
ACTA ARITHMETICA
LXI.2 (1992)

Squares in difference sets

by

Jacek Fabrykowski (Winnipeg, Man.)

1. Introduction. There are many problems in number theory that
reduce to searching for squares in specific sequences. For instance, we would
like to know whether there are infinitely many squares of type p− 1, where
p ranges over primes. Of particular interest is the general problem whether
the difference set

A− B = {a− b ; a ∈ A, b ∈ B}
contains squares. Furstenberg [1] and Sárközy [3] studied the case A = B
and gave an affirmative answer under the amazingly general condition thatA
has a positive upper density. Sárközy [3] succeeded in proving a quantitative
version for thinner sets. The best result (under the weakest assumptions)
so far has been established by Pintz, Steiger and Szemerédi [2] showing that
A−A contains infinitely many squares if

A(x) = #{a ∈ A ; a ≤ x} > cx(log x)−(1/12) log log log log x ,

where c is an absolute positive constant.

Various methods have been employed. Furstenberg used ergodic theory,
Sárközy applied the circle method together with a combinatorial idea and
Pintz, Steiger and Szemerédi introduced further combinatorial refinements.

In this work we apply a variant of the dispersion method which has a
potential to give squares in considerably thinner sets.

Let A = (am) and B = (bn) be finite sequences of complex numbers. In
applications A and B will be considered as characteristic functions of finite
sets. Our aim is to evaluate the sum

(1) S(A,B) =
∑ ∑ ∑

m−n=l2

ambnl .

Let νd(k) be the number of solutions to x2 ≡ k (mod d). Put

χc(k) =
∑
d|c

µ

(
c

d

)
νd(k) and sC(k) =

1
2

∑
c≤C

χc(k) .
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Theorem 1. Let C ≥ 2 and am = 0 for m > M . Then

(2) S(A,B) =
∑ ∑

m>n

ambnsC(m− n) + EC(A,B) ,

where

(3) EC(A,B) � (C−1/2M + M11/12 log M)‖A‖ ‖B‖
and

‖A‖ =
( ∑

|am|2
)1/2

, ‖B‖ =
( ∑

|bn|2
)1/2

.

R e m a r k s. Notice that χc(k) is multiplicative in c. If (c, 2k) = 1 we
have

(4) χc(k) =
(

k

c

)
µ2(c) .

For other c the formula for χc(k) is somewhat complicated but still expressed
in terms of the quadratic character.

The error term EC(A,B) can be improved a bit by employing the Fourier
technique. Regarding the parameter C it yields the best estimate for the
error term EC(A,B) with C = M1/6, however such a choice may not be
best for handling the main term. Clearly, for that matter we may want C
to be small depending on our knowledge of the distribution of A and B in
arithmetic progressions. For example, if we deal with primes ≤ M then we
can allow C � (log M)A in view of the Prime Number Theorem of Siegel
and Walfisz.

2. Dispersion method. We set s(k) = l if k = l2 and s(k) = 0
otherwise, so

S(A,B) =
∑ ∑

m>n

ambns(m− n) .

Therefore Theorem 1 reveals that the character sum sC(k) approximates
s(k) very well in the sense that the bilinear form

SC(A,B) =
∑ ∑

m>n

ambnsC(m− n)

is close to S(A,B). To estimate the difference EC(A,B) = S(A,B) −
SC(A,B) we shall apply the dispersion method.

Let us introduce

S(n) =
∑
m>n

ams(m− n) , SC(n) =
∑
m>n

amsC(m− n) ,

and
SC =

∑ ∑
m>n

ambnsC(m− n) .
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By Cauchy’s inequality we obtain

(5) EC(A,B) =
∑

n

bn(S(n)− SC(n)) � D1/2‖B‖ ,

where

D =
∑

n

|S(n)− SC(n)|2 .

Squaring out and changing the order of summation we write

(6) D = 〈S, S〉 − 2 Re〈S, SC〉+ 〈SC , SC〉 ,

where

〈S, S〉 =
∑

n

|S(n)|2, 〈S, SC〉 =
∑

n

S(n)SC(n), 〈SC , SC〉 =
∑

n

|SC(n)|2,

with the aim of evaluating each sum separately.

