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1. Introduction. Given an arithmetic function f(n) one often expects
its values over primitive residue classes n ≡ a (mod q) to be equidistributed,
i.e.

Df (x; q, a) =
∑

n≤x
n≡a (mod q)

f(n)

to be well approximated by

Df (x; q) =
1

ϕ(q)

∑

n≤x
(n,q)=1

f(n) ,

provided x is sufficiently large. An asymptotic formula of type

(1) Df (x; q, a) = (1 +O((log x)−A))Df (x; q) ,
in which the error term is smaller than the main term by a suitable power of
log x, is good enough for basic applications. More important than the size
of the error term is the range where (1) holds uniformly with respect to the
modulus q.

In this paper we consider the problem for the divisor function f(n) =
τ(n). In this case one can prove by a simple elementary argument that

∆f (x; q, a) = Df (x; q, a) −Df (x; q) ≪ x1/2+ε ,

which yields (1) in the range q < x1/2−2ε. Using Fourier series technique
and Weil’s estimate for Kloosterman sums

(2) S(m,n; q) =
∑

uv≡1 (mod q)

e

(

mu+ nv

q

)

≪ (m,n, q)1/2q1/2+ε
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one can show that

(3) ∆(x; q, a) ≪ (q1/2 + x1/3)xε .

Hence it follows that (1) holds uniformly in q < x2/3−ε. Further progress
has been made recently by the first author [3] (see Corollaire 5) showing
that (1) is true on average with respect to q in the range x2/3+ε < q < x1−ε.
More precisely, we have

(4)
∑

x2/3+ε<q<x1−ε

(q,a)=1

|∆f (x; q, a)| ≪ x(log x)−A

for any ε,A > 0, with the implied constant depending on ε, A and a.
In this paper we establish a result which covers the gap x2/3−ε < q <

x2/3+ε with special moduli q.

Theorem 1. Let r be squarefree with (a, r) = 1, r ≤ x3/8. We have

(5)
∑

rs2<x1−6ε

(s,ar)=1

|∆f (x; rs, a)| ≪ r−1x1−ε ,

with the implied constant depending on ε alone.

Theorem 1 will be inferred from the following estimate for sums of
Kloosterman sums (which we consider to be the main result of this paper).

Theorem 2. Let r be squarefree with (a, r) = 1 and let λl, l ≤ L, be

arbitrary complex numbers. We then have

(6)
∑

s≤S, (s,r)=1

∣

∣

∣

∑

l≤L

λlS(a, l; rs)
∣

∣

∣

2

≪ ΛLS2r(r−1/4 + r1/4S−1/2 + SL−1)(rS)ε

where Λ =
∑ |λl|2 and the implied constant depends on ε only.

R e m a r k. Weil’s estimate for the individual Kloosterman sum S(a, l; rs)
yields the bound O(ΛLS2r(rS)ε).

In the proof of (6) we arrive at certain exponential sums in five variables
over a finite field. An estimate for these sums is proved in the appendix by
N. Katz.

A closely related problem of evaluating the mean value of the divisor
function f(n) = τ3(n) over an arithmetic progression is considered in [4],
where it is proved, using estimates for exponential sums in two and three
variables over a finite field, that the asymptotics (1) holds true uniformly
with q < x58/115.

The second author acknowledges the hospitality and support from the
Université de Paris-Sud when working on this paper.
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2. Proof of Theorem 2. For the proof of (6) we can assume with-
out loss of generality that l ranges over numbers prime to r. This can be
arranged using the relation

S(a, l; rs) = µ(d)S(ad, ld−1; srd−1) , dd ≡ 1 (mod sr/d) ,

where d = (r, l). Furthermore, by splitting into dyadic intervals we can
attach to the outer summation a weight function ω(s) = min(sS−1 − 1, 1,
4 − sS−1) if S < s < 4S and ω(s) = 0 elsewhere. We can also assume that
L > S > r1/2 because (6) follows from (2) otherwise.

