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Introduction. Recently J. Rutkowski (see [3]) has defined the p-adic
analogue of the Walsh system, which we shall denote by (φm)m∈N0 . The
system (φm)m∈N0 is defined in the space C(Zp, Cp) of Cp-valued continuous
functions on Zp. J. Rutkowski has also considered some questions concerning
expansions of functions from C(Zp, Cp) with respect to (φm)m∈N0 .

This paper is a remark to Rutkowski’s paper. We define another sys-
tem (hn)n∈N0 in C(Zp, Cp), investigate its properties and compare it to the
system defined by Rutkowski. The system (hn)n∈N0 can be viewed as a
p-adic analogue of the well-known Haar system of real functions (see [1]).
It turns out that in general functions are expanded much easier with re-
spect to (hn)n∈N0 than to (φm)m∈N0 . Moreover, a function in C(Zp, Cp) has
an expansion with respect to (hn)n∈N0 if it has an expansion with respect
to (φm)m∈N0 . At the end of this paper an example is given of a function
which has an expansion with respect to (hn)n∈N0 but not with respect to
(φm)m∈N0 .

Throughout the paper the ring of p-adic integers, the field of p-adic
numbers and the completion of its algebraic closure will be denoted by
Zp, Qp and Cp respectively (p prime). In addition, we write N0 = N ∪ {0}
and E = {0, 1, . . . , p− 1}.

The author would like to thank Jerzy Rutkowski for fruitful comments
and remarks that permitted an improvement of the presentation.

Definition and basic properties. Let p be a fixed prime number and
n ∈ N0. If n 6= 0 then for some k ∈ N0 we have n = n0 + n1p + . . . + nkpk,
where ni ∈ E for i ∈ {0, 1, . . . , k} and nk 6= 0. Define n− = n0 +n1p+ . . .+
nk−1p

k−1, n+ = nk, np = pk. Let ζ be a primitive p-root of unity in Cp.
The functions h0, h1, . . . are defined as follows: h0 ≡ 1 and for n > 0 we put

hn(x) :=
{

npζ
n+xk if x ∈ n− + npZp,

0 otherwise,
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where x = x0 +x1p+ . . .+xkpk + . . . is a p-adic integer number in Hensel’s
form (i.e. xi ∈ E).

Before proving some properties of (hn)n∈N0 , we shall introduce some
notation. For f ∈ C(Zp, Cp) define

f(x) :=
{

f(x)−1 if f(x) 6= 0,
0 otherwise.

The function 〈·, ·〉 : C(Zp, Cp)× C(Zp, Cp) → Cp defined by

〈f, g〉 :=
∫

Zp

fg = lim
k→∞

p−k

pk−1∑
j=0

f(j)g(j)

has some properties of the inner product. We shall see that the system
(hn)n∈N0 is orthogonal with respect to the above defined “inner product”.
Moreover, we define

Vk := {f ∈ C(Zp, Cp) : ∀x, y ∈ Zp (x ≡ y (mod pk) ⇒ f(x) = f(y))} .

Observe that Vk is a pk-dimensional vector space over Cp. Now we shall
prove

Theorem 1. Let x = x0 + x1p + . . . + xkpk + . . . ∈ Zp (xi ∈ E). The
functions h0, h1, . . . have the following properties:

(a) |h0(x)|p = 1, |hn(x)|p =
{

n−1
p if x ∈ n− + npZp,

0 otherwise,
where | · |p denotes the p-adic norm;

(b)
∑pk−1

j=0 hn+np+j(x) = npζ
n+xk ;

(c) hn is continuous for all n ∈ N0;

(d) 〈hn, hm〉 =
{

n−1
p if n = m,

0 otherwise;
(e) h0, h1, . . . , hpk−1 form a basis in the vector space Vk over Cp.

P r o o f. Properties (a)–(c) are easy to verify. Let n = n0 + n1p + . . . +
nrp

r, m = m0 + m1p + . . . + msp
s and j = j0 + j1p + . . . + jk−1p

k−1, where
nr 6= 0, ms 6= 0 and all coefficients are in E. To prove (d) consider the
following sum for k > max{s, r}:

S =
pk−1∑
j=0

hn(j)hm(j) .

Assume r > s. Then

hn(j)hm(j) 6= 0 iff j ≡ n (mod pr) and m ≡ n (mod ps+1) ,
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so

S =
p−1∑
jr=0

pk−r−1−1∑
i=0

hn(jrp
r + ipr+1)

× hm(nsp
s + ns+1p

s+1 + . . . + nr−1p
r−1 + jrp

r + ipr+1)

= pr−sζ−msns

pk−r−1−1∑
i=0

( p−1∑
jr=0

ζnrjr

)
= 0 .

