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Definitions. Let L be a lattice in Rs (that is, a discrete subgroup of
maximal order) and let α be an element of Rs; (α,L) is said to be a minimal
couple if for every nonzero linear form φ on Rs such that φ(L) is included
in Z, φ(α) is not in Z.

We define the rotation T on the set X = Rs/L by Tx = x+α mod L; it
preserves the Lebesgue measure λ on X, and (α,L) is minimal if and only if
T is minimal, that is, has dense orbits; in particular, L and α must generate
Rs. If α = (α1, . . . , αs) and L is Zs, this is equivalent to (1, α1, . . . , αs)
being rationally independent.

A set A in Rs is L-simple if whenever x ∈ A, y ∈ A, x − y ∈ L, then
x = y.

Let A be a subset of X; we say A is a bounded remainder set (BRS) if
there exist real numbers a and C such that for every integer n and λ-almost
every x in X, ∣∣∣ n∑

p=1

1A(T px)− na
∣∣∣ < C .

This definition also applies to L-simple subsets of Rs, which we shall
always identify with their projection on X.

It is a well-known result, which can for example be derived from the
Markov–Kakutani fixed point theorem, that if A is measurable, then A is a
BRS if and only if there exists a bounded function F such that

1A − a = F − TF ,

and in that case a can only be λ(A).
For a set A of strictly positive measure and a point x in A, we denote

by τ(x) the return time of x in A (that is, the least strictly positive integer
n such that Tnx is in A) and by Sx = T τ(x)x the induced map of T on A,
which exists by the Poincaré recurrence theorem.
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Known results about BRS. If s = 1 and A is an interval, A is a BRS
if and only if its length belongs to Z(α) (Kesten [1]); a similar result holds
when A is a finite union of intervals (Oren [3]).

If s ≥ 2, there are no nontrivial rectangles which are BRS (Liardet [2]);
it seems difficult to find nontrivial examples of BRS when s ≥ 2; Szüsz ([6])
had one example of nontrivial parallelogram.

Rudolph [private communication] showed that whenever there exists a
BRS of measure a > 0, the BRS are dense among the sets of measure a; this
is true for every ergodic transformation.

Rauzy’s sufficient condition

Let S be the induced map of T on A. If there exists a lattice M and
an element β of Rs such that (β,M) is a minimal couple and Sx = x +
β mod M , then A is a BRS (even if B is not measurable).

This criterion enabled Rauzy to find nonmeasurable examples of BRS
in dimension s = 1 ([4]), and new nontrivial examples (parallelograms) in
higher dimensions ([5]); however, this condition is not necessary, as can be
seen in dimension 1 with the interval [0, 2α], though in this counter-example
the set A breaks into a finite union of subsets which satisfy Rauzy’s criterion.
We can now give a

Necessary and sufficient condition generalizing Rauzy’s crite-
rion

Let A be a subset of Rs, L-simple, measurable and with nonempty inte-
rior. Then A is a BRS if and only if there exist a lattice M ′ in Rs+1 and
a bounded function n from A to N such that , if ψ is the function from A to
Rs+1 defined by ψ(x) = (x, n(x)), and if Q is the translation of Rs+1/M ′

defined by Q(z) = z + (0, . . . , 0, 1), then ψ(A) is a fundamental domain for
Q, that is, for every z in ψ(A), there exists a unique z′ in ψ(A) such that
z′ ≡ Qz mod M ′. Thus we can define Q as a mapping from ψ(A) to ψ(A),
and we have

S = ψ−1Qψ

(this last equality being defined λ-almost everywhere).

P r o o f o f t h e c o n d i t i o n. In all what follows, T , S and X will be
as defined above and A will be a measurable L-simple set with nonempty
interior.

Let W be a fundamental domain for the rotation T , containing the set A;
for an element x in W , we denote by x′ its projection on X. As a mapping
from W to W , T can be viewed as a finite exchange of pieces (an exchange
of two intervals if s = 1). The same is true for S, as a mapping from A to
A, A ⊂W :
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Lemma 1. There exists a finite partition of A into sets Ai, and a finite
number of elements ei, 1 ≤ i ≤ r, such that ,

Sx = x+ ei whenever x is in Ai .