The Kloosterman sum in (6) factors into S(as, ls; r)S(ar, lr; s), where
ss ≡ 1 (mod r) and rr ≡ 1 (mod s). We split the summation over l into
classes modulo s, apply Cauchy’s inequality and use the formula

∑

b (mod s)

|S(a, b; s)|2 = ϕ(s)s

to obtain

A :=
∑

(s,r)=1

ω(s)
∣

∣

∣

∑

l≤L

λlS(a, l; rs)
∣

∣

∣

2

(7)

≤
∑

(s,r)=1

ω(s)
(

∑

b (mod s)

|S(ar, br; s)|
∣

∣

∣

∑

l≡b (mod s)

λlS(as, ls; r)
∣

∣

∣

)2

≤ 16S2
∑

(s,r)=1

ω(s)
∑

b (mod s)

∣

∣

∣

∑

l≡b (mod s)

λlS(as, ls; r)
∣

∣

∣

2

= 16S2
∑

(s,r)=1

ω(s)
∑

l1≡l2 (mod s)

λl1λl2S(as, l1s; r)S(as, l2s; r) .

The terms with l1 = l2 contribute O(ΛS3r1+ε) by (2). For the other terms
we write |l1 − l2| = st with 1 ≤ t < LS−1 = T , say, and obtain

(8) A ≤ 16S2
∑

1≤t<T

At +O(ΛS3r1+ε) ,

where

At =
∑ ∑

(l1−l2,tr)=t

λl1λl2ω

( |l1 − l2|
t

)

×S(atl1 − l2, tl1l1 − l2; r)S(atl1 − l2, tl2l1 − l2; r) .

To separate the variables l1, l2 in the weight function we use the Fourier
transform technique. We write

ω

( |l1 − l2|
t

)

= t
∞∫

−∞

Ω(ty)e(l1y − l2y) dy ,
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where Ω(y) is the Fourier transform of ω(|x|), so
∞∫

−∞

|Ω(y)| dy < 5 .

We obtain

|At| ≤ 5
∑

l2

|λl2 |
∣

∣

∣

∑

(l1−l2,tr)=t

e(l1y)λl1

×S(atl1 − l2, tl1l1 − l2; r)S(atl1 − l2, tl2l1 − l2; r)
∣

∣

∣

for some y ∈ R. Now by Cauchy’s inequality we get

(9) A2
t ≪ Λ

(

1 +
L

tr

)

∑

z (mod tr)

∣

∣

∣

∑

(l1−z,tr)=t

e(l1y)λl1

×S(atl1 − z, tl1l1 − z; r)S(atl1 − z, tzl1 − z; r)
∣

∣

∣

2

≤ Λ

(

1 +
L

tr

)

∑

l1≡l2 (mod t)

|λl1λl2V (l1, l2; r)| ,

say, where

V (l1, l2; r) =
∑

z (mod tr)
(z−l1,tr)=t
(z−l2,tr)=t

S(atl1 − z, tl1l1 − z; r)S(atl1 − z, tzl1 − z; r)

×S(atl2 − z, tl2l2 − z; r)S(atl2 − z, tzl2 − z; r) .

For notational convenience we also consider conjugate sums V ψ(l1, l2; r),
where ψ is an additive character to modulus r. We define the conjugate
Kloosterman sums by

Sψ(m,n; r) =
∑

uv≡1 (mod r)

ψ(mu+ nv) .

Then by conjugating the Kloosterman sums in V (l1, l2; r) we define
V ψ(l1, l2; r).

Proposition. Suppose that l1 ≡ l2 (mod t) and r is squarefree with

(r, al1l2) = 1. We have

(10) V (l1, l2; r) ≪ (l1 − l2, r)
1/2r5/2+ε ,

with the implied constant depending on ε only.

P r o o f. The sum V (l1, l2; r) is multiplicative in r. Suppose r = r1r2
with (r1, r2) = 1. Let ψ1, ψ2 be the additive characters ψ1(x) = e(xr2/r1)
and ψ2(x) = e(xr1/r2) to modulus r1 and r2 respectively. We then have

V (l1, l2; r) = V ψ1(l1, l2; r1)V
ψ2(l1, l2; r2) .
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Thus it suffices to prove (10) for conjugate sums V ψ(l1, l2; r) with prime
modulus r = p and nontrivial character ψ (mod p).