Reasoning similarly for r < s one also obtains S = 0. If r = s then

hn(j)hm(j) 6= 0 iff j ≡ n (mod pr) and m ≡ n (mod pr) .

If nr 6= mr then

S =
p−1∑
jr=0

pk−r−1−1∑
i=0

hn(jrp
r + ipr+1)hm(jrp

r + ipr+1)

= pk−r−1

p−1∑
jr=0

ζ(nr−mr)jr = 0 .

Otherwise (i.e. when nr = mr) one obtains S = pk−r = pkn−1
p . Therefore

(d) holds.
(e) Observe that h0, h1, . . . , hpk−1 belong to Vk. It now suffices to show

that if f ∈ Vk then

f =
(
p−k

pk−1∑
j=0

f(j)
)
h0(1)

+
pk−1∑
n=1

(
p−k

pk−1n−1
p −1∑

j=0

p−1∑
s=0

ζ−n+sf(jpnp + snp + n−)
)
hn.

Denote the right side by g. It suffices to show that f(r) = g(r) for r ∈
{0, 1, . . . , pk − 1}, because for each x ∈ Zp there exists r ∈ {0, 1, . . . , pk − 1}
such that x ≡ r (mod pk) and f, g ∈ Vk. Set

Si =
pk−1∑
n=pi

p−k

pk−1n−1
p −1∑

j=0

p−1∑
s=0

ζ−n+sf(jpnp + snp + n−)hn(r) ,

where i ∈ {0, 1, . . . , k − 1}.
Let r = r0 + r1p + . . . + rk−1p

k−1, where r0, r1, . . . , rk−1 ∈ E. Then
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one has
g(r) = g(r0 + r1p + . . . + rk−1p

k−1)

= p−k

p−1∑
s=0

pk−1−1∑
j=0

f(jp + s)

+
p−1∑
n=1

p−k

pk−1−1∑
j=0

p−1∑
s=0

ζ−nsf(jp + s)hn(r0 + r1p + . . . + rk−1p
k−1)+S1

= p−k

p−1∑
n=0

p−1∑
s=0

pk−1−1∑
j=0

ζn(r0−s)f(jp + s) + S1 .

Observe that
∑p−1

n=0 ζn(r0−s) 6= 0 iff s = r0, therefore

g(r) = p−k

pk−1−1∑
j=0

pf(jp + r0) + S1 .

Reasoning in the same way one obtains

g(r) = p−k

p−1∑
j=0

pk−1f(jpk−1 + rk−2p
k−2 + . . . + r1p + r0) + Sk−1

= p−k

p−1∑
s=0

pk−1f(spk−1 + rk−2p
k−2 + . . . + r1p + r0)

+
pk−1∑

n=pk−1

p−k

p0−1∑
j=0

p−1∑
s=0

ζ−n+sf(jpk + spk−1 + n−)hn(r0 + r1p + . . .

. . . + rk−2p
k−2 + rk−1p

k−1) .

But if r0 + r1p + . . . + rk−2p
k−2 6= n− then hn(r) = 0 so one gets

g(r) = p−k

p−1∑
n+=0

p−1∑
s=0

pk−1ζn+(rk−1−s)f(spk−1 + rk−2p
k−2 + . . . + r1p + r0) .

If rk−1 6= s then
∑p−1

n+=0 ζn+(rk−1−s) = 0 so finally one obtains

g(r) = f(rk−1p
k−1 + rk−2p

k−2 + . . . + r1p + r0) = f(r) .

Expansion of functions with respect to the system (hn)n∈N0 . We
start with some notations. The sequence (x(k))k∈N where x(k) = x0 +
x1p + . . . + xk−1p

k−1 is called the standard sequence of the element x =
x0 + x1p + . . . ∈ Zp. The sequence (f (k))k∈N where f (k)(x) = f(x(k)) is
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called the standard sequence of the function f ∈ C(Zp, Cp). It is easy to see
that

lim
k→∞

x(k) = x , lim
k→∞

f (k)(x) = f(x)

for all x ∈ Zp and that f (k) ∈ Vk. So one may apply the formula (1) to f (k)

and obtain

f (k) =
pk−1∑
n=0

f (k)
n hn ,

where

(2)

f
(k)
0 = p−k

pk−1∑
j=0

f(j) ,

f (k)
n = p−k

pk−1n−1
p −1∑

j=0

p−1∑
s=0

ζ−n+sf(jpnp + snp + n−) if 0 < n < pk .

