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1. For an integer x > 1, we denote by P (x) the greatest prime factor of
x and we write ω(x) for the number of distinct prime divisors of x. Further,
we put P (1) = 1 and ω(1) = 0. Let d ≥ 1, k ≥ 2 and m ≥ 0 be integers
such that gcd(m, d) = 1. Let d1, . . . , dt with t ≥ 2 be distinct integers in
the interval [0, k). For integers l ≥ 2, y > 0 and b > 0 with P (b) ≤ k, we
consider the equation

(1) (m + d1d) . . . (m + dtd) = byl.

If P (y) ≤ k, it follows from an argument of Erdős (see [3, Lemma 2.1]) that
(1) implies that

t− 1 ≤ k log k

log(m + d)
.

Now onward whenever we refer to equation (1), we always assume that the
left-hand side of (1) has a prime factor > k and thus

(2) χ =: m + (k − 1)d ≥ (k + 1)l.

Further, we write

∆(m, k, d) = m(m + d) . . . (m + (k − 1)d).

We shall follow this notation without reference. For an account of results
on equation (1), we refer to Shorey [9], Shorey and Tijdeman [12].

First, we consider equation (1) with d = 1 which, by (2), implies that
m > kl. Erdős [2], p. 88, showed that for ε > 0 there exists an effectively
computable number C depending only on ε such that equation (1) with
b = 1, d = 1, l > 2 and k ≥ C implies that

(3) t ≤ k − (1− ε)k
log log k

log k
.

Further, Erdős [1], [2], p. 88, showed that there exist effectively computable
absolute constants C1 and C2 > 0 such that equation (1) with b = 1, d = 1,
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l = 2 and k ≥ C1 implies that

(4) t ≤ k − C2k/ log k.

See Erdős and Turk [3] for some extensions of these results. The proofs
of these results are elementary. Shorey [7, 8] combined this elementary
method of Erdős with the theory of linear forms in logarithms, irrationality
measures of Baker on the approximations of certain algebraic numbers by
rationals and the method of Roth–Halberstam on µ-free integers to sharpen
(3) considerably. It has been proved in [7, 8] that there exists an effectively
computable absolute constant C3 such that equation (1) with d = 1, l > 2
and k ≥ C3 implies that

(5) t ≤ νlk with νl =
1
2

(
1 +

4l2 − 8l + 7
2(l − 1)(2l2 − 5l + 4)

)
.

We observe that

ν3 =
47
56

, ν4 =
45
64

and νl ≤
299
464

<
2
3

for l ≥ 5.

If l is sufficiently large, estimate (5) can be sharpened. Shorey [7] applied the
theory of linear forms in logarithms to prove that there exists an effectively
computable absolute constant C4 such that equation (1) with d = 1, l ≥ C4

and k ≥ C4 implies that

(6) t ≤ kl−1/11 + π(k) + 2.

For l = 2, Erdős [2], p. 88, asked whether (4) can be replaced by (3). Shorey
[8] combined the method of Erdős with a theorem of Baker on the finiteness
of integer solutions of the hyper-elliptic equation to show that this is, in fact,
the case. More precisely, it has been shown in [7, 8] that given ε > 0 there
exists an effectively computable number C5 depending only on ε such that
equation (1) with d = 1, l = 2 and k ≥ C5 implies (3). As a consequence of
these results, we shall derive

Theorem 1. Let ε > 0 and m + k − 1 > kl. There exists an effectively
computable number C6 depending only on ε such that for k ≥ C6 we can
find a prime p with

0 < ordp(∆(m, k, 1)) 6≡ 0 (mod l)

such that

p ≥

 (1− ε)k log log k if l = 2 ,
(1− νl − ε)k log k if l > 2 ,
(1− ε)k log k if l > C6 .

If m ≤ kl, we observe that ordp(∆(m, k, 1)) 6≡ 0 (mod l) for every prime
p > k such that p |∆(m, k, 1). Therefore, it suffices to consider lower bounds
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for P (∆(m, k, 1)) to obtain an analogue of Theorem 1 in the case m ≤ kl.
For this, we refer to Shorey [6] and Shorey and Tijdeman [10], Chapter 7.

Next, we consider (1) with d > 1. There is no loss of generality in as-
suming that l is a prime number. We put

h(k) =
{

log log k if l ≥ 5,
log log log k if l = 3,

for k > ee. We obtain the following weaker analogue of the above stated
results of Shorey.

Theorem 2. (a) Let ε > 0. There exists an effectively computable num-
ber C7 depending only on ε and ω(d) such that equation (1) with l = 2 and
k ≥ C7 implies that

(7) t ≤ k − (1− ε)k
log log log k

log k
.

