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Systems of linear forms and covers for star bodies

by

M. M. Dodson and S. Hasan (York)

In this paper Diophantine approximation involving general distance and
error functions will be considered for systems of linear forms. Distance
functions will be denoted by F : Rn → R and are continuous, non-negative
and satisfy

F (ux) = uF (x)
for all u ≥ 0 ([3], p. 103). An error function ψ : Rn \ {0} → R is positive
and satisfies ψ(x) → 0 as |x| → ∞, where |x| = max{|x1|, . . . , |xn|}. An
upper bound depending on a cover for a star body associated with the
distance function F (see [8]) and a restriction ψ1 of the error function ψ
for the Hausdorff dimension of sets of linear forms (regarded as points in
Rmn) is obtained. The Hausdorff dimension is also expressed in terms of the
Hausdorff dimension of sets of vectors (in Rn) and of the lower order (defined
below) of the error function ψ1 (corresponding to the case m = 1) when
the functions ψ and ψ1 satisfy suitable decay conditions. This combines
and extends the results of [4], [5] and [13]. Definitions and properties of
Hausdorff dimension are given in [7].

First some notation and definitions are needed. Throughout m,n and
N will be positive integers and q ∈ Zm. The system

a1x1j + . . .+ amxmj , 1 ≤ j ≤ n ,

of n real linear forms in m real variables a1, . . . , am will be written more
concisely as aX where a ∈ Rm and where X is an m×n real matrix. The set
of real m× n matrices will be identified with Rmn in the usual way (i.e., by
identifying the matrix X = (xij) with the point (x11, . . . , x1n, x21, . . . , xmn)
in Rmn). For each x in Rn, denote the symmetrised fractional part of x by
〈x〉 = x − kx , where kx is the unique integer vector such that x − kx ∈
(− 1

2 ,
1
2 ]n. Thus

|〈x〉| = max{‖x1‖, . . . , ‖xn‖} ,
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where for each real u, ‖u‖ = min{|u− k| : k ∈ Z}. Given an error function
ψ : Rn \ {0} → R+, define ψ1 : R \ {0} → R+ by

ψ1(u) = ψ(u, 0, . . . , 0) .

Thus the function ψ1 is essentially the restriction of ψ to (R \ {0})× {0} ×
. . . × {0}, so that ψ1 is positive and ψ1(x) → 0 as x → ∞. Functions
∆ : [0,∞) → (0,∞), where ∆(0) = 1 and ∆(x) → ∞ monotonically as
x→∞, which satisfy the growth conditions

log∆(x)
x

→ 0 as x→∞ and
∞∫

1

log∆(x)
x2

dx <∞ ,

characterise a large class of functions arising in small denominator problems
and are called approximation functions ([11], p. 95). In the applications
considered below, ψ1(x) = x−τ ; its reciprocal 1/ψ1 is essentially an approx-
imation function in the sense of [11] (strictly speaking (x+1)τ is an approx-
imation function). The lower order λ = λ(f) of the function f : R+ → R+

is defined by

λ = lim inf
x→∞

log f(x)
log x

([9], p. 16), so that given ε > 0, f(x) ≥ xλ−ε for all sufficiently large x.
Suppose that for each positive r, Cr is a collection of hypercubes C in

Rn with `(C) � R (as usual � denotes an inequality with an unspecified
positive constant factor). The s-volume `s(C), where s ≥ 0, of a collection
C of hypercubes C is given by

`s(C) =
∑
C∈C

`(C)s

(see [7]). For each s in [0, n], the (upper) order ω(s) of the s-volume `s(Cr)
of Cr will be defined as

ω(s) = lim inf
r→0+

log `s(Cr)
log r

,

so that given ε > 0, `s(Cr) ≤ rω(s)−ε for all sufficiently small r. It is shown
in Lemma 1 of [5] that ω(s) increases with s and is concave (i.e., ω satisfies
ω(ta + (1 − t)b) ≥ tω(a) + (1 − t)ω(b) for each a, b in (0, n) and t in [0, 1])
and hence continuous on (0, n).

The Hausdorff dimension dimW (F,ψ;m,n) of the set

W (F,ψ;m,n) = {X ∈ Rmn : F (〈qX〉) < ψ(q) for infinitely many q ∈ Zm}
will be estimated in terms of the lower order λ1 of 1/ψ1 and the lower order
ω(s) of the s-volume of a cover for the star body

Sr = F−1([0, r)) ∩ In = {x ∈ In : F (x) < r} ,
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where r > 0 and I = [− 1
2 ,

1
2 ]. It will then be determined in terms of the

dimension of W (F,ψ1; 1, n). This extends the simultaneous Diophantine
approximation results of [5] to systems of linear forms and generalizes the
results of [4] and [13]. It will also be used to determine the Hausdorff
dimension of the set of real m× n matrices X for which the inequality

n∏
j=1

∣∣∣〈 m∑
i=1

qixij

〉∣∣∣αj/A

<

m∏
i=1

(qi)
−τ ,

where α1, . . . , αn > 0, A = α1 + . . . + αn and q = max{1, |q|}, holds for
infinitely many q ∈ Zm (in [13], αj = 1 for each j = 1, . . . , n).