(If pk−1n−1
p − 1 < 0 then put f

(k)
n = 0.)

Definition 1. A function f ∈ C(Zp, Cp) has an expansion with respect
to the system (hn)n∈N0 if the following conditions are satisfied:

(E1) for any n ∈ N0 the limit fn := limk→∞f
(k)
n exists;

(E2) limn→∞ npfn = 0.

Observe that (E2) implies the convergence of
∑∞

n=0 fnhn. This series is
called the expansion of f with respect to (hn)n∈N0 . We write f ∼

∑∞
n=0 fnhn.

R e m a r k. The series
∑∞

n=0 fnhn is also convergent if the sequence
(|fn|p)n∈N0 is bounded. Indeed, if there exists M ∈ R such that for any
n ∈ N0 we have |fn|p ≤ M then

0 ≤ |fnnp|p ≤ M |np|p and lim
n→∞

|np|p = 0 ,

so (E2) holds and the series
∑∞

n=0 fnhn is convergent.

The next theorem follows immediately from the above definition.

Theorem 2. The set of all functions which have an expansion with re-
spect to (hn)n∈N0 is a vector space over Cp.

The following result describes a class of functions which have an expan-
sion with respect to (hn)n∈N0 .
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Theorem 3. If there exist constants d0, d1, . . . ∈ Cp such that f =∑∞
m=0 dmhm then f has an expansion with respect to (hn)n∈N0 and f ∼∑∞
m=0 dmhm.

P r o o f. It is sufficient to compute f
(k)
n where k, n ∈ N0, and to show

that limk→∞ f
(k)
n = dn. For n = 0 one has

f
(k)
0 = p−k

pk−1∑
j=0

d0 +
∞∑

m=1

dm

(
p−k

pk−1∑
j=0

hm(j)h0(j)
)

= d0 ,

by virtue of (2) and the proof of Theorem 1(d). For n > 0, consider the sum

S =
pk−1n−1

p −1∑
j=0

p−1∑
s=0

ζ−n+shm(jpnp + snp + n−) .

Using the definition of (hn)n∈N0 and the properties of roots of unity one
obtains S = 0 if n 6= m and S = pk if n = m.

Finally, one has

f (k)
n =

∑
m6=n

dm

(
p−k

pk−1n−1
p −1∑

j=0

p−1∑
s=0

ζ−n+shm(jpnp + snp + n−)
)

+ dnp−k

pk−1n−1
p −1∑

j=0

p−1∑
s=0

ζ−n+shn(jpnp + snp + n−) = dn .

Now one can see that limk→∞ f
(k)
n = dn for n ∈ N0, so (E1) holds. By

convergence of
∑∞

m=0 dmhm, (E2) also holds.

From the above theorem one can deduce the following two corollaries:

Corollary 4. If f =
∑∞

m=0 dmhm =
∑∞

m=0 d′mhm then dm = d′m.

Corollary 5. If the expansions of f , g ∈ C(Zp, Cp) with respect to
(hn)n∈N0 are convergent to those functions, then fg has an expansion with
respect to (hn)n∈N0 .

P r o o f. Let f =
∑∞

n=0 fnhn and g =
∑∞

n=0 gnhn. These series are
absolutely convergent so their product is also absolutely convergent. Hence
one may change the order of its terms. Because the product hnhm is again hs

or λhs (for some s ∈ N0, λ ∈ Cp) one can obtain the series fg =
∑∞

s=0 dshs

as a product (
∑∞

n=0 fnhn)(
∑∞

n=0 gnhn). To finish the proof it is enough to
apply Theorem 3.

Now we shall give a few examples of expansions with respect to (hn)n∈N0 .
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Examples of expansions. (a) Identity on Zp (f(x) = x). Employing
formulas (2) and Definition 1 one obtains

f0 = lim
k→∞

p−k

pk−1∑
j=0

j = lim
k→∞

(p−k2−1(pk − 1)pk) = −2−1 ,

fn = lim
k→∞

p−k

pk−1n−1
p −1∑

j=0

p−1∑
s=0

ζ−n+s(jpnp + snp + n−)

= p−1

p−1∑
s=0

sζ−n+s for n > 0 .

Note that if p = 2 one gets fn = −2−1 for all n ∈ N0.

