The Galois module of a twisted element in the p^m -th cyclotomic field

by

Kurt Girstmair (Innsbruck)

1. Introduction and results. For a natural number n let $\xi_n \in \mathbb{C}$ denote the primitive nth root of unity: $\xi_n = e^{2\pi i/n}$. Then $\mathbb{Q}_n = \mathbb{Q}[\xi_n]$ is the nth cyclotomic field and $G_n = \operatorname{Gal}(\mathbb{Q}_n/\mathbb{Q})$ is its Galois group over \mathbb{Q} . The field \mathbb{Q}_n is a module over the group ring $\mathbb{Q}[G_n]$ of G_n , and, by the normal basis theorem, it is isomorphic to $\mathbb{Q}[G_n]$ itself. In what follows let $n = p^m$, where p is a prime number and m a nonnegative integer. Let $q = p^e$, $e \geq 1$, be another power of p. For $x \in \mathbb{Q}_n$ we consider

$$x_{nq} = \xi_{nq} x \in \mathbb{Q}_{nq} .$$

We call x_{nq} the twisted element of x, because it arises from x by means of the rotation of the plane \mathbb{C} through $2\pi/(nq)$. It is almost obvious that the Galois module $\mathbb{Q}[G_{nq}]x_{nq}$ is contained in $\mathbb{Q}[G_{nq}]\xi_{nq}$ (cf. proof of Theorem 1 below). Suppose that d is the number of divisors of p-1. Then $\mathbb{Q}[G_{nq}]\xi_{nq}$ is the direct sum of d simple $\mathbb{Q}[G_{nq}]$ -submodules if $p \geq 3$, and it is the direct sum of two simple submodules for p=2 and $nq \geq 4$. Hence $\mathbb{Q}[G_{nq}]\xi_{nq}$ has 2^d different submodules for $p \geq 3$, and four different submodules for p=2, $nq \geq 4$. We consider the case $q \neq 2$ first. Here $\mathbb{Q}[G_{nq}]x_{nq}$ is always one of the two trivial submodules of $\mathbb{Q}[G_{nq}]\xi_{nq}$; indeed, we show

Theorem 1. Let p be a prime, $n=p^m, q=p^e, m \geq 0, e \geq 1$. In addition, if p=2, let $e\geq 2$. For each element $x\in \mathbb{Q}_n, x\neq 0$,

$$\mathbb{Q}[G_{nq}]x_{nq} = \mathbb{Q}[G_{nq}]\xi_{nq}.$$

For q=2 the result is different: Let M_1 , M_2 be the simple submodules of $\mathbb{Q}[G_{2n}]\xi_{2n}$, $n=2^m\geq 4$. For k=1,2, let

$$V_k = \{x \in \mathbb{Q}_n ; \mathbb{Q}[G_{2n}|x_{2n} = M_k\} \cup \{0\}.$$

THEOREM 2. With the above notations, V_k is a \mathbb{Q} -subspace of \mathbb{Q}_n of dimension dim $V_k = n/4$, k = 1, 2. Moreover,

$$\mathbb{Q}_n = V_1 \oplus V_2.$$

2. Proofs. We adopt the above notations. Most of the representation theory of $\mathbb{Q}[G_n]$ we use in the sequel can be found in [1], Section 1, and in [4].

Consider the map

$$\mathbb{Z} \setminus p\mathbb{Z} \to G_n, \quad k \mapsto \sigma_k,$$

where $\sigma_k(\xi_n) = \xi_n^k$. This map is surjective and multiplicative. It is used in order to identify the character group

$$X_n = \{ \chi : G_n \to \mathbb{C}^\times ; \chi \text{ a group homomorphism} \}$$

of G_n with the group of Dirichlet characters modulo n. Indeed, put

$$\chi(k) = \begin{cases} \chi(\sigma_k) & \text{if } p \nmid k, \\ 0 & \text{otherwise.} \end{cases}$$

For an element $\alpha = \sum \{a_{\sigma}\sigma : \sigma \in G_n\}$ in $\mathbb{Q}[G_n]$ let $\chi(\alpha) = \sum a_{\sigma}\chi(\sigma)$ $\in \mathbb{C}$. Let $Y \subseteq X_n$ be a *conjugacy class* of characters, i.e., all characters χ , χ' in Y generate the same group $\langle \chi \rangle = \langle \chi' \rangle$. Then the group ring $\mathbb{Q}[G_n]$ splits into the simple submodules

$$\mathbb{Q}[G_n]_Y = \{ \alpha \in \mathbb{Q}[G_n] ; \chi(\alpha) \neq 0 \text{ only if } \chi \in Y \},$$

of \mathbb{Q} -dimension dim $\mathbb{Q}[G_n]_Y = |Y|$.