If l1 ≡ l2 (mod p) then (10) follows from (2) by trivial summation over
z. Suppose l1 6≡ l2 (mod p). We then substitute z = l1 + (l1 − l2)(x − 1)−1

giving

V ψ(l1, l2; p) =
∑

x (mod p)
(x(x−1),p)=1

S̺(ax− a, l1x− l1; p)S
̺(ax− a, l1x− l2; p)

×S̺(ax− a, l2x− l2; p)S
̺(ax− a, l2x− l1; p) ,

where ̺(x) = ψ(xtl1 − l2) is a nontrivial additive character to modulus p.
We extend the sum V ψ(l1, l2; p) by adding terms with x ≡ 1 (mod p). We get

(11) V ψ(l1, l2; p) = Vg(p) − (p− 1)2 ,

where

Vg(p) =
∑

x,x1,x2,x3,x4∈F
∗
p

̺(g(x, x1, x2, x3, x4))

and g is the Laurent polynomial

g(x, x1, x2, x3, x4) = (ax− a)x1 + (l1x− l1)x
−1
1

+ (ax− a)x2 + (l1x− l2)x
−1
2

+ (ax−1 − a)x3 + (l2x
−1 − l2)x

−1
3

+ (ax−1 − a)x4 + (l2x
−1 − l1)x

−1
4 .

The sums of type Vg(p) (for general Laurent polynomials) have recently
been studied by A. Adolphson and S. Sperber [1], [2]. They established the
best possible estimates under certain conditions on the Newton polyhedron
associated with g. Unfortunately, our polynomial does not satisfy their
conditions. Yet, the desired estimate

(12) Vg(p) ≪ p5/2 if pտ al1l2(l1 − l2)

is true. This is proved by N. Katz in the appendix to this paper. As a matter
of fact Katz considers the above Laurent polynomials with the parameter
a = 1. The reduction to his case can be made without loss of generality by
a suitable change of the character ̺ and the parameters l1, l2. By (11) and
(12) we get (10).

Now we are ready to complete the proof of Theorem 2. By (9) and (10)
we get

A2
t ≪ Λ

(

1 +
L

tr

)

∑

l1≡l2 (mod t)

|λl1λl2 |(l1 − l2, r)
1/2r5/2+ε

≪ Λ2(tr + L)(tr1/2 + (r, t)L)t−2r3/2+ε .
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Hence by (8) we conclude that

A ≪ ΛS2(Tr + L)1/2(Tr1/2 + L)1/2r3/4+ε + ΛS3r1+ε

≪ ΛLS(r + S)1/2(r1/2 + S)1/2r3/4+ε + ΛS3r1+ε

giving (6).

3. Proof of Theorem 1. There are many ways of transforming
∆(x; q, a) into a sum of Kloosterman sums. To this end one can use for
example the properties of the modular form

u(z) =
√
y log y + 4

√
y

∞
∑

n=1

τ(n)K0(2πny) cos(2πnx) .

However, we choose a direct approach. Let F be a function whose graph is

Put F (ξ, η) = F (ξ)F (η)F (ξη). Then the divisor function τ(n) agrees with
the function

f(n) =
∑

n1n2=n

F (n1, n2)

for all n ≤ x− x1−ε. The remaining n’s with x − x1−ε < n ≤ x contribute
trivially O(q−1x1−ε log x). Therefore it suffices to prove (5) with the above
f . By Poisson’s summation we get

Df (x; q, a) =
∑

uv≡a (mod q)

∑

(n1,n2)≡(u,v) (mod q)

F (n1, n2)

=
∑

m1,m2

S(am1,m2; q)G(m1,m2) ,

where G is the Fourier transform of F (ξq, ηq). Summing over the primitive
residue classes we get

Df (x; q) =
1

ϕ(q)

∑∗

b (mod q)

∑

m1,m2

S(bm1,m2; q)G(m1,m2).

Note that the frequencies m1,m2 with m1m2 = 0 give the same contribution
to both Df (x; q, a) and Df (x; q). Therefore we have

∆f (x; q, a) = R(q, a) −R(q) ,
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where

R(q, a) =
∑

m1m2 6=0

S(am1,m2; q)G(m1,m2) ,

R(q) =
1

ϕ(q)

∑

m1m2 6=0

rq(m1)rq(m2)G(m1,m2) ,

and rq(m) = S(m, 0; q) are the Ramanujan sums. The above expression for
R(q) follows from the identity

∑∗

b (mod q)

S(bm1,m2; q) = rq(m1)rq(m2) .