3. Evaluation of 〈SC , SC〉. We have

〈SC , SC〉 =
∑

n

∑
m1>n

∑
m2>n

am1am2sC(m1 − n)sC(m2 − n)

=
1
4

∑ ∑
c1,c2≤C

∑
m1

∑
m2

am1am2Jc1c2(m1,m2) ,

where

Jc1c2(m1,m2) =
∑

n<min(m1,m2)

χc1(m1 − n)χc2(m2 − n) .

Since χc(k) is periodic in k of period c we split the summation over n into
progressions to modulus c1c2 and get

Jc1c2(m1,m2) =
∑

z (mod c1c2)

χc1(m1 − z)χc2(m2 − z)
(

min(m1,m2)
c1c2

+ O(1)
)

=
min(c1, c2)

c1c2
jc1c2

(m1 −m2) + O(c1c2) ,

where

(7) jc1c2
(k) =

∑
z (mod c1c2)

χc1(z)χc2(z − k) ,

which resembles the Jacobi sum. Here the error term comes from the trivial
estimate

(8)
∑

z (mod c1c2)

|χc1(z)χc2(z − k)| � c1c2 .
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For exact evaluation of jc1c2
(k) we appeal to the formula for the Ramanujan

sum

(9) Rc(k) =
∑∗

x (mod c)

e

(
kx

c

)
=

∑
d|c
d|k

dµ

(
c

d

)

giving

(10) χc(k) =
1
c

∑
x (mod c)

∑∗

y (mod c)

e

(
y(x2 − k)

c

)
.

Hence

jc1c2
(k)

=
1

c1c2

∑ ∑
x1 (mod c1)
x2 (mod c2)

∑∗ ∑∗

y1 (mod c1)
y2 (mod c2)

∑
z (mod c1c2)

e

(
y1(x2

1 − z)
c1

− y2(x2
2 − z + k)

c2

)
.

Here the innermost sum vanishes unless c1 = c2 = c say, and y1 ≡ y2 (mod c),
in which case we get

jcc(k) =
∑∗

y (mod c)

∑ ∑
x1,x2(mod c)

e

(
y(x2

1 − x2
2 − k)

c

)
= |G(c)|2Rc(k) ,

where G(c) is the Gauss sum

G(c) =
∑

x (mod c)

e

(
x2

c

)
.

For subsequent use we recall the well-known formula

(11) |G(c)|2 =

 c if 2 - c,
0 if 2 ‖ c,
2c if 4 | c.

Collecting the above evaluations we conclude that

(12) 〈SC , SC〉

=
1
4

∑
c≤C

c−2|G(c)|2
∑
m1

∑
m2

am1am2 min(m1,m2)Rc(m1 −m2)

+ O
(
C4

( ∑
m

|am|
)2)

.
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4. Evaluation of 〈S, SC〉. We have

〈S, SC〉 =
∑

n

∑
m1>n

∑
m2>n

am1am2s(m1 − n)sC(m2 − n)

=
1
2

∑
c≤C

∑
m1

∑
m2

am1am2Jc(m1,m2) ,

where

Jc(m1,m2) =
∑

n<min(m1,m2)

s(m1 − n)χc(m2 − n)

=
∑

0<m1−l2<min(m1,m2)

χc(l2 + m2 −m1)l

=
∑

z (mod c)

χc(z2 + m2 −m1)
( ∑

l≡z (mod c)

0<m1−l2<min(m1,m2)

l
)

=
min(m1,m2)

2c
jc(m2 −m1) + O(cm1/2

1 ) ,

where

(13) jc(k) =
∑

z (mod c)

χc(z2 + k)

and the error term comes from the trivial estimate

(14)
∑

z (mod c)

|χc(z2 + k)| � c .

By (10) and (13) we infer that

jc(k) =
1
c

∑
x (mod c)

∑∗

y (mod c)

∑
z (mod c)

e

(
y(x2 − z2 − k)

c

)
=
|G(c)|2

c
Rc(k) .

