Bounded remainder sets

by
SÉbastien Ferenczi (Marseille)

Definitions. Let L be a lattice in \mathbb{R}^{s} (that is, a discrete subgroup of maximal order) and let α be an element of $\mathbb{R}^{s} ;(\alpha, L)$ is said to be a minimal couple if for every nonzero linear form ϕ on \mathbb{R}^{s} such that $\phi(L)$ is included in $\mathbb{Z}, \phi(\alpha)$ is not in \mathbb{Z}.

We define the rotation T on the set $X=\mathbb{R}^{s} / L$ by $T x=x+\alpha \bmod L$; it preserves the Lebesgue measure λ on X, and (α, L) is minimal if and only if T is minimal, that is, has dense orbits; in particular, L and α must generate \mathbb{R}^{s}. If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ and L is \mathbb{Z}^{s}, this is equivalent to $\left(1, \alpha_{1}, \ldots, \alpha_{s}\right)$ being rationally independent.

A set A in \mathbb{R}^{s} is L-simple if whenever $x \in A, y \in A, x-y \in L$, then $x=y$.

Let A be a subset of X; we say A is a bounded remainder set (BRS) if there exist real numbers a and C such that for every integer n and λ-almost every x in X,

$$
\left|\sum_{p=1}^{n} 1_{A}\left(T^{p} x\right)-n a\right|<C
$$

This definition also applies to L-simple subsets of \mathbb{R}^{s}, which we shall always identify with their projection on X.

It is a well-known result, which can for example be derived from the Markov-Kakutani fixed point theorem, that if A is measurable, then A is a BRS if and only if there exists a bounded function F such that

$$
1_{A}-a=F-T F,
$$

and in that case a can only be $\lambda(A)$.
For a set A of strictly positive measure and a point x in A, we denote by $\tau(x)$ the return time of x in A (that is, the least strictly positive integer n such that $T^{n} x$ is in A) and by $S x=T^{\tau(x)} x$ the induced map of T on A, which exists by the Poincaré recurrence theorem.

Known results about BRS. If $s=1$ and A is an interval, A is a BRS if and only if its length belongs to $\mathbb{Z}(\alpha)$ (Kesten [1]); a similar result holds when A is a finite union of intervals (Oren [3]).

If $s \geq 2$, there are no nontrivial rectangles which are BRS (Liardet [2]); it seems difficult to find nontrivial examples of BRS when $s \geq 2$; Szüsz ([6]) had one example of nontrivial parallelogram.

Rudolph [private communication] showed that whenever there exists a BRS of measure $a>0$, the BRS are dense among the sets of measure a; this is true for every ergodic transformation.

Rauzy's sufficient condition

Let S be the induced map of T on A. If there exists a lattice M and an element β of \mathbb{R}^{s} such that (β, M) is a minimal couple and $S x=x+$ $\beta \bmod M$, then A is a $B R S$ (even if B is not measurable).

This criterion enabled Rauzy to find nonmeasurable examples of BRS in dimension $s=1$ ([4]), and new nontrivial examples (parallelograms) in higher dimensions ([5]); however, this condition is not necessary, as can be seen in dimension 1 with the interval [$0,2 \alpha$], though in this counter-example the set A breaks into a finite union of subsets which satisfy Rauzy's criterion. We can now give a

Necessary and sufficient condition generalizing Rauzy's criterion

Let A be a subset of \mathbb{R}^{s}, L-simple, measurable and with nonempty interior. Then A is a BRS if and only if there exist a lattice M^{\prime} in \mathbb{R}^{s+1} and a bounded function n from A to \mathbb{N} such that, if ψ is the function from A to \mathbb{R}^{s+1} defined by $\psi(x)=(x, n(x))$, and if Q is the translation of $\mathbb{R}^{s+1} / M^{\prime}$ defined by $Q(z)=z+(0, \ldots, 0,1)$, then $\psi(A)$ is a fundamental domain for Q, that is, for every z in $\psi(A)$, there exists a unique z^{\prime} in $\psi(A)$ such that $z^{\prime} \equiv Q z \bmod M^{\prime}$. Thus we can define Q as a mapping from $\psi(A)$ to $\psi(A)$, and we have

$$
S=\psi^{-1} Q \psi
$$

(this last equality being defined λ-almost everywhere).
Proof of the condition. In all what follows, T, S and X will be as defined above and A will be a measurable L-simple set with nonempty interior.