By the formula

S(am1,m2; q) =
∑

d|(m1,m2,q)

dS(a,m1m2d
−2; qd−1)

we get

R(q, a) =
∑

cd=q

d−1
∑

l 6=0

S(a, l; c)gc(l) ,

where

gc(l) =
∫ ∫

F (ξc, ηc)λl(ξ, η) dξ dη , λl(ξ, η) =
∑

l1l2=l

e(ξl1 + ηl2) .

Similarly (or summing over primitive residue classes a (mod q)) we get

R(q) =
∑

cd=q

µ(c)

dϕ(c)

∑

l 6=0

rc(l)gc(l) .

Trivially we have

|gc(l)| ≤ c−2
∫ ∫

F (ξ, η) dξ dη ≤ 2c−2x log x

while by iterated partial integration we obtain

gc(l) ≪ (lx)−2 if |l| > c2x2ε−1 .

Hence by the trivial bounds |S(a, l; c)| ≤ c and |rc(l)| ≤ (l, c) we obtain the
approximate formula

∆f (x; q, a) =
∑

cd=q

d−1
∑

0<|l|≤L

S(a, l; c)gc(l) +O(q−1xε) ,

where L is any number ≥ c2x2ε−1. Inserting the Fourier integral for gc(l)
we get

|∆f (x; q, a)| <
∑

cd=q

d−1
∫ ∫

ξη<c−2x
ξ,η>1/2

∣

∣

∣

∑

0<|l|≤L

λl(ξ, η)S(a, l; c)
∣

∣

∣
dξ dη +O(q−1xε) .
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Hence
∑

q<Q

(q,ar2)=r

|∆f (x; q, a)|

< 2x(log 2x)
∑

cd<Q

(cd,r2)=r

d−1c−2
∣

∣

∣

∑

0<l≤L

λlS(a, l; c)
∣

∣

∣
+O(r−1xε) ,

where λl = λl(ξ, η) for some real ξ, η, so |λl| ≤ τ(l). Finally, Theorem 2
yields

∑

q<Q

(q,ar2)=r

|∆f (x; q, a)| ≪ r−1Q(r−1/2x1/2 + r−1/8Q1/2 + r3/8Q1/4)x2ε

≪ r−1x1−ε

for Q = r1/2x1/2−3ε provided r ≤ x3/8.
This completes the proof of Theorem 1.
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APPENDIX

by Nicholas Katz

We fix a finite field Fq, a nontrivial C-valued additive character ψ of Fq,
and elements α, β in Fq. We denote by t, x1, x2, x3, x4 five independent
variables over Fq. We denote by

fα,β(t, x1, x2, x3, x4) in Fq[t
±1, x±1

1 , x±1
2 , x±1

3 , x±1
4 ]

the Laurent polynomial

(t− 1)x1 + α(t− 1)/x1 + (t− 1)x2 + (αt− β)/x2

+(1/t− 1)x3 + β(1/t− 1)/x3 + (1/t − 1)x4 + (β/t− α)/x4 .
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We denote by S(Fq, ψ, α, β) the sum

S(Fq, ψ, α, β) :=
∑

t,x1,x2,x3,x4∈(Fq)×

ψ(fα,β(t, x1, x2, x3, x4)) .

Theorem 1. If αβ(α − β) 6= 0, we have the estimate

|S(Fq, ψ, α, β)| ≤ 64q5/2 + q2 + 2q + 1 .

P r o o f. As we will see, this is essentially an exercise in the theory of
Kloosterman sheaves. For γ, σ in Fq, we denote by Kl2(Fq, ψ, γ, σ), or simply
Kl(γ, σ), the Kloosterman sum

Kl(γ, σ) :=
∑

x∈(Fq)×

ψ(γx+ σ/x) .

For τ 6= 0 in Fq, we define

Kl(τ) := Kl(1, τ) .

We have the following elementary facts:

1) if γσ 6= 0, then Kl(γ, σ) = Kl(γσ),

2) if γσ = 0 but one of γ or σ is 6= 0, then Kl(γ, σ) = −1,

3) if γ = σ = 0, then Kl(0, 0) = q − 1.

We also have the non-elementary fact, due to Weil [Weil],

4) if τ 6= 0, then |Kl (τ)| ≤ 2q1/2.

Now let us return to our sum S(Fq, ψ, α, β). Summing first on the x
variables only, we obtain the formula

S(Fq, ψ, α, β) =
∑

t6=0

Kl(t− 1, α(t − 1))Kl(t− 1, αt − β)

×Kl(t−1 − 1, β(t−1 − 1))Kl(t−1 − 1, βt−1 − α) .