P r o o f. A must contain an open set Ω. By Kronecker’s theorem and
compactness,

X =
+∞⋃
n=1

TnΩ =
N⋃

n=1

TnΩ ,

for some finite N . Hence the return time τ(x) is bounded by N , and so
takes only a finite number of values.

Now, for every x,

Sx = x+ τ(x)α+ g(x) ,

g(x) being the element of L such that x+ τ(x)α+ g(x) belongs to W . Then
g(x) must be bounded, and hence takes a finite number of values.

Now, if we partition A according to the values of τ(x) and g(x), and if
we define ei = τiα+ gi, we get our lemma.

P r o o f t h a t t h e c o n d i t i o n i s n e c e s s a r y . We suppose A is a
BRS. Then

(1) 1A(y)− λ(A) = F (y)− F (Ty) for almost every y in X .

This implies

e2πiTF /e2πiF = e2πiλ(A) almost everywhere .

Hence F and λ(A) are an eigenvector and an eigenvalue for an ergodic
rotation, and so there exist a linear form φ on Rs such that φ(L) ⊂ Z, an
integer p and a measurable bounded integer function n such that

(2) λ(A) = φ(α) + p ,

(3) F (x′) = φ(x′) + n(x′) for almost all x in W .

The second equation lifts to W yielding

(4) F (x) = φ(x) + n(x) ,

with some (bounded) modifications of the integer function n; and it would
lift in the same way (with different functions n) to any other fundamental
domain.

From ergodicity, we have

W =
r⋃

i=1

τi−1⋃
j=1

T jAi .
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Following Rauzy, we define a new fundamental domain by

Y =
r⋃

i=1

τi−1⋃
j=1

(Ai + jα) .

The sets Ai + jα can be seen as levels of a tower; on them, T is defined
in the following manner: on the levels other than the top levels (that is,
when j < τi), Tx = x+ α; on the top levels, Tx = x+ α+ gi.

Now, if we write (4) for our new fundamental domain Y , and, together
with (2) and the new expression for T , insert it into (1), we get

1A(x)− φ(α)− p = φ(x)− φ(Tx) + n(x)− n(Tx) ,

hence, as φ is linear, we get finally

1A(x)− p = n(x)− n(x+ α) if x is not in a top level ,
1A(x)− p = n(x)− n(x+ α+ gi)− φ(gi) if x is in a top level above Ai .

Suppose we already know n(x) on the basis A; this defines n on the whole
tower, by n(x+α) = n(x)+p−1 on the first floor, n(x+2α) = n(x)+2p−1
on the second floor, and so on as long as we do not reach the top. We just
have to write the compatibility relation at the top:

n(x)− n(x+ α) = 1− p ,
n(x+ α)− n(x+ 2α) = −p ,

n(x+ (τi − 1)α)− n(x+ τiα+ gi) = −p+ φ(gi) ,

hence
n(x)− n(Sx) = 1− pτi + φ(gi) whenever x ∈ Ai .

Let mi, 1 ≤ i ≤ r, be the integer pτi − φ(gi); these integers satisfy the
following property: if (qi, 1 ≤ i ≤ r) is an r-uple of integers such that∑
qiei = 0, then

(5)
∑

qimi = 0 .

This is easy to see, since if
∑
qiei = 0, then

∑
qiτi = 0 and

∑
qigi = 0,

hence also φ(
∑
qigi) = 0 and so

∑
qimi = 0.

Also,

(6) mi = 1 + n(Sx)− n(x) for almost all x in Ai .

Let now M be the set (
∑
qiei, for all r-uples of integers qi such that∑

qimi = 0).
M is a lattice: it is clear that M is a discrete subgroup of Rs, so it

suffices to show that its dimension as a Q-vector space is exactly s.
Consider the mapping Φ from Qr to Rs given by Φ(q1, . . . , qr) =

∑
qiei;

its image is contained in Q(α) + Q(L), so must be of dimension at most
s + 1; but since S, being the induced map of a minimal map on a set with
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nonempty interior, has dense orbits in an open set, dim ImΦ must be exactly
s+ 1; hence KerΦ is of dimension r − s− 1.