Let W be a fundamental domain for the rotation T, containing the set A; for an element x in W, we denote by x^{\prime} its projection on X. As a mapping from W to W, T can be viewed as a finite exchange of pieces (an exchange of two intervals if $s=1$). The same is true for S, as a mapping from A to $A, A \subset W:$

Lemma 1. There exists a finite partition of A into sets A_{i}, and a finite number of elements $e_{i}, 1 \leq i \leq r$, such that,

$$
S x=x+e_{i} \quad \text { whenever } x \text { is in } A_{i} .
$$

Proof. A must contain an open set Ω. By Kronecker's theorem and compactness,

$$
X=\bigcup_{n=1}^{+\infty} T^{n} \Omega=\bigcup_{n=1}^{N} T^{n} \Omega
$$

for some finite N. Hence the return time $\tau(x)$ is bounded by N, and so takes only a finite number of values.

Now, for every x,

$$
S x=x+\tau(x) \alpha+g(x),
$$

$g(x)$ being the element of L such that $x+\tau(x) \alpha+g(x)$ belongs to W. Then $g(x)$ must be bounded, and hence takes a finite number of values.

Now, if we partition A according to the values of $\tau(x)$ and $g(x)$, and if we define $e_{i}=\tau_{i} \alpha+g_{i}$, we get our lemma.

Proof that the condition is necessary. We suppose A is a BRS. Then

$$
\begin{equation*}
1_{A}(y)-\lambda(A)=F(y)-F(T y) \quad \text { for almost every } y \text { in } X \tag{1}
\end{equation*}
$$

This implies

$$
e^{2 \pi i T F} / e^{2 \pi i F}=e^{2 \pi i \lambda(A)} \quad \text { almost everywhere } .
$$

Hence F and $\lambda(A)$ are an eigenvector and an eigenvalue for an ergodic rotation, and so there exist a linear form ϕ on \mathbb{R}^{s} such that $\phi(L) \subset \mathbb{Z}$, an integer p and a measurable bounded integer function n such that

$$
\begin{gather*}
\lambda(A)=\phi(\alpha)+p \tag{2}\\
F\left(x^{\prime}\right)=\phi\left(x^{\prime}\right)+n\left(x^{\prime}\right) \quad \text { for almost all } x \text { in } W . \tag{3}
\end{gather*}
$$

The second equation lifts to W yielding

$$
\begin{equation*}
F(x)=\phi(x)+n(x), \tag{4}
\end{equation*}
$$

with some (bounded) modifications of the integer function n; and it would lift in the same way (with different functions n) to any other fundamental domain.

From ergodicity, we have

$$
W=\bigcup_{i=1}^{r} \bigcup_{j=1}^{\tau_{i}-1} T^{j} A_{i}
$$

Following Rauzy, we define a new fundamental domain by

$$
Y=\bigcup_{i=1}^{r} \bigcup_{j=1}^{\tau_{i}-1}\left(A_{i}+j \alpha\right)
$$

The sets $A_{i}+j \alpha$ can be seen as levels of a tower; on them, T is defined in the following manner: on the levels other than the top levels (that is, when $\left.j<\tau_{i}\right), T x=x+\alpha$; on the top levels, $T x=x+\alpha+g_{i}$.