(b) Let ε > 0 and l > 2 be a prime number. There exist effectively
computable numbers C8 and C9 depending only on ε such that equation (1)
with k ≥ C8 and

(8) lω(d) ≤ C9k
h(k)
log k

implies that

t ≤ k − (1− ε)k
h(k)
log k

.

Theorem 2 with t = k is contained in Shorey and Tijdeman [12], Theorem
1. The proof of Theorem 2(a) depends on Brun’s Sieve and a theorem of
Evertse and Silverman [5] on the number of integer solutions of the hyper-
elliptic equation. The proof of Theorem 2(b) with l ≥ 5 is elementary and
we apply a theorem of Evertse [4] in the case l = 3. We apply Theorem 2 to
derive the following analogue of Theorem 1 for ∆(m, k, d).

Corollary 1. Let ε > 0 and χ > kl.

(a) There exists a prime p dividing ∆(m, k, d) such that

p ≥ (1− ε)k log log log k and ordp(∆(m, k, d)) 6≡ 0 (mod 2)

whenever k exceeds an effectively computable number depending only on ε
and ω(d).

(b) Let l > 2 be a prime number. There exist effectively computable
numbers C10 and C11 depending only on ε such that for k ≥ C10 and

(9) lω(d) ≤ C11k
h(k)
log k

,
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we can find a prime p dividing ∆(m, k, d) satisfying

p ≥ (1− ε)kh(k) and ordp(∆(m, k, d)) 6≡ 0 (mod l).

For an analogue of Corollary 1 in the case χ ≤ kl, it is equivalent to con-
sidering lower bounds for P (∆(m, k, d)). We refer to Shorey and Tijdeman
[11, 13] for these bounds. We write

h′(k) =
{

h(k) if l ≥ 3,
log log log k if l = 2.

The following result is a particular case of Corollary 1 whenever l and
ω(d) are bounded.

Corollary 2. Let l ≥ 2 be a prime number. Let ε > 0 and χ > kl.
There exists a prime p dividing ∆(m, k, d) such that

p ≥ (1− ε)kh′(k) and ordp(∆(m, k, d)) 6≡ 0 (mod l)

whenever k exceeds an effectively computable number depending only on ε, l
and ω(d).

2. P r o o f o f T h e o r e m 2. (a) Let c > 0 be a number depending only
on ε and ω(d). We shall choose c later. We may assume that k exceeds a
sufficiently large effectively computable number depending only on ε, c and
ω(d). For 1 ≤ i ≤ t, we see from (1) that

(10) m + did = aix
2
i

where ai is square-free such that P (ai) ≤ k and xi is a positive integer. Let
S be the set of all ai with 1 ≤ i ≤ t such that di > 0. We may suppose that

(11) t ≥ k − (1− ε)k
log log log k

log k
.

Then, we argue as in the proof of Lemma 1 of [12] to derive that

(12) χ ≥ c2k
3(log k)2.

Further, we refer to the proof of Lemma 3 of [12] to conclude from (11) and
(12) that

(13) |S| ≥ k −
(

1− 3ε

4

)
k

log log log k

log k
.

Next, we follow the proof of Theorem 2 of [7] without reference. By (13),
there exists a subset S′

1 of S such that |S′
1| ≥ εk/2 and

(14) ai ≤ k(log log k)1−ε/2 if ai ∈ S′
1.

For ai, aj ∈ S′
1 with i 6= j, the equation xi = xj implies that

(15) χ ≤ k3(log log k)1−ε/2,



Perfect powers in products 395

by (10), (14) and gcd(m, d) = 1. Consequently, we conclude from (12) and
(15) that

(16) xi 6= xj if ai, aj ∈ S′
1 and i 6= j.

We denote by b1, . . . , bs all integers between k(log k)−2c and k(log log k)1−ε/2

such that every proper divisor of bi is less than or equal to k(log k)−2c. Now,
we apply Brun’s Sieve to derive that

s ≤ k(log log k)−ε/2.

We write S′
2 for the set of all ai ∈ S′

1 with ai ≥ k(log k)−2c. Then |S′
2| ≥

εk/4. Further, we observe that every element of S′
2 is divisible by at least

one bi. Let S′
3 be the maximal subset of S′

2 such that every bi appears in
the factorisation of at most two elements of S′

3. Then

|S′
3| ≤ 2s ≤ 2k(log log k)−ε/2.

We write S′
4 for the complement of S′

3 in S′
2. If ai = ai1 ∈ S′

4, there exist
ai2 , ai3 ∈ S′

3 and bν such that ai1 , ai2 and ai3 are divisible by bν . Also, we
observe that |S′

4| ≥ εk/8. We put

B1 = b−1
ν ai1 , B2 = b−1

ν ai2 , B3 = b−1
ν ai3

and
R = b−1

ν (di2 − di1) , R−1 = b−1
ν (di3 − di1) .