Collecting the above evaluations we conclude that

(15) 〈S, SC〉

=
1
4

∑
c≤C

c−2|G(c)|2
∑
m1

∑
m2

am1am2 min(m1,m2)Rc(m2 −m1)

+ O
(
C2

( ∑
m

m1/2|am|
)( ∑

m

|am|
))

.
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5. Evaluation of 〈S, S〉. We have

〈S, S〉 = 2 Re
∑ ∑ ∑
n<m2<m1

am1am2s(m1 − n)s(m2 − n) +
∑ ∑

l2<m

l2|am|2

= 2 Re
∑ ∑
m2<m1

am1am2J (m1,m2) + O
( ∑

m

m3/2|am|2
)

,

where

J (m1,m2) =
∑ ∑
n<m2

s(m1 − n)s(m2 − n) .

To evaluate J (m1,m2) we put n = m1 − l21 = m2 − l22 and then u = l1 − l2,
v = l1 + l2. This is a one-to-one correspondence subject to the following
conditions:

U1 < u < U2 , uv = k , u ≡ v (mod 2) ,

where U1 =
√

m1 −
√

m2, U2 =
√

m1 −m2 and k = m1 −m2.
Hence we obtain

J (m1,m2) =
1
4

∑
u

∑
v

(v2 − u2) =
1
4

∑
U1<u<U2

k≡u2 (mod 2u)

(k2u−2 − u2)

=
1
4

∑
U1<u<U2

(k2u−2 − u2)
1
2u

∑
y (mod 2u)

e

(
y(k − u2)

2u

)

=
∑

2U1<cr<2U2
2|cr

(cr)−1

[(
k

cr

)2

−
(

cr

4

)] ∑∗

x (mod c)

e

(
xk

c
+

xcr2

4

)

= H(m1,m2) + I(m1,m2) ,

say, where H(m1,m2) denotes the partial sum restricted by c ≤ C and
I(m1,m2) denotes the partial sum restricted by c > C.

First we evaluate H(m1,m2). Given c ≤ C we sum over r getting∑
R1<r<R2
2|(2,c)r

r−1

[(
k

cr

)2

−
(

cr

4

)2]
e

(
xcr2

4

)

=
∑

% (mod 2)
2|(2,c)%

e

(
xc%2

4

) ∑
R1<r<R2

r≡% (mod 2)

r−1

[(
k

cr

)2

−
(

cr

4

)2]
,

where R1 = 2U1c
−1 and R2 = 2U2c

−1. The innermost sum is approxi-
mated by



Squares in difference sets 205

1
2

R2∫
R1

[(
k

cr

)2

−
(

cr

4

)2]
dr

r
+ O

(
m1

R1

)
=

m2

4
+ O

(
cm1√

m1 −
√

m2

)
and the outer sum is clearly equal to |G(c)|2c−1 (see (11)). This gives

H(m1,m2) =
1
4

∑
c≤C

c−2|G(c)|2m2Rc(m1 −m2) + O

(
Cm1√

m1 −
√

m2

)
.

Now we proceed to estimate I(m1, m2) by an appeal to the large sieve
inequality

(16)
∑
q≤Q

∑∗

a(mod q)

∣∣∣∣ ∑
m≤M

λme

(
a

q
m

)∣∣∣∣2 ≤ (Q2 + M)
∑

m≤M

|λm|2 .

We assume that the sequence A = (am) is supported in the interval 1 ≤
m ≤ M and deduce by partial summation that∑ ∑
m2<m1

am1am2I(m1,m2)

� C−1M(log M)2
∑

c≤2
√

M

∑∗

x (mod c)

∣∣∣∣ ∑
m≤M

a′me

(
x

c
m

)∣∣∣∣∣∣∣∣ ∑
m≤M

a′′me

(
x

c
m

)∣∣∣∣
with some sequences A′ = (a′m) and A′′ = (a′′m) with |a′m| ≤ |am| and
|a′′m| ≤ |am|. Hence by (16) the above sum is

� C−1M2(log M)2
∑

m≤M

|am|2 .

Collecting the above results we conclude that

〈S, S〉(17)

=
1
4

∑
c≤C

c−2|G(c)|2
∑
m1

∑
m2

am1am2 min(m1,m2)Rc(m1 −m2)

+ O
(
(CM3/2 + C−1M2)(log M)2

( ∑
m

|am|2
))

.