Now, if we write (4) for our new fundamental domain Y, and, together with (2) and the new expression for T, insert it into (1), we get

$$
1_{A}(x)-\phi(\alpha)-p=\phi(x)-\phi(T x)+n(x)-n(T x),
$$

hence, as ϕ is linear, we get finally

$$
1_{A}(x)-p=n(x)-n(x+\alpha) \quad \text { if } x \text { is not in a top level },
$$

$1_{A}(x)-p=n(x)-n\left(x+\alpha+g_{i}\right)-\phi\left(g_{i}\right) \quad$ if x is in a top level above A_{i}.
Suppose we already know $n(x)$ on the basis A; this defines n on the whole tower, by $n(x+\alpha)=n(x)+p-1$ on the first floor, $n(x+2 \alpha)=n(x)+2 p-1$ on the second floor, and so on as long as we do not reach the top. We just have to write the compatibility relation at the top:

$$
\begin{gathered}
n(x)-n(x+\alpha)=1-p \\
n(x+\alpha)-n(x+2 \alpha)=-p \\
n\left(x+\left(\tau_{i}-1\right) \alpha\right)-n\left(x+\tau_{i} \alpha+g_{i}\right)=-p+\phi\left(g_{i}\right)
\end{gathered}
$$

hence

$$
n(x)-n(S x)=1-p \tau_{i}+\phi\left(g_{i}\right) \quad \text { whenever } x \in A_{i} .
$$

Let $m_{i}, 1 \leq i \leq r$, be the integer $p \tau_{i}-\phi\left(g_{i}\right)$; these integers satisfy the following property: if ($q_{i}, 1 \leq i \leq r$) is an r-uple of integers such that $\sum q_{i} e_{i}=0$, then

$$
\begin{equation*}
\sum q_{i} m_{i}=0 \tag{5}
\end{equation*}
$$

This is easy to see, since if $\sum q_{i} e_{i}=0$, then $\sum q_{i} \tau_{i}=0$ and $\sum q_{i} g_{i}=0$, hence also $\phi\left(\sum q_{i} g_{i}\right)=0$ and so $\sum q_{i} m_{i}=0$.

Also,

$$
\begin{equation*}
m_{i}=1+n(S x)-n(x) \quad \text { for almost all } x \text { in } A_{i} \tag{6}
\end{equation*}
$$

Let now M be the set $\left(\sum q_{i} e_{i}\right.$, for all r-uples of integers q_{i} such that $\left.\sum q_{i} m_{i}=0\right)$.
M is a lattice: it is clear that M is a discrete subgroup of \mathbb{R}^{s}, so it suffices to show that its dimension as a \mathbb{Q}-vector space is exactly s.

Consider the mapping Φ from \mathbb{Q}^{r} to \mathbb{R}^{s} given by $\Phi\left(q_{1}, \ldots, q_{r}\right)=\sum q_{i} e_{i}$; its image is contained in $\mathbb{Q}(\alpha)+\mathbb{Q}(L)$, so must be of dimension at most $s+1$; but since S, being the induced map of a minimal map on a set with
nonempty interior, has dense orbits in an open set, $\operatorname{dim} \operatorname{Im} \Phi$ must be exactly $s+1$; hence $\operatorname{Ker} \Phi$ is of dimension $r-s-1$.

Consider now the set $B=\left(\sum q_{i} m_{i}=0\right)$; as the m_{i} are not all zero (they have average one), B is of dimension 1, and contained in $\operatorname{Ker} \Phi$ by (5); hence $\Phi(B)$ is of dimension s.

Now choose k such that m_{k} is not zero, and put $\beta=e_{k} / m_{k}$; we have

$$
\begin{equation*}
e_{i} \equiv m_{i} \beta \bmod M \quad \text { for all } i \tag{7}
\end{equation*}
$$

As we have $S x \equiv x+m_{i} \beta \bmod M$, and as S has dense orbits in an open set, (β, M) must be a minimal couple.

So we have already an intermediate form of the necessary condition: there exist a lattice M in \mathbb{R}^{s}, an element β of \mathbb{R}^{s}, a bounded function n from A to \mathbb{Z}, and a partition A_{i} of A, such that

$$
(\beta, M) \text { is minimal },
$$

$$
\begin{gathered}
m_{i}=1+n(S x)-n(x) \quad \text { when } x \in A_{i} \\
S x \equiv x+m_{i} \beta \bmod M \quad \text { when } x \in A_{i}
\end{gathered}
$$

Note that A is not necessarily M-simple; it suffices that some m_{j} is zero, to have $x \in A, S x \in A, S x \equiv x \bmod M$ but $x \neq S x$.