(b) Quadratic function (f(x) = x2). It follows by direct computation
that

f0 = lim
k→∞

p−k

pk−1∑
j=0

j2 = lim
k→∞

(p−k6−1(pk − 1)pk(2pk − 1)) = 6−1 ,

fn = lim
k→∞

p−k

pk−1n−1
p −1∑

j=0

p−1∑
s=0

ζ−n+s(jpnp + snp + n−)2

= lim
k→∞

p−1∑
s=0

sζ−n+s(p−1nps + p−1n− + np(pk−1 − 1))

=
p−1∑
s=0

sζ−n+s(p−1nps + p−1n− − np) for n > 0 .

(c) Exponential function (f(x) = exp(ax) where |a|p < p1/(p−1)). In
this case, using the properties of the function exp, one gets

f0 = lim
k→∞

p−k

pk−1∑
j=0

exp(aj) = a(exp(a)− 1)−1 ,

fn = lim
k→∞

(
p−k

pk−1n−1
p −1∑

j=0

p−1∑
s=0

ζ−n+s exp(ajpnp) exp(asnp) exp(an−)
)

= lim
k→∞

(
p−k exp(an−)(exp(apk)− 1)(exp(apnp)− 1)−1

×
p−1∑
s=0

ζ−n+s exp(asnp)
)
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= a exp(an−)(exp(apnp)− 1)−1

p−1∑
s=0

ζ−n+s exp(asnp) for n > 0 .

(d) Trigonometric functions (f(x) = sin(ax), g(x) = cos(ax), where
|a|p < p1/(p−1)). Applying well-known formulas one obtains

f0 = lim
k→∞

p−k

pk−1∑
j=0

sin(aj)

= lim
k→∞

(p−k(sin(2−1a))−1 sin(2−1a(pk − 1)) sin(2−1apk)) = −2−1a ,

fn = lim
k→∞

p−k

pk−1n−1
p −1∑

j=0

p−1∑
s=0

ζ−n+s sin(ajpnp + asnp + an−)

= lim
k→∞

(
p−k(sin(2−1apnp))−1 sin(2−1apnp(pk−1n−1

p − 1))

× sin(2−1apk)
p−1∑
s=0

ζ−n+s cos(asnp + an−)

+ p−k(sin(2−1apnp))−1 cos(2−1apnp(pk−1n−1
p − 1))

× sin(2−1apk)
p−1∑
s=0

ζ−n+s sin(asnp + an−)
)

= − 2−1a
( p−1∑

s=0

ζ−n+s cos(asnp + an−)

+ (tan(2−1apnp))−1

p−1∑
s=0

ζ−n+s sin(asnp + an−)
)

for n > 0 .

Reasoning in the same way one gets g0 = 2−1a · tan(2−1a) and

gn = 2−1a
(
(tan(2−1apnp))−1

p−1∑
s=0

ζ−n+s cos(asnp + an−)

+
p−1∑
s=0

ζ−n+s sin(asnp + an−)
)

for n > 0 .

(e) Characteristic function of a coset of the residue class field. Let
A = t + prZp, where 0 ≤ t ≤ pr−1. Then

χA(x) =
{

1, x ∈ A ,
0, x 6∈ A .
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Without any difficulty one obtains

(χA)0 = lim
k→∞

p−k

pk−1∑
j=0

χA(j) = lim
k→∞

p−k

pk−r−1∑
i=0

χA(t + ipr) = p−r .

For n > 0 assume n = n0 + n1p + . . . + napa, t = t0 + t1p + . . . + tr−1p
r−1

and consider two cases a < r and a ≥ r. In the first case one gets

(χA)n = lim
k→∞

p−k

pk−a−1−1∑
j=0

p−1∑
s=0

ζ−nasχA(jpa+1 + spa + n−)

=
{

0 if n− 6≡ t (mod pa),
p−rζ−nata if n− ≡ t (mod pa).

Considering the second case, note that if n− 6≡ t (mod pr) then (χA)n = 0.
Otherwise one obtains

(χA)n = lim
k→∞

p−k

pk−a−1−1∑
j=0

p−1∑
s=0

ζ−n+sχA(jpa+1 + spa + n−)

= p−a−1

p−1∑
s=0

ζ−n+s = 0 .

