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1. Introduction and results. For a natural number n let &, € C
denote the primitive nth root of unity: &, = e2™*/™. Then Q,, = Q[¢,] is the
nth cyclotomic field and G,, = Gal(Q,,/Q) is its Galois group over Q. The
field Q,, is a module over the group ring Q[G,,] of G,, and, by the normal
basis theorem, it is isomorphic to Q[G,,] itself. In what follows let n = p™,
where p is a prime number and m a nonnegative integer. Let ¢ = p®, e > 1,
be another power of p. For x € QQ,, we consider

Lpg = gnqﬂf € an .

We call z,, the twisted element of x, because it arises from x by means of
the rotation of the plane C through 27/(ng). It is almost obvious that the
Galois module Q[Gpq]zng is contained in Q[G,4]6nq (cf. proof of Theorem 1
below). Suppose that d is the number of divisors of p — 1. Then Q[G,,4|¢nq
is the direct sum of d simple Q[G,,4]-submodules if p > 3, and it is the direct
sum of two simple submodules for p = 2 and ng > 4. Hence Q[G,,4]é,4 has
2¢ different submodules for p > 3, and four different submodules for p = 2,
ng > 4. We consider the case g # 2 first. Here Q[Gpq]2nq is always one of
the two trivial submodules of Q[G)4]&yq; indeed, we show

THEOREM 1. Let p be a prime, n = p™, ¢ = p%, m > 0, e > 1. In
addition, if p = 2, let e > 2. For each element x € Q,, x # 0,

Q[Gnq}an = Q[Gnq]fnq .

For ¢ = 2 the result is different: Let M7, Ms be the simple submodules
of Q[G2n]é2n, n=2" > 4. For k =1,2, let

Vk = {(L’ € Qn; Q[G2n]x2n = Mk} U {0} :

THEOREM 2. With the above notations, Vi is a Q-subspace of Q, of
dimension dim Vi, = n/4, k = 1,2. Moreover,
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2. Proofs. We adopt the above notations. Most of the representation
theory of Q[G,] we use in the sequel can be found in [1], Section 1, and
in [4].

Consider the map

Z\pZL — Gpn, k— oy,
where oy (£,) = ¢F. This map is surjective and multiplicative. It is used in
order to identify the character group
X, ={x: G, — C*; x a group homomorphism}
of G,, with the group of Dirichlet characters modulo n. Indeed, put

_ [x(ox) ifptk,
x(k) = {O otherwise.
For an element o« = > {a,0; 0 € G,,} in Q[G,] let x(a) = > a,x(o)
€ C. Let Y C X, be a conjugacy class of characters, i.e., all characters Y,
X' in Y generate the same group (x) = (x’). Then the group ring Q[G,]
splits into the simple submodules

Q[Gnly ={a € Q[Gy]; x(@) # 0 only if x € Y},

of Q-dimension dim Q[G,]y = |Y|.

Next fix x € X,,. According to [3], [1] there is a map y(x|—) : Q, — C
with the following properties:

(i) y(x|—) is x-linear, i.e., for all & € Q[G,,] and all z € Q,, y(x|az) =
x(a)y(x|z).

(ii) Let Y be the conjugacy class of x. Then

Quy ={z€Qu;y(X'|z) #0only if x' € Y}

is the uniquely determined Q[G,,]-submodule of @Q,, that is isomorphic to

The map y(x|—) is uniquely determined by x up to factors in C*; this
means that the maps c¢-y(x|—), ¢ € C*, are the only ones having properties
(i), (ii), too.

Consider the numbers y(x|¢,) € C, x € X,,. Then y(x|&,) # 0 iff x is a
primitive character modulo n (cf. [4]). Hence

Q[Gn]gn = @Qn,Y )

where Y runs through the conjugacy classes of primitive characters mod-
ulo n. We obtain

LEMMA 1. Let n be as above, and let x € Q,,. Then

(1) Q[Grlx € Q[Ghl&n iff y(x|x) = 0 for all imprimitive characters
x mod n;
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(2) QGyr]z = Q[Gy]&n iff {xEXn; y(x|2) # 0} = {XEX, ; X primitive}.
For the proof of Theorem 1 we need two additional lemmas.

LEMMA 2. Let p be a prime, n =p™, g=p%, m>0,e>1. Forp=2
let e > 2.

(1) For each k € {1,...,n} there is a uniquely determined number j €
{1,...,n} such that 1 + gk = (1 + q)? mod nq.

(2) The map {1,...,n} — {1,...,n}: k> j is bijective.

(3) Let k, k' € {1,...,n} and let j, j' be their images under the above
map. Let 0 <1< m. Then k = k'modp' iff j = 7’ modp'. Furthermore,
k= 0modp! iff j = 0mod p'.

The proof of Lemma 2 consists, essentially, in the observation that the
subgroups {1+ ¢k ; k = 1,...,n} and (1+¢q) of (Z/ngZ)* coincide and
have order n (cf. [2], p. 72 ff.). Note, however, that the map Z/nZ —
Z/nZ : k — j is not a group homomorphism in general.

LEMMA 3. Let p be a prime, m > 2, and n = p™. Let f =) {bjo; ; j €
{1,...,n}, ptj} € Q[G,] be such that 3, = 0. Then b; = b;: for all j, j’
with j = 7' modn/p.