Since

(1) dim{A1 ∪A2 ∪ . . . } = sup{dimAk : k = 1, 2, . . . } ,

in order to determine the Hausdorff dimension of W (F,ψ;m,n) it suffices
to consider the dimension of the set

W̃ (F,ψ;m,n) = {X ∈ Imn : F (〈qX〉) < ψ(q) for infinitely many q ∈ Zm}
= W (F,ψ;m,n) ∩ Imn.

Theorem 1. Let F : Rn → R be a distance function and suppose that
for each r > 0, the starbody F−1([0, r))∩In has a cover Cr of n-dimensional
hypercubes C with sides of length `(C) � r. Let ω(s) be the order of the
s-volume `s(Cr). Let ψ : Rn \ {0} → R be an error function and suppose
that the reciprocal 1/ψ1 of ψ1 : R \ {0} → R+ has lower order λ1 satisfying

lim
s→0+

ω(s)
n+ 1

<
1
λ1

< lim
s→n−

ω(s) .

Suppose further that for every v > ω(s0),

(2)
∑
|q|=q

ψ(q)v � ψ1(q)v .

Then

dimW (F,ψ;m,n) ≤ (m− 1)n+ s0 = mn+ 1− λ1ω(s0) ,

where s0 ∈ (0, n) is the unique solution of

λ1ω(s) = n− s+ 1 .

P r o o f. Choose t such that (m − 1)n + s0 < t < mn and put s =
t − (m − 1)n so that s0 < s < n. The number η = λ1ω(s) − n + s − 1 > 0
since ω(s) increases with s and s > s0. Let ε be an arbitrary number
satisfying

0 < ε < η/2(λ1 + ω(s)) .
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The set W̃ (F,ψ;m,n) can be expressed in the ‘lim-sup’ form

W̃ (F,ψ;m,n) =
∞⋂

N=1

∞⋃
q=N

⋃
|q|=q

⋃
p

B(p, q;ψ(q)) ,

where p runs through all integer vectors in q(− 1
2 ,

1
2 ]mn (i.e., p = qX for

some X in (− 1
2 ,

1
2 ]mn) and for each p ∈ Zn, q ∈ Zm and r > 0,

B(p, q; r) = {X ∈ Imn : F (qX − p) < r, qX − p ∈ (− 1
2 ,

1
2 ]n} .

Now B(p, q; r) = {x ∈ In : F (qx − p) < r, qx − p ∈ (− 1
2 ,

1
2 ]n}, where

q > 0, is a starbody centred at p/q and is contained in Sr/q + p/q, since if
y ∈ qB(p, q; r)− p, then F (y) = F (qx− p) < r. The cover Cr for Sr gives
a cover B(p, q; r) for B(p, q; r) consisting of n-dimensional hypercubes C
with `(C) � r/q and, by the definition of ω(s), with s-volume `s(B(p, q; r))
satisfying

(3) `s(B(p, q; r)) � `s(Cr)q−s � rω(s)−εq−s

for any ε > 0 and sufficiently small r. By Lemma 2 of [4] or by [13] there is
a cover H(p, q; r) say of B(p, q; r) by mn-dimensional hypercubes H with
`(H) � r/|q| and t-volume

`t(H(p, q; r)) � `s(B(p, |q|; r)) .

Hence for each N = 1, 2, . . . , W̃ (F,ψ;m,n) has a cover ΛN of hypercubes
C with `(C) � 1/N and with t-volume `t(ΛN ) satisfying

`s(ΛN ) �
∞∑

q=N

∑
|q|=q

∑
|p |≤|q|

`t(H(p, q;ψ(q)))

�
∞∑

q=N

∑
|q|=q

∑
|p |≤|q|

`s(B(p, |q|;ψ(q)))

�
∞∑

q=N

∑
|q|=q

∑
|p |≤|q|

|q|−sψ(q)ω(s)−ε

by (3) with r = ψ(q) and q = |q|. Hence for all t > (m−1)n+s0 (or s > s0)
and N sufficiently large,