We first isolate the terms in this sum with t = 1 and with t = β/α. For
t = 1, the term is (remembering that α 6= β)

Kl(0, 0)Kl(0, α − β)Kl(0, 0)Kl(0, β − α)

= (q − 1)(−1)(q − 1)(−1) = (q − 1)2 .

For t = β/α, the term is

Kl(β/α − 1, β − α)Kl(β/α − 1, 0)Kl(α/β − 1, α − β)Kl(α/β − 1, 0)

= Kl(β/α − 1, β − α)Kl(α/β − 1, α − β) ,

whose absolute value is bounded by 4q.
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For t 6= 0, 1, β/α, the corresponding term is

Kl(α(t− 1)2)Kl((t− 1)(αt − β))Kl(β(t−1 − 1)2)Kl((t−1 − 1)(βt−1 − α)) .

So it is natural to introduce the modified sum Smodif(Fq, ψ, α, β) defined as
∑

t6=0,1,β/α

Kl(α(t− 1)2)Kl((t− 1)(αt − β))Kl(β(t−1 − 1)2)

×Kl((t−1 − 1)(βt−1 − α)) .

Thus we have

S(Fq, ψ, α, β) := Smodif(Fq, ψ, α, β) + (q − 1)2

+ Kl(β/α− 1, β − α)Kl(α/β − 1, α − β) ,

and so the trivial estimate

|S(Fq, ψ, α, β)| ≤ |Smodif(Fq , ψ, α, β)| + q2 + 2q + 1 .

We now turn to the systematic study of the modified sum. Fix a
prime number l 6= char(Fq), and an l-adic place λ of the subfield E :=
Q(exp(2πi/p)) of C. Then we may view ψ as an Eλ-valued nontrivial ad-
ditive character of Fq, and we can speak of the Eλ-adic Kloosterman sheaf
Kl2(ψ;1,1; 1, 1), or just Kl2 for short, on Gm over Fq. One knows (cf. [Ka-
GKM, 4.1.1]) that Kl2 is a lisse sheaf of rank 2, pure of weight one, which
has nontrivial unipotent local monodromy at zero, is totally wild at ∞ with
both ∞-breaks 1/2, and whose trace of Frobenius at any rational point γ 6= 0
in Fq is (minus) the Kloosterman sum Kl(γ) in E.

For any curve C over Fq, and any morphism

f : C → Gm ,

we define

Kl2(f) := f∗ Kl2 , a lisse sheaf of rank 2 on C .

By its very definition, the trace of Frobenius on Kl2(f) at a rational point
t in C(Fq) is the Kloosterman sum Kl(f(t)). From this point of view, the
modified sum may be expressed as follows.

Take for C the open set

C := A1 − {0, 1, β/α} := Spec(Fq[T, 1/T (T − 1)(αT − β)]) .

Consider the four morphisms from C to Gm given by the four functions

f1(T ) := α(T − 1)2 , f3(T ) := β(T−1 − 1)2 ,

f2(T ) := (T − 1)(αT − β) , f4(T ) := (T−1 − 1)(βT−1 − α) .

Form the corresponding pullbacks f∗
i Kl2 := Kl2(fi) on C, and consider their

tensor product

F := Kl2(f1) ⊗ Kl2(f2) ⊗ Kl2(f3) ⊗ Kl2(f4) .
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This F is lisse of rank 24 = 16 on C, and pure of weight 4. By construction,
the trace of Frobenius on F at any t in C(Fq) is

Trace(FrobFq,t|F)

= Kl(α(t− 1)2)Kl((t− 1)(αt−β))Kl(β(t−1 − 1)2)Kl((t−1 − 1)(βt−1 −α)) .

Thus the modified sum Smodif(Fq, ψ, α, β) is none other than

Smodif(Fq, ψ, α, β) =
∑

t∈C(Fq)

Trace(FrobFq,t|F) .

So Grothendieck’s Lefschetz Trace Formula [SGA 41/2, Rapport] gives

Smodif(Fq, ψ, α, β) =
∑

i

(−1)i Trace(Frobq |Hi
c(C ⊗ Fq,F)) .

Since the curve C is open, and F is lisse, the only possibly nonzero coho-
mology groups are those with i = 1 and i = 2.