6. Proof of Theorem 1. Conclusion. Inserting (12), (15) and (17)
to (6) we find that the main terms cancel out and we are left with the error
terms giving

(18) D � (C4M + C2M3/2 + C−1M2)(log M)2
( ∑

m

|am|2
)

.

Finally, by (5) we get (2) with

EC(A,B) � (C2M−1/2 + CM3/4 + C−1/2M)(log M)‖A‖ ‖B‖ .
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We shall improve this result slightly by estimating the difference

SC(A,B)− SC0(A,B) =
1
2

∑
C0<c≤C

∑ ∑
m>n

ambnχc(m− n) .

Using the results of Section 3 and the large sieve inequality we obtain

|SC(A,B)− SC0(A,B)|2

≤ ‖B‖2
∑

n

∣∣∣ ∑
C0<c≤C

∑
m>n

amχc(m− n)
∣∣∣2

= ‖B‖2
∑

C0<c1,c2≤C

∑
m1

∑
m2

am1am2Jc1c2(m1,m2)

= ‖B‖2
∑

C0<c≤C

c−2|G(c)|2
∑
m1

∑
m2

am1am2 min(m1,m2)Rc(m1 −m2)

+ O(C4M‖A‖2‖B‖2)
� (C−1

0 M2 + C4M)‖A‖2‖B‖2 .

This gives

S(A,B) = SC0(A,B)

+O([(C2M1/2 + CM3/4 + C−1/2M) log M + C
−1/2
0 M ]‖A‖‖B‖) .

We take C = M1/6 and get (2) with (3).

7. Further assumptions and results. Our goal is to give a more
accessible expression for the main term SC(A,B) in Theorem 1. To this end
we impose local conditions on the distribution of squares in the difference
set. Suppose the sequences A,B satisfy the asymptotic law∑ ∑

m>n

ambnνd(m− n) = ω(d)
∑
m>n

ambn + rd(A,B) ,

where rd(A,B) is considered as an error term and ω(d) is a multiplicative
function such that

(19) Z(s) = ζ−1(s)
∞∑

d=1

ω(d)d−s

is holomorphic and bounded in Re s ≥ −1/2. We obtain

SC(A,B) =
1
2

∑
c≤C

( ∑
d|c

ω(d)µ
(

c

d

)) ∑ ∑
m>n

ambn + FC(A,B) ,

where

(20) |FC(A,B)| ≤
∑
d≤C

Cd−1|rd(A,B)| .



Squares in difference sets 207

Furthermore, by contour integration we find that∑
c≤C

( ∑
d|c

ω(d)µ
(

c

d

))

=
1

2πi

1/2+iT∫
1/2−iT

Z(s)Cs ds

s
+ O(T−1C1/2 log C)

= Z(0) +
1

2πi

−1/2+iT∫
−1/2−iT

Z(s)Cs ds

s
+ O(T−1C1/2 log C)

= Z(0) + O(C−1/2 log T + T−1C1/2 log C)

= Z(0) + O(C−1/2 log C)

by taking T = C. Hence we conclude the following

Theorem 2. Under the above conditions we have

S(A,B) =
1
2
Z(0)

∑ ∑
m>n

ambn + FC(A,B)

+O(MC−1/2 log C + M11/12 log M)‖A‖‖B‖ .

8. An application. To illustrate the asymptotic formula of Theorem
2 we consider the sequences A = B = (Λ(n)), the von Mangoldt function.
By the Generalized Riemann Hypothesis we get∑ ∑

n<m≤M

Λ(m)Λ(n)νd(m− n) = ω(d)
∑ ∑
n<m≤M

Λ(m)Λ(n) + rd(A,B) ,

where

ω(d) =
1

ϕ2(d)

∑∗ ∑∗

α,β(mod d)

νd(α− β) = 1

and
rd(A,B) � (dM3/2 + d2M)(log M)2 .

Hence
FC(A,B) � (C2M3/2 + C3M)(log M)2 .

Corollary. We have∑ ∑
n<m≤M

Λ(m)Λ(n)s(m− n) = 1
4M2 + O(M23/12 log M) .

R e m a r k. Assuming no Riemann hypothesis one gets the above asymp-
totics with the error term O(M2(log M)−A) for any A > 0, and the implied
constant depending on A.
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