We now define $M^{\prime} \subset \mathbb{R}^{s+1}$ (viewed naturally as $\left.\mathbb{R}^{s} \times \mathbb{R}\right)$ as the set $\Phi^{\prime}\left(\mathbb{Z}^{r}\right)$, where

$$
\Phi^{\prime}\left(q_{1}, \ldots, q_{r}\right)=\left(\sum q_{i} e_{i},-\sum q_{i} m_{i}\right)
$$

In $\mathbb{Q}^{r}, \operatorname{Ker} \Phi^{\prime}=\operatorname{Ker} \Phi($ by $(5))$, so $\operatorname{dim} \mathbb{Q}\left(M^{\prime}\right)=s+1$ and M^{\prime} is a lattice.
For all $i,\left(e_{i},-m_{i}\right)$ is in M^{\prime}, hence $\left(x+e_{i}, 0\right) \equiv\left(x, m_{i}\right) \bmod M^{\prime}$, hence for almost all x

$$
\left(x+e_{i}, 0\right) \equiv(x, n(x)-n(S x)+1) \bmod M^{\prime},
$$

thus

$$
(S x, 0) \equiv(x, n(x)-n(S x)+1) \bmod M^{\prime}
$$

therefore

$$
(S x, n(S x)) \equiv(x, n(x)+1) \bmod M^{\prime}
$$

or in other terms $\psi S=Q \psi$.
$\psi(A)$ is M^{\prime}-simple: if $(x, n(x)) \equiv\left(x^{\prime}, n\left(x^{\prime}\right)\right) \bmod M^{\prime}$, then $x^{\prime}=x+$ $\sum q_{i} e_{i}=x+c \alpha+d, c$ being an integer and d an element of L; so x^{\prime} is some $T^{c} x$, and, as x and x^{\prime} are in A, x^{\prime} is some $S^{b} x$, hence $(x, n(x)) \equiv$ $\left(S^{b} x, n\left(S^{b} x\right)\right) \equiv(x, n(x)+b) \bmod M^{\prime}$; hence $(0, b)$ is in M^{\prime}, thus $0=\sum q_{i} e_{i}$ and $b=\sum q_{i} m_{i}$, and so $b=0$ by (5), and $x=x^{\prime}$.

Hence $Q(x, n(x))=(S x, n(S x))$ is a representation of the rotation Q as a mapping from $\psi(A)$ to $\psi(A)$, and we can write $S=\psi^{-1} Q \psi$. This yields the necessity of our condition (since n is bounded and is a coboundary, we can make it positive by adding some constant).

Note that $\left((0, \ldots, 0,1), M^{\prime}\right)$ is not a minimal couple.
Proof that the condition is sufficient. For this direction, we do not need the assumption of measurability of A. We suppose A satisfies the assumptions of our condition. By Lemma 1, A is partitioned into r sets by the different forms of S. We partition it further according to the finite set of values taken by the function $m(x)=n(x)-n(S x)+1$. This gives us t different couples $\left(e_{j}, m_{j}\right)$. We define a mapping $\Phi^{\prime \prime}$ from \mathbb{Q}^{t} to \mathbb{R}^{s+1} by

$$
\Phi^{\prime \prime}\left(q_{1}, \ldots, q_{t}\right)=\left(\sum q_{i} e_{i},-\sum q_{i} m_{i}\right)
$$

From $\psi S=Q \psi$, we deduce that M^{\prime} must contain all the $\left(e_{i},-m_{i}\right)$, and so must contain $\Phi^{\prime \prime}\left(\mathbb{Q}^{t}\right)$. As $\operatorname{Ker} \Phi^{\prime \prime}=\left(\left(q_{i}\right)\right.$ such that $\sum q_{i} e_{i}=0$ and $\sum q_{i} m_{i}=0$), we have $\operatorname{dim} \Phi^{\prime \prime}\left(\mathbb{Q}^{t}\right) \geq s+1$, with equality if and only if (5) is satisfied.