Since gcd(m, d) = 1, we observe that B1, B2, B3, R and R′ are integers of
absolute values not exceeding (log k)3c. By (10), we have

B2B3(d−1xi2xi3)
2 =

(
B1

(
xi√
d

)2

+ R

)(
B2

(
xi√
d

)2

+ R′
)

.

There are at most 32(log k)15c of these equations. Now, we apply Theorem
1 of Evertse and Silverman [5], |S′

4| ≥ εk/8 and (16) to conclude that

(17) log k ≤ (log k)cc′

where c′ is an effectively computable number depending only on ε and ω(d).
Let c = (2c′)−1 to notice that (17) is not possible.

(b) We do not give the details, since they are similar to the proof of
Corollary 1 of [12]. See Remark (ii) of [12], p. 343.

3. Let ε > 0. We suppose that k exceeds a sufficiently large effectively
computable number depending only on ε. Let F (k) be a non-decreasing
function of k such that F (k) > k. We write

T (d) = {m,m + d, . . . , m + (k − 1)d}.
Let T ′(d) be the subset of T (d) of all elements m+id satisfying P (m+id) ≤
k. For every prime q with k < q < F (k), we let iq ∈ [0, q) be such that
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m + iqd ≡ 0 (mod q) (if such an iq exists). We denote by T (d, F (k)) the
subset of T (d) obtained by deleting m + iqd for all primes q satisfying k <
q < F (k). We put

|T (d, F (k))| = t(d, k) = t

and we write

(18) T (d, F (k)) = {m + d1d, . . . , m + dtd}
where d1, . . . , dt are distinct integers in the interval [0, k). We observe that

(19) t ≥ k − π(F (k)).

The following lemma is useful for the proof of Theorem 1 and Corollary 1.

Lemma 1. Let ε > 0 and χ > kl. There exists an effectively computable
number C12 depending only on ε such that for k ≥ C12, we have

(20) |T ′(d)| ≤ (l−1 + ε)k.

P r o o f. Let ε1 = ε/2. For ε1k ≤ i < k, we observe that

m + id ≥ iχ/(k − 1) ≥ ε1χ ≥ ε1k
l.

Now, we apply Lemma 2 of [11] with T the set of all m+id such that i ≥ ε1k
and P (m + id) ≤ k. Then

|T ′(d)| ≤ k log k

log(ε1kl)
+ ε1k + π(k) ≤ (l−1 + ε)k.

P r o o f o f T h e o r e m 1. Put d = 1. We may assume that k ≥ c1 where
c1 is a sufficiently large effectively computable number depending only on
ε. We shall apply the results of Shorey on equation (1) with d = 1 stated in
the beginning of Section 1 without reference in the proof of Theorem 1.

Suppose l = 2. Put F (k) = (1−ε)k log log k. By (19) and Prime Number
Theorem, we observe that

(21) t > k −
(

1− ε

2

)
k

log log k

log k
≥ 2.

By (21),(20) and (18), we derive that there exists an i with 1 ≤ i ≤ t such
that m + di is divisible by a prime > k. Furthermore, we may suppose that
equation (1) with d = 1, l = 2 and k ≥ c1 is satisfied. Therefore, inequality
(3) with ε replaced by ε/2 is valid. This contradicts (21).

Next suppose l > 2. Put F (k) = (1−νl−ε)k log k. Then, we derive from
(19), (5) and (20) that

(22) t >

(
νl +

ε

2

)
k > (l−1 + ε)k ≥ |T ′(1)|.

Consequently, we may suppose that (1) with d = 1, l > 2 and k ≥ c1 is
satisfied. Hence, we conclude (5), which contradicts (22).
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Now suppose that l ≥ c1. Put F (k) = (1− ε)k log k. Then

(23) |T ′(1)| ≤
(

l−1 +
ε

4

)
k <

εk

2
≤ t

whenever c1 is sufficiently large. Therefore, we may assume that (1) with
d = 1, k ≥ c1 and l ≥ c1 is satisfied. Hence, we conclude (6), which contra-
dicts (23) if c1 is sufficiently large.

P r o o f o f C o r o l l a r y 1. (a) We may assume that k exceeds a suf-
ficiently large effectively computable number c2 depending only on ε and
ω(d). Put F (k) = (1− ε)k log log log k. Then

t > k −
(

1− ε

2

)
k

log log log k

log k

and we may suppose that equation (1) with l = 2, k ≥ c2 is satisfied. On
the other hand, we apply Theorem 2(a) to conclude (7) with ε replaced by
ε/2. This is a contradiction.

(b) We may assume that C11 ≤ C9 so that (9) implies (8). Now, we
take F (k) = (1− ε)kh(k) to argue as above for deriving Corollary 1(b) from
Theorem 2(b).
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