
ACTA ARITHMETICA

LXI.4 (1992)

The Galois module of a twisted
element in the pm-th cyclotomic field

by

Kurt Girstmair (Innsbruck)

1. Introduction and results. For a natural number n let ξn ∈ C
denote the primitive nth root of unity: ξn = e2πi/n. Then Qn = Q[ξn] is the
nth cyclotomic field and Gn = Gal(Qn/Q) is its Galois group over Q. The
field Qn is a module over the group ring Q[Gn] of Gn, and, by the normal
basis theorem, it is isomorphic to Q[Gn] itself. In what follows let n = pm,
where p is a prime number and m a nonnegative integer. Let q = pe, e ≥ 1,
be another power of p. For x ∈ Qn we consider

xnq = ξnqx ∈ Qnq .

We call xnq the twisted element of x, because it arises from x by means of
the rotation of the plane C through 2π/(nq). It is almost obvious that the
Galois module Q[Gnq]xnq is contained in Q[Gnq]ξnq (cf. proof of Theorem 1
below). Suppose that d is the number of divisors of p− 1. Then Q[Gnq]ξnq

is the direct sum of d simple Q[Gnq]-submodules if p ≥ 3, and it is the direct
sum of two simple submodules for p = 2 and nq ≥ 4. Hence Q[Gnq]ξnq has
2d different submodules for p ≥ 3, and four different submodules for p = 2,
nq ≥ 4. We consider the case q 6= 2 first. Here Q[Gnq]xnq is always one of
the two trivial submodules of Q[Gnq]ξnq; indeed, we show

Theorem 1. Let p be a prime, n = pm, q = pe, m ≥ 0, e ≥ 1. In
addition, if p = 2, let e ≥ 2. For each element x ∈ Qn, x 6= 0,

Q[Gnq]xnq = Q[Gnq]ξnq .

For q = 2 the result is different: Let M1, M2 be the simple submodules
of Q[G2n]ξ2n, n = 2m ≥ 4. For k = 1, 2, let

Vk = {x ∈ Qn ; Q[G2n]x2n = Mk} ∪ {0} .

Theorem 2. With the above notations, Vk is a Q-subspace of Qn of
dimension dim Vk = n/4, k = 1, 2. Moreover ,

Qn = V1 ⊕ V2 .
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2. Proofs. We adopt the above notations. Most of the representation
theory of Q[Gn] we use in the sequel can be found in [1], Section 1, and
in [4].

Consider the map

Z \ pZ → Gn, k 7→ σk ,

where σk(ξn) = ξk
n. This map is surjective and multiplicative. It is used in

order to identify the character group

Xn = {χ : Gn → C× ; χ a group homomorphism}
of Gn with the group of Dirichlet characters modulo n. Indeed, put

χ(k) =
{

χ(σk) if p - k,
0 otherwise.

For an element α =
∑
{aσσ ; σ ∈ Gn} in Q[Gn] let χ(α) =

∑
aσχ(σ)

∈ C. Let Y ⊆ Xn be a conjugacy class of characters, i.e., all characters χ,
χ′ in Y generate the same group 〈χ〉 = 〈χ′〉. Then the group ring Q[Gn]
splits into the simple submodules

Q[Gn]Y = {α ∈ Q[Gn] ; χ(α) 6= 0 only if χ ∈ Y } ,

of Q-dimension dim Q[Gn]Y = |Y |.
Next fix χ ∈ Xn. According to [3], [1] there is a map y(χ|−) : Qn → C

with the following properties:

(i) y(χ|−) is χ-linear, i.e., for all α ∈ Q[Gn] and all x ∈ Qn, y(χ|αx) =
χ(α)y(χ|x).

(ii) Let Y be the conjugacy class of χ. Then

Qn,Y = {x ∈ Qn ; y(χ′|x) 6= 0 only if χ′ ∈ Y }
is the uniquely determined Q[Gn]-submodule of Qn that is isomorphic to
Q[Gn]Y .