But, since we know M^{\prime} is a lattice, we conclude simultaneously that $M^{\prime}=\Phi^{\prime \prime}\left(\mathbb{Q}^{t}\right)$ and that (5) is satisfied (with t-uples instead of r-uples of integers). In particular, $e_{i}=e_{j}$ must imply $m_{i}=m_{j}$ and in fact $t=r$.

Now, the τ_{i} and g_{i} being defined as in the proof of Lemma 1, we shall construct a linear map ϕ from \mathbb{R}^{s} to \mathbb{R}, and a rational number p, such that

$$
\phi\left(g_{i}\right)=p \tau_{i}-m_{i} \quad \text { for all } i .
$$

We know from minimality that the vector space $\mathbb{Q}\left(e_{i}\right), 1 \leq i \leq r$, is of dimension $s+1$. We choose a basis for it, for example e_{1}, \ldots, e_{s+1}. The remaining e_{j} satisfy rational relations of the form

$$
e_{j}=a_{j, 1} e_{1}+\ldots+a_{j, s+1} e_{s+1}, \quad s+2 \leq j \leq r .
$$

By minimality of (α, L), these imply also

$$
\begin{aligned}
& \tau_{j}=a_{j, 1} \tau_{1}+\ldots+a_{j, s+1} \tau_{s+1}, \quad s+2 \leq j \leq r, \\
& g_{j}=a_{j, 1} g_{1}+\ldots+a_{j, s+1} g_{s+1}, \quad s+2 \leq j \leq r,
\end{aligned}
$$

and so

$$
m_{j}=a_{j, 1} m_{1}+\ldots+a_{j, s+1} m_{s+1}, \quad s+2 \leq j \leq r .
$$

So the $g_{i}, 1 \leq i \leq s+1$, must generate $\mathbb{Q}(L)$; thus we can choose s of them to form a basis of $\mathbb{Q}(L)$, for example the first s. This means we have

$$
g_{s+1}=b_{1} g_{1}+\ldots+b_{s} g_{s}
$$

while

$$
\tau_{s+1} \neq b_{1} \tau_{1}+\ldots+b_{s} \tau_{s}
$$

since the e_{i} generate a space of dimension $s+1$.
We define

$$
p=\left(m_{s+1}-\left(b_{1} m_{1}+\ldots+b_{s} m_{s}\right)\right) /\left(\tau_{s+1}-\left(b_{1} \tau_{1}+\ldots+b_{s} \tau_{s}\right)\right)
$$

Then we define ϕ by

$$
\phi\left(g_{i}\right)=p \tau_{i}-m_{i} \text { for } 1 \leq i \leq s
$$

This relation will remain true also for $i=s+1$, and for $s+2 \leq i \leq r$. This defines ϕ on the \mathbb{R}-vector space generated by the g_{i}, which is \mathbb{R}^{s}.

Then we can define a function F from the new fundamental domain Y (defined as in the first part of the proof) to \mathbb{R} by

$$
F(y)= \begin{cases}\phi(y)+n(y) & \text { if } y \text { is in } A \\ \phi(y)+n(y)+j p-1 & \text { if } y \text { is in some } A_{i}+j \alpha, j \geq 1\end{cases}
$$

It is easy to check that F is bounded and that

$$
1_{A}-\lambda(A)=\phi(y)-\phi(T y) \quad \text { for } \lambda \text {-almost all } y \text { in } Y,
$$

which implies

$$
\left|\sum_{p=1}^{n} 1_{A}\left(T^{p} y\right)-n a\right|<C \quad \text { for almost all } y \text { in } Y
$$

and so

$$
\left|\sum_{p=1}^{n} 1_{A}\left(T^{p} x\right)-n a\right|<C \quad \text { for almost every } x \text { in } X
$$

which means A is a BRS, and also (which was not in any way implied by the computations) that p is an integer and F factorizes to X. (These last assertions are also consequences of a deep result of Rauzy, which is true even if A is not a BRS: minimality implies not only $\mathbb{Q}\left(e_{i}\right)=\mathbb{Q}(\alpha)+L$, but also $\left.\mathbb{Z}\left(e_{i}\right)=\mathbb{Z}(\alpha)+L.\right)$

