}\left|\bar{q}_{j}\right|^{-\tau A(s-n+1) / \alpha} \\
& \ll q^{-\tau A(s-n+1) / \alpha}\left(\sum_{k=1}^{\infty} k^{-\tau A(s-n+1) / \alpha}\right)^{m-1}
\end{aligned}
$$

But $s>n-1+2 \alpha /(\tau A+\alpha)$ implies that $\tau A(s-n+1) / \alpha>2 \tau A /(\tau A+\alpha) \geq 1$ when $\tau \geq A / \alpha$ and so (6) holds. Hence by Theorem 2 and continuity, when $\tau \geq A / \alpha$,

$$
\operatorname{dim} W_{\Phi}(\tau ; m, n)=(m-1) n+n-1+\frac{2 \alpha}{\tau A+\alpha}=m n-1+\frac{2 \alpha}{\tau A+\alpha} .
$$

Acknowledgement. We would like to thank the referee for pointing out some obscurities.

References

[1] J. D. Bovey and M. M. Dodson, The fractional dimension of sets whose simultaneous rational approximations have errors with a small product, Bull. London Math. Soc. 10 (1978), 213-218.
[2] -, —, The Hausdorff dimension of systems of linear forms, Acta Arith. 45 (1986), 337-358.
[3] J. W. S. Cassels, An Introduction to the Geometry of Numbers, Grundlehren Math. Wiss. 99, Springer, Berlin 1959.
[4] M. M. Dodson, A note on the Hausdorff-Besicovitch dimension of systems of linear forms, Acta Arith. 44 (1985), 87-98.
[5] -, Star bodies and Diophantine approximation, J. London Math. Soc. 44 (1991), 1-8.
[6] H. G. Eggleston, Sets of fractional dimensions which occur in some problems of number theory, Proc. London Math. Soc. 54 (1951-1952), 42-93.
[7] K. J. Falconer, The Geometry of Fractal Sets, Cambridge Tracts in Math. 85, Cambridge University Press, Cambridge 1985.
[8] P. Gruber and C. G. Lekkerkerker, Geometry of Numbers, North-Holland, Amsterdam 1987.
[9] W. K. Hayman, Meromorphic Functions, Oxford Math. Monographs, Clarendon Press, Oxford 1964.
[10] V. Jarník, Über die simultanen diophantischen Approximationen, Math. Z. 33 (1931), 505-543.
[11] H. Rüssmann, On the one-dimensional Schrödinger equation with a quasi-periodic potential, Ann. New York Acad. Sci. 357 (1980), 90-107.
[12] V. G. Sprindžuk, Metric Theory of Diophantine Approximations, translated by R. A. Silverman, V. H. Winston \& Sons, Washington, D.C., 1979.
[13] K. Yu, Hausdorff dimension and simultaneous rational approximation, J. London Math. Soc. 24 (1981), 79-84.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF YORK
YORK YO1 5DD, ENGLAND

Received on 24.4.1990
and in revised form on 26.7.1991

[^0]: 1991 Mathematics Subject Classification: 11J83.