Relationship between (hn)n∈N0 and (φm)m∈N0 . The aim of this sec-
tion is to show that f has an expansion with respect to (hn)n∈N0 if it has
one with respect to the system (φm)m∈N0 defined by Rutkowski (see [3]),
and to give an example of a function which has an expansion with respect
to (hn)n∈N0 but not with respect to (φm)m∈N0 . First recall the definition
and basic properties of (φm)m∈N0 . For m = m0 + m1p + . . . + msp

s ∈ N
define

φm(x) = φm(x0 + x1p + . . . + xsp
s + . . .) = ζx0m0+x1m1+...+xsms ,

φ0(x) ≡ 1 .

It follows immediately that

φm(x0 + x1p + . . . + xrp
r + xr+1p

r+1 + . . .)
= φm(x0 + x1p + . . . + xrp

r)φm(xr+1p
r+1 + . . .) .

The system (φm)m∈N0 is orthonormal in the sense of the definition given
before Theorem 1. The functions φ0, φ1, . . . , φpk−1 form a basis in the vector
space Vk (see Theorem 1(e)). For f ∈ C(Zp, Cp), elements of its standard
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sequence can be represented in the form

f (k) =
pk−1∑
m=0

(
p−k

pk−1∑
j=0

f(j)φm(j)
)
φm, where φm(j) = φm(j)−1 .

Define f̂
(k)

m = p−k
∑pk−1

j=0 f(j)φm(j). Making use of the above notations we
introduce

Definition 2. A function f ∈ C(Zp, Cp) has an expansion with respect
to the system (φm)m∈N0 if the following holds:

(I) for any m ∈ N0 the limit f̂m = limk→∞ f̂
(k)

m exists;
(II) limm→∞ f̂m = 0.

Note that (II) guarantees the convergence of the series
∑∞

m=0 f̂mφm,
called the expansion of f with respect to (φm)m∈N0 . We write
f ∼

∑∞
m=0 f̂mφm. Now we prove the main theorem of this section.

Theorem 6. A function f has an expansion with respect to (hn)n∈N0 if
it has one with respect to (φm)m∈N0 .

P r o o f. First we transform the formulas for the coefficients f
(k)
n in the

expansion of f with respect to (hn)n∈N0 . For n > 0 and k large enough,

f (k)
n = p−k

pk−1n−1
p −1∑

j=0

p−1∑
s=0

ζ−n+sf(jpnp + snp + n−)(3)

= p−k

pkn−1
p −1∑

i=0

f(inp + n−)hn(inp + n−)np

= npp
−k

pkn−1
p −1∑

i=0

np−1∑
r=0

f(inp + r)hn(inp + r)

= npp
−k

pk−1∑
j=0

f(j)hn(j) .

One can check that

(4)

hn = n−2
p

np−1∑
r=0

φr(n−)φm+np+r

(where − n+ ≡ m+ (mod p) and n > 0) ,

h0 ≡ φ0 .
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Applying (4) to (3) one obtains

f (k)
n = n−1

p

np−1∑
r=0

φr(n−)p−k

pk−1∑
j=0

f(j)φn+np+r(j)

= n−1
p

np−1∑
r=0

φr(n−)f̂ (k)
n+np+r .

The limit fn = limk→∞ f
(k)
n exists because f̂n+np+r = limk→∞ f̂

(k)
n+np+r

exists by Definition 2 and fn = n−1
p

∑np−1
r=0 φr(n−)f̂n+np+r, so condition

(E1) of Definition 1 is satisfied. Now,

|npfn|p =
∣∣∣ np−1∑

r=0

φr(n−)f̂n+np+r

∣∣∣
p
≤ max{|f̂n+np+r|p : 0 ≤ r ≤ np} .

But limn→∞ f̂n = 0 so max{|f̂n+np+r|p : 0 ≤ r ≤ np} → 0 as n →∞. Thus
limn→∞ npfn = 0 and condition (E2) of Definition 1 is also satisfied.

Applying the above theorem and the result proved in [3], we immediately
obtain the following

Corollary 7. (a) There exists a function f ∈ C(Zp, Cp) which has an
expansion with respect to (hn)n∈N0 and f 6= 0, f ∼ 0.

(b) Every uniformly differentiable function has an expansion with respect
to (hn)n∈N0 .

(c) There exists a differentiable function which does not have an expan-
sion with respect to (hn)n∈N0 .

Now we will show that the system (hn)n∈N0 is more general than
(φm)m∈N0 .