If we can show that H2
c (C ⊗ Fq,F) = 0, then we will get

Smodif(Fq, ψ, α, β) = −Trace(Frobq|H1
c (C ⊗ Fq,F)) .

As F is pure of weight 4, the group H1
c (C ⊗ Fq ,F) is mixed of weight ≤ 5,

thanks to [De-Weil II, 3.3.1] and its dimension is |χc(C ⊗Fq,F)|, so we will
get the estimate

|Smodif(Fq, ψ, α, β)| ≤ |χc(C ⊗ Fq,F)|q5/2 .

(Conversely, sinceH2
c (C⊗Fq,F) is pure of weight 6, the truth of the theorem

for all finite extensions of Fq implies the vanishing of H2
c (C ⊗ Fq,F).)

Thus it remains to show that

H2
c (C ⊗ Fq,F) = 0 , |χc(C ⊗ Fq,F)| ≤ 64 .

We begin with the calculation of the Euler characteristic χc(C ⊗ Fq,F).
Since F is lisse on C := P1 − {0, 1, β/α,∞}, the Euler–Poincaré formula
gives

χc(C ⊗ Fq,F) = χc(C ⊗ Fq,Ql) rank(F)

− swan0(F) − swan1(F)

− swanβ/α(F) − swan∞(F)

= − 2 rank(F) − swan0(F) − swan1(F)

− swanβ/α(F) − swan∞(F) .

Our main information is that the Kloosterman sheaf Kl2 is lisse on Gm, a
single unipotent Jordan block Unip(2) of dimension 2 at zero, and totally
wild at ∞ with both ∞-slopes 1/2. So we can make the following table
of information about the representations of the inertia groups at the four
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“points at ∞” {0, 1, β/α,∞} on C ⊗ Fq given by the four pullback sheaves
Kl2(fi) := f∗

i Kl2, where

f1(T ) := α(T − 1)2 , f3(T ) := β(T−1 − 1)2 ,

f2(T ) := (T − 1)(αT − β) , f4(T ) := (T−1 − 1)(βT−1 − α) .

sheaf → Kl2(f1) Kl2(f2) Kl2(f3) Kl2(f4)
point ↓
t = 0 trivial trivial wild? wild?

t = 1 Unip(2) Unip(2) Unip(2) Unip(2)
t = β/α trivial Unip(2) trivial Unip(2)
t = ∞ wild? wild? trivial trivial

Suppose first that the characteristic of Fq is odd. Since the functions fi
are each doubly ramified over ∞, they are each tame over ∞, and hence (cf.
[Ka-GKM, 1.14]) each of the entries wild? in the above table is the direct
sum of two different characters of I, each of which has swan conductor = 1.
So in particular, we see that

F is tame at both t = 1 and at t = β/α; at both t = 0 and t = ∞, each
slope of F is 0 or 1.

Therefore we have

swan1(F) = swanβ/α(F) = 0 ,

0 ≤ swan0(F), swan∞(F) ≤ rank(F) .

Thus the Euler–Poincaré formula

−χc(C ⊗ Fq,F)

= 2 rank(F) + swan0(F) + swan1(F) + swanβ/α(F) + swan∞(F)

gives the asserted estimate

0 ≤ −χc(C ⊗ Fq,F) ≤ 4 rank(F) = 64 .

Suppose now that the characteristic of Fq is even. Then we claim that
each of the entries wild? in the above table is an irreducible representation
of I with both slopes 1/2. Admitting this, we get

F is tame at both t = 1 and at t = β/α; at both t = 0 and t = ∞, each
slope of F is ≤ 1/2.

Therefore we have

swan1(F) = swanβ/α(F) = 0 ,

0 ≤ swan0(F) , swan∞(F) ≤ (1/2) rank(F) .
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Thus the Euler–Poincaré formula

−χc(C ⊗ Fq,F)

= 2 rank(F) + swan0(F) + swan1(F) + swanβ/α(F) + swan∞(F)

gives the improved estimate in characteristic two

0 ≤ −χc(C ⊗ Fq,F) ≤ 3 rank(F) = 48 .

We now explain how to analyze each of the entries wild? in the above
table when we are in characteristic two.