Next fix $\chi \in X_n$. According to [3], [1] there is a map $y(\chi|-): \mathbb{Q}_n \to \mathbb{C}$ with the following properties:

- (i) $y(\chi|-)$ is χ -linear, i.e., for all $\alpha \in \mathbb{Q}[G_n]$ and all $x \in \mathbb{Q}_n$, $y(\chi|\alpha x) = \chi(\alpha)y(\chi|x)$.
 - (ii) Let Y be the conjugacy class of χ . Then

$$\mathbb{Q}_{n,Y} = \{x \in \mathbb{Q}_n : y(\chi'|x) \neq 0 \text{ only if } \chi' \in Y\}$$

is the uniquely determined $\mathbb{Q}[G_n]$ -submodule of \mathbb{Q}_n that is isomorphic to $\mathbb{Q}[G_n]_Y$.

The map $y(\chi|-)$ is uniquely determined by χ up to factors in \mathbb{C}^{\times} ; this means that the maps $c \cdot y(\chi|-)$, $c \in \mathbb{C}^{\times}$, are the only ones having properties (i), (ii), too.

Consider the numbers $y(\chi|\xi_n) \in \mathbb{C}$, $\chi \in X_n$. Then $y(\chi|\xi_n) \neq 0$ iff χ is a primitive character modulo n (cf. [4]). Hence

$$\mathbb{Q}[G_n]\xi_n = \bigoplus \mathbb{Q}_{n,Y} ,$$

where Y runs through the conjugacy classes of primitive characters modulo n. We obtain

LEMMA 1. Let n be as above, and let $x \in \mathbb{Q}_n$. Then

(1) $\mathbb{Q}[G_n]x \subseteq \mathbb{Q}[G_n]\xi_n$ iff $y(\chi|x) = 0$ for all imprimitive characters $\chi \mod n$;

(2) $\mathbb{Q}[G_n]x = \mathbb{Q}[G_n]\xi_n \text{ iff } \{\chi \in X_n ; y(\chi|x) \neq 0\} = \{\chi \in X_n ; \chi \text{ primitive}\}.$

For the proof of Theorem 1 we need two additional lemmas.

LEMMA 2. Let p be a prime, $n=p^m,\ q=p^e,\ m\geq 0,\ e\geq 1.$ For p=2 let $e\geq 2.$

- (1) For each $k \in \{1, ..., n\}$ there is a uniquely determined number $j \in \{1, ..., n\}$ such that $1 + qk \equiv (1 + q)^j \mod nq$.
 - (2) The map $\{1,\ldots,n\} \to \{1,\ldots,n\} : k \mapsto j$ is bijective.
- (3) Let $k, k' \in \{1, ..., n\}$ and let j, j' be their images under the above map. Let $0 \le l \le m$. Then $k \equiv k' \mod p^l$ iff $j \equiv j' \mod p^l$. Furthermore, $k \equiv 0 \mod p^l$ iff $j \equiv 0 \mod p^l$.

The proof of Lemma 2 consists, essentially, in the observation that the subgroups $\{\overline{1+qk} : k=1,\ldots,n\}$ and $\langle \overline{1+q} \rangle$ of $(\mathbb{Z}/nq\mathbb{Z})^{\times}$ coincide and have order n (cf. [2], p. 72 ff.). Note, however, that the map $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} : \overline{k} \mapsto \overline{j}$ is not a group homomorphism in general.

LEMMA 3. Let p be a prime, $m \geq 2$, and $n = p^m$. Let $\beta = \sum \{b_j \sigma_j ; j \in \{1, \ldots, n\}, p \nmid j\} \in \mathbb{Q}[G_n]$ be such that $\beta \xi_n = 0$. Then $b_j = b_{j'}$ for all j, j' with $j \equiv j' \mod n/p$.