Example. Consider the function f : Zp → Cp given by f(0) = 0 and
f(xapa + xa+1p

a+1 + . . .) = pa+1ζa+1, where xa is non-zero. One can check
that f is continuous. We shall show that f has an expansion with respect to
(hn)n∈N0 , but the sequence (f̂ps)s∈N is convergent to 2(p− 1) so statement
(II) of Definition 2 fails. We first prove the following facts:

(i) for s ∈ N, x ∈ Zp one has f(psx) = psf(x);
(ii) f(xapa + xa+1p

a+1 + . . . + xa+rp
a+r + . . .) = f(xapa + xa+1p

a+1 +
. . . + xa+rp

a+r), where xa is non-zero and r ≥ 1;

(iii)
∑pk−1

j=0 f(αps + jps+1) = 0 for s ∈ N0, k ∈ N, α ∈ E\{0};

(iv)
∑pk−1

j=0 f(j) = (p− 1)pk for k ∈ N.

The properties (i), (ii) are easy to verify and we get (iii) immediately by
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direct computations:

pk−1∑
j=0

f(αps + jps+1) =
p−1∑
i=0

pk−1−1∑
j=0

f(αps + ips+1 + jps+2)

= pk−1ps+1

p−1∑
i=0

ζi = 0 .

To prove (iv) write

pk−1∑
j=0

f(j) =
p−1∑
j0=1

pk−1−1∑
i=0

f(j0 + ip) +
p−1∑
j1=1

pk−1−1∑
i=0

f(j1p + ip2) + . . .

+
p−1∑

jk−2=1

pk−1−1∑
i=0

f(jk−2p
k−2 + ipk−1) +

p−1∑
i=1

f(ipk−1) + f(0) .

The last two terms are 0 and (p− 1)pk respectively by definition of f while
the others are zero by (iii).

Now we are ready to compute the coefficients fn. Using (iv), (2) and
Definition 1, one obtains f0 = p − 1. For n > 0 we consider three cases:
1o n− = 0, 2o n− = anpp

−1 (where a ∈ E\{0}) and 3o n− 6= 0 or n− 6=
anpp

−1. In the first case one gets

fn = lim
k→∞

p−k

pk−1n−1
p −1∑

j=0

p−1∑
s=0

ζ−n+sf(jpnp + snp)

= lim
k→∞

p−knp

( p−1∑
s=1

ζ−n+s

pk−1n−1
p −1∑

j=0

f(s + jp) + p

pk−1n−1
p −1∑

j=0

f(j)
)

.

Here we have used (i). Applying (iii) and (iv) one can check that fn = p−1.
Consider the second case:

fn = lim
k→∞

p−k

pk−1n−1
p −1∑

j=0

p−1∑
s=0

ζ−n+sf(jpnp + snp + anpp
−1)

= lim
k→∞

p−knpp
−1pk−1n−1

p

p−1∑
s=0

pζ(1−n+)s .

Here if n+ = 1 then fn = 1 and otherwise fn = 0. Finally, if neither the
first nor the second case holds then using (ii) one has
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fn = lim
k→∞

p−k

pk−1n−1
p −1∑

j=0

p−1∑
s=0

ζ−n+sf(jpnp + snp + n−)

= lim
k→∞

p−kpk−1n−1
p f(n−)

p−1∑
s=0

ζ−n+s = 0 .

Since fn ∈ Zp for all n ∈ N0 the function f has an expansion with respect
to (hn)n∈N0 by the remark after Definition 1.

Let us compute the coefficients f̂ps (where s ∈ N):

f̂ps = lim
k→∞

p−k

pk−1∑
j=0

f(j)φps(j)

= lim
k→∞

p−k

×
ps−1−1∑

i=0

p−1∑
a=0

p−1∑
b=0

p−1∑
c=0

pk−s−2−1∑
j=0

f(i + aps−1 + bps + cps+1 + jps+2)ζ−b

= lim
k→∞

p−k
(
pk−s−1

ps−1−1∑
i=1

p−1∑
a=0

f(i + aps−1)
p−1∑
b=0

ζ−b

+ pk−s−1

p−1∑
a=1

p−1∑
b=0

f(aps−1 + bps)ζ−b

+ pk−s−2

p−1∑
b=1

p−1∑
c=0

f(bps + cps+1)ζ−b

+
p−1∑
c=1

pk−s−2−1∑
j=0

f(cps+1 + jps+2) +
pk−s−2−1∑

j=0

f(jps+2)
)

.

The first sum is zero. Applying (iii) one finds that the third and fourth
sums are also zero. Using (i) and (iv) one shows that the fifth sum equals
pk(p−1). Finally, applying the definition of f , one concludes that the second
sum is pk(p− 1). So f̂ps = 2(p− 1).
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