Consider now the set B = (
∑
qimi = 0); as the mi are not all zero (they

have average one), B is of dimension 1, and contained in KerΦ by (5); hence
Φ(B) is of dimension s.

Now choose k such that mk is not zero, and put β = ek/mk; we have

(7) ei ≡ miβ mod M for all i .

As we have Sx ≡ x+miβ mod M , and as S has dense orbits in an open
set, (β,M) must be a minimal couple.

So we have already an intermediate form of the necessary condition:
there exist a lattice M in Rs, an element β of Rs, a bounded function n
from A to Z, and a partition Ai of A, such that

(β,M) is minimal ,
mi = 1 + n(Sx)− n(x) when x ∈ Ai ,

Sx ≡ x+miβ mod M when x ∈ Ai .

Note that A is not necessarily M -simple; it suffices that some mj is zero,
to have x ∈ A, Sx ∈ A, Sx ≡ x mod M but x 6= Sx.

We now define M ′ ⊂ Rs+1 (viewed naturally as Rs×R) as the set Φ′(Zr),
where

Φ′(q1, . . . , qr) =
( ∑

qiei,−
∑

qimi

)
.

In Qr, KerΦ′ = KerΦ (by (5)), so dim Q(M ′) = s+1 and M ′ is a lattice.
For all i, (ei,−mi) is in M ′, hence (x + ei, 0) ≡ (x,mi) mod M ′, hence

for almost all x

(x+ ei, 0) ≡ (x, n(x)− n(Sx) + 1) mod M ′ ,

thus
(Sx, 0) ≡ (x, n(x)− n(Sx) + 1) mod M ′ ,

therefore
(Sx, n(Sx)) ≡ (x, n(x) + 1) mod M ′ ,

or in other terms ψS = Qψ.
ψ(A) is M ′-simple: if (x, n(x)) ≡ (x′, n(x′)) mod M ′, then x′ = x +∑
qiei = x + cα + d, c being an integer and d an element of L; so x′ is

some T cx, and, as x and x′ are in A, x′ is some Sbx, hence (x, n(x)) ≡
(Sbx, n(Sbx)) ≡ (x, n(x)+ b) mod M ′; hence (0, b) is in M ′, thus 0 =

∑
qiei

and b =
∑
qimi, and so b = 0 by (5), and x = x′.

Hence Q(x, n(x)) = (Sx, n(Sx)) is a representation of the rotation Q as
a mapping from ψ(A) to ψ(A), and we can write S = ψ−1Qψ. This yields
the necessity of our condition (since n is bounded and is a coboundary, we
can make it positive by adding some constant).
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Note that ((0, . . . , 0, 1),M ′) is not a minimal couple.

P r o o f t h a t t h e c o n d i t i o n i s s u f f i c i e n t. For this direction,
we do not need the assumption of measurability of A. We suppose A satisfies
the assumptions of our condition. By Lemma 1, A is partitioned into r sets
by the different forms of S. We partition it further according to the finite
set of values taken by the function m(x) = n(x)− n(Sx) + 1. This gives us
t different couples (ej ,mj). We define a mapping Φ′′ from Qt to Rs+1 by

Φ′′(q1, . . . , qt) =
( ∑

qiei,−
∑

qimi

)
.

From ψS = Qψ, we deduce that M ′ must contain all the (ei,−mi),
and so must contain Φ′′(Qt). As KerΦ′′ = ((qi) such that

∑
qiei = 0 and∑

qimi = 0), we have dimΦ′′(Qt) ≥ s+ 1, with equality if and only if (5) is
satisfied.

But, since we know M ′ is a lattice, we conclude simultaneously that
M ′ = Φ′′(Qt) and that (5) is satisfied (with t-uples instead of r-uples of
integers). In particular, ei = ej must imply mi = mj and in fact t = r.

Now, the τi and gi being defined as in the proof of Lemma 1, we shall
construct a linear map φ from Rs to R, and a rational number p, such that

φ(gi) = pτi −mi for all i .

We know from minimality that the vector space Q(ei), 1 ≤ i ≤ r, is of
dimension s + 1. We choose a basis for it, for example e1, . . . , es+1. The
remaining ej satisfy rational relations of the form

ej = aj,1e1 + . . .+ aj,s+1es+1 , s+ 2 ≤ j ≤ r .