Proof. Put $M = \{\alpha \in \mathbb{Q}[G_n] : \alpha \xi_n = 0\}$. According to Lemma 1, the element $\beta = \sum b_j \sigma_j$ is in M iff $\chi(\beta) = 0$ for each primitive character $\chi \mod n$. From this we conclude that

$$\dim M = |\{\chi \in X_n ; \chi \text{ is imprimitive}\}| = \varphi(n/p),$$

where φ is Euler's function. Observe now that $Z^p - \xi_n^p = Z^p - \xi_{n/p}$ is the minimal polynomial of ξ_n over $\mathbb{Q}_{n/p}$. This means that the trace

$$T(\xi_n^j) = \sum \{ \sigma_{j'} \xi_n \; ; \; j' \equiv j \bmod n/p \}$$

vanishes for each $j, j \in \{1, ..., n\}, p \nmid j$. Hence the elements

$$\alpha_j = \sum \{ \sigma_{j'} \; ; \; j' \in \{1, \dots, n\}, \; j' \equiv j \mod n/p \},$$

 $j \in \{1, \dots, n/p\}$, $p \nmid j$, are in M. It is obvious that the α_j are \mathbb{Q} -linearly independent. So, for dimensional reasons, they form a \mathbb{Q} -basis of M. When the element $\beta \in M$ is expressed in terms of this basis, the assertion follows.

Proof of Theorem 1. Let n, q be as in Theorem 1. Let

$$x = \sum_{k=1}^{n} a_k \xi_n^k \in \mathbb{Q}_n .$$

Then $x_{nq} = \sum \{a_k \xi_{nq}^{1+qk} ; k = 1, \dots, n\}$ is a linear combination of primitive nqth roots of unity. Therefore $x_{nq} \in \mathbb{Q}[G_{nq}]\xi_{nq}$ and $\mathbb{Q}[G_{nq}]x_{nq} \subseteq \mathbb{Q}[G_{nq}]\xi_{nq}$.

Next suppose that χ is primitive mod nq. Since $y(\chi|-)$ is determined up to factors in \mathbb{C}^{\times} only, we may assume that $y(\chi|\xi_{nq})=1$. Suppose that $y(\chi|x_{nq})=0$. We show that x=0, which proves the theorem, by Lemma 1. We use induction with respect to the exponent m. Let m=0, i.e., n=1 and $x\in\mathbb{Q}$. Then $0=y(\chi|x_q)=y(\chi|x_q)=x\cdot y(\chi|x_q)=x$.

Now let m > 0, which means $p \mid n$, and let n' = n/p. The induction hypothesis is as follows: Let $q' = p^{e'}$, $e' \ge 1$ ($e' \ge 2$ for p = 2), $x' \in \mathbb{Q}_{n'}$, and χ' a primitive character mod n'q'; if $y(\chi'|x'_{n'q'}) = 0$ then x' = 0.

Take x as above. Then

$$y(\chi|x_{nq}) = \sum_{k=1}^{n} a_k \chi(1+qk) = 0.$$

For each $j \in \{1, ..., n\}$ we put $b_j = a_k$, where k is the uniquely determined number in $\{1, ..., n\}$ with $(1+q)^j \equiv 1 + qk \mod nq$ (Lemma 2). Observe that $\eta = \chi(1+q)$ is a primitive nth root of unity (use [2], p. 212, and Lemma 2). Now

$$y(\chi|x_{nq}) = \sum_{j=1}^{n} b_j \eta^j = 0.$$

Consider the case n = p first. Because $1 + Z + ... + Z^{n-1}$ is the minimal polynomial of η over \mathbb{Q} , all the coefficients b_j are equal. Therefore $a_1 = ... = a_n$ and x = 0. Suppose now that $n = p^m$, $m \ge 2$. Put

$$x' = \sum \{a_k \xi_n^k ; k \in \{1, \dots, n\}, p \mid k\}$$

and x'' = x - x'. The "trace argument" in the proof of Lemma 3 shows that $T(\eta^j) = 0$, for all $j \in \{1, \ldots, n\}$, $p \nmid j$ (T is the trace of \mathbb{Q}_n over $\mathbb{Q}_{n'}$). Therefore $y(\chi|x''_{nq}) = 0$, which implies that $y(\chi|x'_{nq}) = y(\chi|x_{nq}) - y(\chi|x''_{nq}) = 0$. However, x'_{nq} is the same as $x'_{n'q'}$, with n' = n/p, q' = qp. The induction hypothesis yields x' = 0. Let

$$\beta = \sum \{b_j \sigma_j \; ; \; j \in \{1, \dots, n\}, \; p \nmid j\} \in \mathbb{Q}[G_n] \, .$$

Then $\beta \eta = y(\chi|x_{nq}'') = 0$. By Lemma 3, the coefficients of β fulfill: $b_j = b_{j'}$ for all $j, j' \in \{1, \ldots, n\}, \ p \nmid j, j', \ j \equiv j' \bmod n'$. Then $a_k = a_{k'}$ for all $k, k' \in \{1, \ldots, n\}, \ p \nmid k, k', \ k \equiv k' \bmod n'$. We obtain

$$x'' = \sum_{\substack{k=1 \\ p \nmid k}}^{n'} a_k \sum_{\substack{k'=1 \\ k' \equiv k \bmod n'}}^{n} \xi_n^{k'} = \sum_{\substack{k=1 \\ p \nmid k}}^{n'} a_k T(\xi_n^k).$$