First of all, the maps f1(T ) := α(T − 1)2 and f3(T ) := β(T−1 − 1)2 are,
in different coordinates, simply the absolute Frobenius X 7→ X2, pulling
back by which is not seen by étale sheaves at all. So the I-representations
attached to Kl(f1) at t = ∞ and to Kl(f3) at t = 0 have the same properties
of being irreducible with all slopes 1/2 as does the Kloosterman sheaf Kl2
as I(∞)-representation.

Next, the two maps

f2(T ) := (T − 1)(αT − β) and f4(T ) := (T−1 − 1)(βT−1 − α)

are, in different coordinates, the Artin–Schreier map P : X 7→ X2 − X.
So we must show that P∗ Kl2 is I(∞)-irreducible, and has both ∞-slopes
1/2. For this, it suffices to show that P∗ Kl2 is I(∞)-irreducible, and has
swan∞(P∗ Kl2) = 1 (since if P∗ Kl2 is I(∞)-irreducible, it can only have a
single slope, repeated with multiplicity; cf. [Ka-GKM, 1.8]). This is a special
case of the following lemma, applied with p = 2 to the I(∞)-representation
attached to Kl2.

Lemma 2. Let k be an algebraically closed field of characteristic p > 0,
A1 the affine line Spec(k[T ]) over k, and

P : A1 → A1 , X 7→ Xp −X ,

the Artin–Schreier map. Fix a prime number l 6= p, a finite extension Eλ
of Ql, and a finite-dimensional continuous nonzero Eλ-representation M
of I(∞). Denote by P∗M the I(∞)-representation “upstairs” obtained by

pullback , i.e. view M as a representation of Gal(k((1/T ))sep/k((1/T ))),
and restrict it to the normal subgroup of index p which is

Gal(k((1/T ))sep/k((1/X))) , Xp −X = T .

Then

1) if M has all slopes < 1 and is irreducible, P∗M is irreducible,

2) if M has all slopes < 1, swan(P∗M) = swan(M).

P r o o f. The key point is that over any Eλ containing the pth roots of
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unity, we have

P∗Eλ ≈ Eλ ⊕
(

⊕

nontrivialψ

Lψ
)

,

the internal summand indexed by the p − 1 nontrivial Eλ-valued additive
characters ψ of Fp ≈ Gal(k((1/X))/k((1/T ))). Each Lψ has swan = 1. By
Frobenius reciprocity, the inner product of the representation P∗M with
itself is given by

〈P∗M,P∗M〉up = 〈P∗P∗M,M〉down .

By the projection formula, we have

P∗P∗M = M ⊗ P∗Eλ ≈M ⊕
(

⊕

nontrivialψ

M ⊗Lψ
)

.

If M is irreducible and has all slopes < 1, then each M ⊗ Lψ is also
irreducible, being M⊗(rank one), but each M ⊗ Lψ has all slopes = 1,
unlike M itself. Therefore 〈M,M ⊗ Lψ〉 = 0 for each nontrivial ψ, and
hence

〈P∗M,P∗M〉up = 〈P∗P∗M,M〉down = 1 ,

which proves 1).
We next prove 2), by a global argument. Taking the “canonical exten-

sion” (cf. [Ka-LG]) of M , we get a lisse Eλ-sheaf M on Gm which is tame
at zero and whose I(∞)-representation is M . We now consider the finite
étale covering of Gm induced by P:

P : A1 − {Fp} → Gm .

The sheaf P∗M is lisse on A1 − {Fp}. Since M is tame at zero, P∗M is
tame at each point of Fp, so the Euler–Poincaré formula gives

χc(A
1 − {Fp},P∗M) = (1 − p) rank(M) − swan∞(P∗M) .

But we also have

χc(A
1 − {Fp},P∗M) = χc(Gm,P∗P∗M)

= χc(Gm,M) +
∑

nontrivialψ

χc(Gm,M⊗Lψ) .

Since M is tame at zero, and has all ∞-slopes < 1, each M⊗Lψ is tame
at zero and has all ∞-slopes = 1, so we find

χc(Gm,M) = − swan∞(M) ,

χc(Gm,M⊗Lψ) = − rank(M) for each nontrivial ψ .

So we get

χc(A
1 − {Fp},P∗M) = χc(Gm,P∗P∗M)

= − swan∞(M) − (p − 1) rank(M) .
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Comparing this with the original formula

χc(A
1 − {Fp},P∗M) = (1 − p) rank(M) − swan∞(P∗M)

gives

swan(P∗M) = swan∞(P∗M) = swan∞(M) = swan(M) ,

provided only that M has all slopes < 1.