By minimality of (α,L), these imply also

τj = aj,1τ1 + . . .+ aj,s+1τs+1 , s+ 2 ≤ j ≤ r ,

gj = aj,1g1 + . . .+ aj,s+1gs+1 , s+ 2 ≤ j ≤ r ,

and so
mj = aj,1m1 + . . .+ aj,s+1ms+1 , s+ 2 ≤ j ≤ r .

So the gi, 1 ≤ i ≤ s+ 1, must generate Q(L); thus we can choose s of them
to form a basis of Q(L), for example the first s. This means we have

gs+1 = b1g1 + . . .+ bsgs ,

while
τs+1 6= b1τ1 + . . .+ bsτs ,

since the ei generate a space of dimension s+ 1.
We define

p = (ms+1 − (b1m1 + . . .+ bsms))/(τs+1 − (b1τ1 + . . .+ bsτs)) .
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Then we define φ by

φ(gi) = pτi −mi for 1 ≤ i ≤ s .

This relation will remain true also for i = s+ 1, and for s+ 2 ≤ i ≤ r. This
defines φ on the R-vector space generated by the gi, which is Rs.

Then we can define a function F from the new fundamental domain Y
(defined as in the first part of the proof) to R by

F (y) =
{
φ(y) + n(y) if y is in A,
φ(y) + n(y) + jp− 1 if y is in some Ai + jα, j ≥ 1.

It is easy to check that F is bounded and that

1A − λ(A) = φ(y)− φ(Ty) for λ-almost all y in Y ,

which implies∣∣∣ n∑
p=1

1A(T py)− na
∣∣∣ < C for almost all y in Y ,

and so ∣∣∣ n∑
p=1

1A(T px)− na
∣∣∣ < C for almost every x in X ;

which means A is a BRS, and also (which was not in any way implied by
the computations) that p is an integer and F factorizes to X. (These last
assertions are also consequences of a deep result of Rauzy, which is true even
if A is not a BRS: minimality implies not only Q(ei) = Q(α) + L, but also
Z(ei) = Z(α) + L.)

Another form of the necessary and sufficient condition

A measurable set A with nonempty interior is a BRS iff there exist a
lattice M in Rs, an element β of Rs, a partition of A into sets Bi, 1 ≤ i ≤ u,
such that , if we denote by Si the map induced by T (or S) on Bi, then

(β,M) is minimal ,
Sx− x ∈ Zβ +M for almost all x ,

Six ≡ x+ kβ mod M whenever Si = Sk .

P r o o f. This is easily deduced from what we called the intermediate
form of the condition by partitioning A according to the values of n(x).

In the other direction, if we are given the sets Bi, it is easy to build a
function n. This is done step by step, for example taking n = 0 in B1, then
extending it to SB1 by the relation n(x)− n(Sx) = m1 − 1, and so on, the
relations above guaranteeing there is no compatibility problem.

Note that, in contrast to A, the Bi are M -simple: if x ≡ y mod M , with
x and y in the same Bi, then y must be some T cx, hence some Sk

i x, and
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hence y ≡ x + lβ mod M , with l a sum of k strictly positive terms; hence
l = 0, k = 0 and x = y.

A by-product of the proof

If A and B are subsets of R, if C = A × B ⊂ R2 is a BRS for the
rotation by α = (α1, α2) modulo Z, with λ(A) 6= 1 and λ(B) 6= 1, then there
exists a relation

pα1α2 + qα1 + rα2 + s = 0 , p, q, r, s ∈ Z .
In particular , when α1 is fixed , there exists only a denumerable set of α2

such that there can exist non-trivial product BRS ; this set is empty if α1 is
algebraic of degree 2.

P r o o f. Note simply that if C is a BRS, A and B must also be BRS.
The first part of the proof shows that we must have

λ(A) = eα1 + f , λ(B) = gα2 + h , λ(A)λ(B) = φ(α1, α2) + l ,

e, f , g, h, l being integers and φ a linear form with integer coefficients;
hence the relation follows (algebraicity of degree 2 is excluded because of
the minimality of the rotation).

Thus we can exclude “most” of the rectangles.
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