But the traces in the last sum vanish, whence x'' = 0 and x = x' + x'' = 0 follows. \blacksquare

Proof of Theorem 2. Let $n = 2^m$, $m \ge 2$. There are exactly two conjugacy classes of primitive characters mod 2n, viz. the set of even and

(2181)

the set of odd primitive characters (cf. [2], p. 212). Choose an arbitrary odd character χ_1 and an arbitrary even character χ_2 , both of them primitive. Then

$$M_1 = \{ z \in \mathbb{Q}[G_{2n}] \xi_{2n} ; y(\chi_1|z) = 0 \} = \mathbb{Q}[G_{2n}] (\xi_{2n} + \xi_{2n}^{-1}),$$

$$M_2 = \{ z \in \mathbb{Q}[G_{2n}] \xi_{2n} ; y(\chi_2|z) = 0 \} = \mathbb{Q}[G_{2n}] (\xi_{2n} - \xi_{2n}^{-1}),$$

are the simple submodules of $\mathbb{Q}[G_{2n}]\xi_{2n}$. For each $\sigma \in G_{2n}$, $\chi_k(\sigma)$ is an (n/2)th root of unity, k = 1, 2, which shows that the \mathbb{Q} -linear map

$$g_k: \mathbb{Q}_n \to \mathbb{Q}_{n/2}, \quad x \mapsto g_k(x) = y(\chi_k | \xi_{2n} x),$$

is well defined. Let V_k denote the kernel of q_k , k=1,2. Then

$$V_k=\{x\in\mathbb{Q}_n\ ;\ \xi_{2n}x\in M_k\}=\{x\in\mathbb{Q}_n\ ;\ \mathbb{Q}[G_{2n}]x_{2n}=M_k\}\cup\{0\}\ ,$$
 since M_k is simple. Moreover,

$$\dim V_k = \varphi(n) - \dim g_k(\mathbb{Q}_n) \ge \varphi(n) - \varphi(n/2) = n/4, \quad k = 1, 2.$$

But $V_1 \cap V_2 = \{0\}$, so $\dim(V_1 \oplus V_2) \ge n/2 = \dim \mathbb{Q}_n$. Thus $V_1 \oplus V_2 = \mathbb{Q}_n$ and $\dim V_k = n/4$, k = 1, 2.

Example. Let $n=2^m$ and $m\geq 2$ be as above. Consider the elements

$$x^{+} = 1 + \xi_n^{-1}, \quad x^{-} = 1 - \xi_n^{-1}$$

in \mathbb{Q}_n . Then $\xi_{2n}x^+ = \xi_{2n} + \xi_{2n}^{-1}$, $\mathbb{Q}[G_{2n}]x_{2n}^+ = M_1$, $\xi_{2n}x^- = \xi_{2n} - \xi_{2n}^{-1}$, $\mathbb{Q}[G_{2n}]x_{2n}^- = M_2$. Furthermore, $\mathbb{Q}[G_n]x^+ = \mathbb{Q}[G_n]x^- = \mathbb{Q} \oplus \mathbb{Q}[G_n]\xi_n$. Hence V_1 and V_2 cannot be $\mathbb{Q}[G_n]$ -modules. Indeed, if they were, $\mathbb{Q} \oplus \mathbb{Q}[G_n]\xi_n \subseteq V_1 \cap V_2$ would follow, which is impossible.

Remark. Clearly the results of this note do not depend on the particular choice $\xi_n = e^{2\pi i/n}$ of a primitive *n*th root of unity. This choice was just made for reasons of convenience, e.g., for the sake of the simple relation $\xi_{nq}^q = \xi_n$.

References

- K. Girstmair, Character coordinates and annihilators of cyclotomic numbers, Manuscripta Math. 59 (1987), 375–389.
- [2] H. Hasse, $Vorlesungen \ \ddot{u}ber \ Zahlentheorie$, Springer, Berlin 1950.
- [3] H. W. Leopoldt, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. Reine Angew. Math. 201 (1959), 119–149.
- [4] G. Lettl, The ring of integers of an abelian number field, ibid. 404 (1990), 162–170.

INSTITUT FÜR MATHEMATIK UNIVERSITÄT INNSBRUCK TECHNIKERSTR. 25/7 A-6020 INNSBRUCK, ÖSTERREICH