We now turn to proving that H2
c (C ⊗ Fq ,F) = 0. For this it suf-

fices to show that the sheaf F on C ⊗ Fq, viewed as a representation of
π1 := π1(C ⊗ Fq, η), is absolutely irreducible, since H2

c (C ⊗ Fq,F) is, up
to a Tate twist, the coinvariants of this representation. We will prove a
more precise result. Recall that attached to any lisse Eλ-sheaf G on a con-
nected smooth variety X over an algebraically closed field is the algebraic
group Ggeom over Eλ defined (with reference to a geometric point x in X)
as the Zariski closure of π1(X,x) in Aut(Gx). Recall (cf. [Ka-GKM, 11.1])
that for the Kloosterman sheaf Kl2 on Gm, the group Ggeom is known to be
SL(2).

Lemma 3. 1) For the direct sum sheaf Kl2(f1) ⊕ Kl2(f2) ⊕ Kl2(f3)
⊕ Kl2(f4) on C ⊗ Fq , the group Ggeom is the four-fold product SL(2) ×
SL(2) × SL(2) × SL(2), acting as the direct sum

⊕

i std2(i) of the standard

two-dimensional representations of the four factors.

2) For the sheaf F , Ggeom is the image of SL(2) × SL(2) × SL(2) ×
SL(2) in SL(16), acting as the tensor product

⊗

i std2(i) of the standard

two-dimensional representations of the four factors.

3) F is absolutely irreducible as a representation of π1(C ⊗ Fq, η), and

remains so when pulled back to any finite étale connected nonempty covering

of C ⊗ Fq.

P r o o f. This will be a simple application of the Goursat–Kolchin–Ribet
criterion (cf. [Ka-ESDE, 1.8.2]). The sheaf Kl2 has Ggeom = SL(2), a
connected group. So each pullback sheaf f∗

i Kl2 := Kl2(fi) itself has its
Ggeom = SL(2). In order to show that for the direct sum

⊕

i Kl2(fi)
Ggeom is equal to the full product of four copies of SL(2) (it is trivially
a subgroup of this product) it suffices by the Goursat–Kolchin–Ribet crite-
rion to show that for any two indices i 6= j, and any lisse rank one sheaf L
on C ⊗ Fq, there exists no isomorphism between Kl2(fi) and Kl2(fj) ⊗ L.
We will verify this by looking at the representations of the inertia groups at
the four points {0, 1, β/α,∞}.

Let us say that a representation ̺ of a group G on a vector space V
over a field F is scalar if G acts on V by homotheties, i.e., if there exists a
character χ : G→ F× such that for v in V , we have ̺(g)(v) = χ(g)v.
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If there exists an isomorphism between Kl2(fi) and Kl2(fj) ⊗ L, then re-
stricted to any inertia group I, Kl2(fi) and Kl2(fj) are either both scalar
or both nonscalar.

Now let us return to the earlier table which gave the behaviour of the
representations of the inertia groups at the four “points at ∞” {0, 1, β/α,∞}
on C⊗Fq given by the four pullback sheaves Kl2(fi) := f∗

i Kl2. Each of the
representations marked “trivial” is of course scalar. Each marked Unip(2)
is nonscalar. Each marked wild? is nonscalar, in odd characteristic because
the direct sum of two distinct characters, and in characteristic two because
irreducible of dimension > 1. So our table gives the following table of
“scalarity” versus “nonscalarity”.

sheaf → Kl2(f1) Kl2(f2) Kl2(f3) Kl2(f4)
point ↓
t = 0 scalar scalar nonscalar nonscalar
t = 1 nonscalar nonscalar nonscalar nonscalar
t = β/α scalar nonscalar scalar nonscalar
t = ∞ nonscalar nonscalar scalar scalar

If there existed an isomorphism between Kl2(fi) and Kl2(fj) ⊗ L, then the
columns of this table for Kl2(fi) and Kl2(fj) would agree. But visibly all
four columns are distinct (indeed already the bottom two entries, giving
the behaviours at β/α and ∞, separate the four columns). This proves 1).
Once 1) is proven, 2) is obvious, and shows that F is “Lie-irreducible”, which
is 3).

As explained above, 3) implies the vanishing of H2
c (C ⊗ Fq,F). This

concludes the proof of Theorem 1.
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