`t(ΛN ) �
∞∑

q=N

q−s
∑
|q|=q

ψ(q)ω(s)−ε
∑
|p |≤|q|

1

�
∞∑

q=N

qn−s
∑
|q|=q

ψ(q)ω(s)−ε �
∞∑

q=N

qn−sψ1(q)ω(s)−ε

by (2). Hence by the definition of the lower order λ1 of 1/ψ1, for sufficiently
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large N ,

`t(ΛN ) �
∞∑

q=N

qn−sq−(λ1−ε)(ω(s)−ε)

�
∞∑

q=N

qn−s−λ1ω(s)−ε(λ1+ω(s)) �
∞∑

q=N

q−1−η/2

by the choice of η and ε. Thus `t(ΛN ) → 0 as N → ∞ and it follows that
dimW (F,ψ;m,n) ≤ (m− 1)n+ s0.

By using the above result and the following general lower bound, the
Hausdorff dimension of W (F,ψ;m,n) can be expressed in terms of the di-
mension of W (F,ψ1; 1, n). To do this a slight additional restriction on the
order ω is needed. It suffices to assume that ω(s) is strictly increasing, or
that in the cover Cr, `(C) � r, or that since ω(s) is a convex function of s,
for some δ > 0, ω(s) is not constant for s > s0 − δ or that `(C)s � rω(s).
In the applications made, each of these conditions is fulfilled.

Lemma 1. Let F : Rn → R be a distance function and let ψ : Rn\{0} → R
be any function. Then

dimW (F,ψ;m,n) ≥ (m− 1)n+ dimW (F,ψ1; 1, n) .

P r o o f. [4], Lemma 1.

Theorem 2. Let F : Rn → R be a distance function and suppose that
for each r > 0, the starbody F−1([0, 1))∩In has a cover Cr of n-dimensional
hypercubes C with sides of length `(C) � r. Let ω(s) be the lower order of
the s-volume `s(Cr) and suppose that ω(s) is strictly increasing. Let ψ : Rn \
{0} → R be an error function and suppose that for s > dimW (F,ψ1; 1, n),

(4)
∑
|q|=q

ψ(q)ω(s) � ψ1(q)ω(s)

and

(5)
∞∑

q=1

qn−sψ1(q)ω(s) <∞ .

Then
dimW (F,ψ;m,n) = (m− 1)n+ dimW (F,ψ1; 1, n) .

P r o o f. The proof is similar to that of Theorem 1 except that the
lower bound of the lemma coincides with the upper bound. Write h =
dimW (F,ψ;m,n) and assume without loss of generality that h < n. Choose
t such that (m−1)n+h < t < mn and put s = t−(m−1)n so that h < s < n.
Since ω(s) increases strictly with s, ω(s)− ω(h) > 0. Let ε be an arbitrary
number satisfying 0 < ε < ω(s)− ω(h).
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As in Theorem 1, for each N = 1, 2, . . . , W̃ (F,ψ;m,n) has a cover ΛN

consisting of hypercubes C with `(C) � 1/N and with t-volume satisfying

`t(ΛN ) �
∞∑

q=N

∑
|q|=q

∑
|p |≤|q|

|q|−sψ(q)ω(s)−ε .

Hence for all t > (m− 1)n+ h (i.e., s > h) and N sufficiently large,

`t(ΛN ) �
∞∑

q=N

qn−sψ1(q)ω(s)−ε �
∞∑

q=N

qn−s′
ψ1(q)ω(s′) ,

where ω(s′) = ω(s) − ε, so that by the choice of ε and since ω is strictly
increasing, h < s′ < s. Thus `t(ΛN ) → 0 as N → ∞ by (5) and it follows
that dimW (F,ψ;m,n) ≤ (m− 1)n+ h.

The complementary inequality dimW (F,ψ;m,n) ≥ (m − 1)n + h, and
hence the theorem, follow from the lemma.

From now on take ψ1(x) = x−τ for x, τ > 0, so that λ1 = τ , and write

W (F,ψ1; 1, n) = WF (τ ;n) .

It is shown in [5] that when ω(s)τ > 1, dimWF (τ ;n) ≤ s0, where τω(s0) =
n− s0 + 1. When F (x) = |x| or more generally when F is a gauge function
(i.e., when F−1(0) = {0}, see [8], p. 8), then ω(s) = s and dimWF (τ ;n) =
(n+1)/(τ +1) for τ > 1/n. Since (n+1)/(τ +1) is a continuous decreasing
function of τ which equals n when τ = 1/n, since dimWF (τ ;n) ≤ n and
since τ ≥ τ ′ implies that WF (τ ;n) ⊆WF (τ ′;n), it follows that

dimWF (τ ;n) = (n+ 1)/(τ + 1)

holds for τ ≥ 1/n. For if dimWF (1/n;n) = θ < n, then for τ − 1/n > 0
and sufficiently small, WF (τ ;n) > θ, a contradiction. The estimate (4) is
essential for Theorem 2 and does not hold for the error function ψ(x) =
|x|−τ when m ≥ 2; indeed, in this case the Hausdorff dimension is larger
and dimW (F,ψ;m,n) = (m− 1)n+ (m+ n)/(τ + 1) when τ ≥ m/n [2].