Another form of the necessary and sufficient condition

A measurable set A with nonempty interior is a BRS iff there exist a lattice M in \mathbb{R}^{s}, an element β of \mathbb{R}^{s}, a partition of A into sets $B_{i}, 1 \leq i \leq u$, such that, if we denote by S_{i} the map induced by T (or S) on B_{i}, then

$$
\begin{gathered}
(\beta, M) \text { is minimal, } \\
S x-x \in \mathbb{Z} \beta+M \quad \text { for almost all } x, \\
S_{i} x \equiv x+k \beta \bmod M \quad \text { whenever } S_{i}=S^{k} .
\end{gathered}
$$

Proof. This is easily deduced from what we called the intermediate form of the condition by partitioning A according to the values of $n(x)$.

In the other direction, if we are given the sets B_{i}, it is easy to build a function n. This is done step by step, for example taking $n=0$ in B_{1}, then extending it to $S B_{1}$ by the relation $n(x)-n(S x)=m_{1}-1$, and so on, the relations above guaranteeing there is no compatibility problem.

Note that, in contrast to A, the B_{i} are M-simple: if $x \equiv y \bmod M$, with x and y in the same B_{i}, then y must be some $T^{c} x$, hence some $S_{i}^{k} x$, and
hence $y \equiv x+l \beta \bmod M$, with l a sum of k strictly positive terms; hence $l=0, k=0$ and $x=y$.

A by-product of the proof

If A and B are subsets of \mathbb{R}, if $C=A \times B \subset \mathbb{R}^{2}$ is a $B R S$ for the rotation by $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ modulo \mathbb{Z}, with $\lambda(A) \neq 1$ and $\lambda(B) \neq 1$, then there exists a relation

$$
p \alpha_{1} \alpha_{2}+q \alpha_{1}+r \alpha_{2}+s=0, \quad p, q, r, s \in \mathbb{Z}
$$

In particular, when α_{1} is fixed, there exists only a denumerable set of α_{2} such that there can exist non-trivial product $B R S$; this set is empty if α_{1} is algebraic of degree 2 .

Proof. Note simply that if C is a BRS, A and B must also be BRS. The first part of the proof shows that we must have

$$
\lambda(A)=e \alpha_{1}+f, \quad \lambda(B)=g \alpha_{2}+h, \quad \lambda(A) \lambda(B)=\phi\left(\alpha_{1}, \alpha_{2}\right)+l
$$

e, f, g, h, l being integers and ϕ a linear form with integer coefficients; hence the relation follows (algebraicity of degree 2 is excluded because of the minimality of the rotation).

Thus we can exclude "most" of the rectangles.

References

[1] H. Kesten, On a conjecture of Erdös and Szüsz related to uniform distribution mod 1, Acta Arith. 12 (1966), 193-212.
[2] P. Liardet, Regularities of distribution, Compositio Math. 61 (1987), 267-293.
[3] I. Oren, Admissible functions with multiple discontinuities, Israel J. Math. 42 (1982), 353-360.
[4] G. Rauzy, Ensembles à restes bornés, Séminaire de théorie des nombres de Bordeaux, 1983-1984, exposé 24.
[5] -, Des mots en arithmétique, preprint.
[6] R. Szüsz, Über die Verteilung der Vielfachen einer komplexen Zahl nach dem Modul des Einheitsquadrats, Acta Math. Acad. Sci. Hungar. 5 (1954), 35-39.

CNRS, URA 225
163 AVENUE DE LUMINY
F-13288 MARSEILLE CEDEX 9, FRANCE
E-mail: FERENCZI@LUMIMATH.UNIV-MRS.FR