Proof. Put M = {a € Q[G,] ; o, = 0}. According to Lemma 1,
the element 8 = > bjo; is in M iff x(8) = 0 for each primitive character
x modn. From this we conclude that

dim M = |{x € X,, ; x is imprimitive}| = ¢(n/p),

where ¢ is Euler’s function. Observe now that 27 — ¢ = ZP — &,/ is the
minimal polynomial of &, over Q,,/,. This means that the trace

T(&) =Y {ojén ; §' = jmodn/p}

vanishes for each j, j € {1,...,n}, pfj. Hence the elements

ozj:Z{Uj’ ;jle{lvnwn}v JlE]mOdn/p}7

je{l,...,n/p}, ptj, are in M. It is obvious that the a; are Q-linearly
independent. So, for dimensional reasons, they form a Q-basis of M. When
the element 3 € M is expressed in terms of this basis, the assertion follows. m

Proof of Theorem 1. Let n, ¢ be as in Theorem 1. Let

xzzn:akgfbe@n-

k=1

Then #ng = > {aréht? ; k=1,...,n} is a linear combination of primitive
ngth roots of unity. Therefore z,,, € Q[Gpglénq and Q[Grgleng C Q[Grgléng-
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Next suppose that x is primitive modng. Since y(x|—) is determined
up to factors in C* only, we may assume that y(x|{,q) = 1. Suppose that
y(X|®ng) = 0. We show that x = 0, which proves the theorem, by Lemma 1.
We use induction with respect to the exponent m. Let m = 0, i.e., n =1
and x € Q. Then 0 = y(x|zq) = y(x|2z&,) = = - y(x|z&y) = .

Now let m > 0, which means p|n, and let n’ = n/p. The induction
hypothesis is as follows: Let ¢ =p°, e > 1 (¢/ > 2 for p = 2), 2’ € Q,,
and X’ a primitive character modn'q’; if y(x'|;,,) = 0 then 2’ = 0.

Take x as above. Then

y(X|Tng) =Y arx(1 +qk) = 0.
k=1

For each j € {1,...,n} we put b; = ai, where k is the uniquely determined
number in {1,...,n} with (1 +¢)? = 1 + gkmodng (Lemma 2). Observe
that n = x(1 4+ ¢) is a primitive nth root of unity (use [2], p. 212, and
Lemma 2). Now

y(X|Tng) = Y _bjr? =0.
=1

Consider the case n = p first. Because 1+ Z + ...+ Z" ! is the minimal
polynomial of 77 over Q, all the coefficients b; are equal. Therefore a; =
... =a, and z = 0. Suppose now that n = p™, m > 2. Put

x/:Z{akgs;ke{la'”an}a p|k}

and " = x — 2’. The “trace argument” in the proof of Lemma 3 shows
that T'(n?) = 0, for all j € {1,...,n}, ptj (T is the trace of Q, over
Q). Therefore y(x|z;,,) = 0, which implies that y(x|z;,,) = y(x|Tng) —
y(x|zy,) = 0. However, x;,, is the same as z7,,, with n’ = n/p, ¢ = qp.
The induction hypothesis yields ' = 0. Let

B=> {bjoj;je{l,....,n}, ptj} € QGn].

Then 8n = y(x|z;,,) = 0. By Lemma 3, the coefficients of 3 fulfill: b; = b;
for all 5,57/ € {1,...,n}, ptj,7', 7 = 7 modn’. Then ar, = ap for all
kK e{1,...,n}, ptk, k', k = k' modn’. We obtain

TL/ n n/
K’ k
P=Da Y & =) eT(E).
k=1 k=1 k=1
Ptk k'=kmodn’ ptk
But the traces in the last sum vanish, whence 2/ =0 and z = 2’ +2” =0

follows. =

Proof of Theorem 2. Let n =2™, m > 2. There are exactly two
conjugacy classes of primitive characters mod 2n, viz. the set of even and
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the set of odd primitive characters (cf. [2], p. 212). Choose an arbitrary odd
character y; and an arbitrary even character ys, both of them primitive.
Then

My = {z € Q[Ganlé2n ; y(x1]2) = 0} = Q[G2n)(b2n + &3,))
M = {z € Q[Ganlé2n ; y(x2]2) = 0} = Q[G2n)(b2n — &3,))

are the simple submodules of Q[G3,]¢2,. For each o € Ga,, xk(0) is an
(n/2)th root of unity, k£ = 1,2, which shows that the Q-linear map

gk : Qn - Qn/2a Z = gk:('-r) = y(Xk|€2n:E) ’
is well defined. Let Vj denote the kernel of gi, k = 1,2. Then

Vi ={z € Qn ; &onw € My} = {z € Qp ; Q[G2n]22n = My} U {0},
since M, is simple. Moreover,
dim Vi, = ¢(n) — dim g, (Q) > ¢(n) — p(n/2) =n/4, k=1,2.
n

But Vi NV, = {0}, so dim(V; & V3) > n/2 = dimQ,,. Thus V; & Vo = Q,
and dimVy =n/4, k=1,2. =

EXAMPLE. Let n = 2™ and m > 2 be as above. Consider the elements
et=1+4¢" o =1-¢"

in Qn Then §2nm+ = §2n + 52_7117 Q[GQn]xé’—n — M17 §2nx_ = §2n - 52_1117
Q[Gan)zy, = Ms. Furthermore, Q[G,lzT = Q[G,lz~ = Q & Q[G,]¢x.
Hence V7 and Va5 cannot be Q[G,]-modules. Indeed, if they were, Q @
Q[Gr]& € Vi NV, would follow, which is impossible.

Remark. Clearly the results of this note do not depend on the partic-
ular choice &, = e2™/™ of a primitive nth root of unity. This choice was
just made for reasons of convenience, e.g., for the sake of the simple relation

gzq =&n-
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