Corollary 1. Suppose that F : Rn → R is a gauge function and that
ψ : Rn \ {0} → R satisfies ψ1(x) = ψ(x, 0, . . . , 0) = x−τ and∑

|q|=q

ψ(q)s � q−τs

for each s > (n+ 1)(τ + 1). Then for τ ≥ 1/n,

dimW (F,ψ;m,n) = (m− 1)n+
n+ 1
τ + 1

.

P r o o f. By [5], ω(s) = s and by [6] or [10] and by the above remarks
on the continuity of the dimension, dimWF (τ ;n) = (n + 1)/(τ + 1) when
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τ ≥ 1/n. The estimate (5) holds since when s > (n+ 1)/(τ + 1),
∞∑

q=1

qn−sq−τs <∞

and the corollary follows.

This result was obtained in [4] but the condition corresponding to (5) was
omitted; this does not affect the applications made there. Note that since
τs0 = n−s0 +1 when s0 = (n+1)(τ+1), it follows from Theorem 1 and the
above remarks on the continuity of the dimension that dimW (F,ψ;m,n) ≤
(m− 1)n+ (n+ 1)/(τ + 1) when τ ≥ 1/n.

The function F given by F (x) =
∏n

j=1 |xj |1/n is evidently a distance
function; F is also of interest in the geometry of numbers ([8], Chapter 4) and
Diophantine approximation ([12], p. 69). In [13], Yu extended [1] to systems
of linear forms and showed (using different notation) that when ψ(x) =∏m

i=1(xi)−τ , where τ > 1/n and where for each real x, x = max{|x|, 1},
then

dimW (F,ψ;m,n) = mn− 1 +
2

τn+ 1
.

Using Theorem 2, we now extend Yu’s result.

Corollary 2. Let α1, . . . , αn be positive numbers with α = max{αj :
1 ≤ j ≤ n} and A = α1 + . . .+ αn. Let Φ : Rn → R be given by

Φ(x)A =
n∏

j=1

|xj |αj

and ψ : Rn → R by

ψ(x) =
m∏

i=1

(xi)−τ .

Then if τ ≥ α/A, the set

WΦ(τ ;m,n) = {X ∈ Rmn : Φ(〈qX〉) < ψ(q) for infinitely many q ∈ Zm}

has Hausdorff dimension

dimWΦ(τ ;m,n) = mn− 1 +
2α

τA+ α
.

P r o o f. Evidently Φ is a distance function and the restriction ψ1 of
ψ is given by ψ1(q) = q−τ , q ∈ N. Now ω(s) = A/(s − n + 1)/α for
n−1 < s < n ([5], Lemma 2) and is strictly increasing and dimWΦ(τ ; 1, n) =
n − 1 + 2α/(τA + α) when τ > α/A ([5], Theorem 2). By continuity this
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formula also holds when τ = α/A. The sum corresponding to (5) is
∞∑

q=1

qn−sq−τA(s−n+1)/α ,

which is finite since τA(s−n+1)/α > n−s+1 when s > n−1+2α/(τA+α).
Finally, it has to be shown that the inequality

(6)
∑
|q|=q

m∏
i=1

|qi|−τA(s−n+1)/α � q−τA(s−n+1)/α

corresponding to (4) holds when s > n − 1 + 2α/(τA + α). Now for each
q ∈ N,∑
|q|=q

m∏
i=1

|qi|−τA(s−n+1)/α � q−τA(s−n+1)/α
m∑

i=1

∏
j 6=i

q∑
qj=−q

|qj |−τA(s−n+1)/α

� q−τA(s−n+1)/α
( ∞∑

k=1

k−τA(s−n+1)/α
)m−1

.

But s > n−1+2α/(τA+α) implies that τA(s−n+1)/α > 2τA/(τA+α) ≥ 1
when τ ≥ A/α and so (6) holds. Hence by Theorem 2 and continuity, when
τ ≥ A/α,

dimWΦ(τ ;m,n) = (m− 1)n+ n− 1 +
2α

τA+ α
= mn− 1 +

2α
τA+ α

.
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