The map y(χ|−) is uniquely determined by χ up to factors in C×; this
means that the maps c ·y(χ|−), c ∈ C×, are the only ones having properties
(i), (ii), too.

Consider the numbers y(χ|ξn) ∈ C, χ ∈ Xn. Then y(χ|ξn) 6= 0 iff χ is a
primitive character modulo n (cf. [4]). Hence

Q[Gn]ξn =
⊕

Qn,Y ,

where Y runs through the conjugacy classes of primitive characters mod-
ulo n. We obtain

Lemma 1. Let n be as above, and let x ∈ Qn. Then

(1) Q[Gn]x ⊆ Q[Gn]ξn iff y(χ|x) = 0 for all imprimitive characters
χmodn;
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(2) Q[Gn]x = Q[Gn]ξn iff {χ∈Xn ; y(χ|x) 6= 0} = {χ∈Xn ; χ primitive}.

For the proof of Theorem 1 we need two additional lemmas.

Lemma 2. Let p be a prime, n = pm, q = pe, m ≥ 0, e ≥ 1. For p = 2
let e ≥ 2.

(1) For each k ∈ {1, . . . , n} there is a uniquely determined number j ∈
{1, . . . , n} such that 1 + qk ≡ (1 + q)j modnq.

(2) The map {1, . . . , n} → {1, . . . , n} : k 7→ j is bijective.
(3) Let k, k′ ∈ {1, . . . , n} and let j, j′ be their images under the above

map. Let 0 ≤ l ≤ m. Then k ≡ k′ mod pl iff j ≡ j′ mod pl. Furthermore,
k ≡ 0 mod pl iff j ≡ 0 mod pl.

The proof of Lemma 2 consists, essentially, in the observation that the
subgroups {1 + qk ; k = 1, . . . , n} and 〈 1 + q 〉 of (Z/nqZ)× coincide and
have order n (cf. [2], p. 72 ff.). Note, however, that the map Z/nZ →
Z/nZ : k 7→ j is not a group homomorphism in general.

Lemma 3. Let p be a prime, m ≥ 2, and n = pm. Let β =
∑
{bjσj ; j ∈

{1, . . . , n}, p - j} ∈ Q[Gn] be such that βξn = 0. Then bj = bj′ for all j, j′

with j ≡ j′ modn/p.

P r o o f. Put M = {α ∈ Q[Gn] ; αξn = 0}. According to Lemma 1,
the element β =

∑
bjσj is in M iff χ(β) = 0 for each primitive character

χmodn. From this we conclude that

dim M = |{χ ∈ Xn ; χ is imprimitive}| = ϕ(n/p) ,

where ϕ is Euler’s function. Observe now that Zp − ξp
n = Zp − ξn/p is the

minimal polynomial of ξn over Qn/p. This means that the trace

T (ξj
n) =

∑
{σj′ξn ; j′ ≡ j modn/p}

vanishes for each j, j ∈ {1, . . . , n}, p - j. Hence the elements

αj =
∑

{σj′ ; j′ ∈ {1, . . . , n}, j′ ≡ j modn/p} ,

j ∈ {1, . . . , n/p}, p - j, are in M . It is obvious that the αj are Q-linearly
independent. So, for dimensional reasons, they form a Q-basis of M . When
the element β ∈ M is expressed in terms of this basis, the assertion follows.

P r o o f o f T h e o r e m 1. Let n, q be as in Theorem 1. Let

x =
n∑

k=1

akξk
n ∈ Qn .

Then xnq =
∑
{akξ1+qk

nq ; k = 1, . . . , n} is a linear combination of primitive
nqth roots of unity. Therefore xnq ∈ Q[Gnq]ξnq and Q[Gnq]xnq ⊆ Q[Gnq]ξnq.
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Next suppose that χ is primitive modnq. Since y(χ|−) is determined
up to factors in C× only, we may assume that y(χ|ξnq) = 1. Suppose that
y(χ|xnq) = 0. We show that x = 0, which proves the theorem, by Lemma 1.
We use induction with respect to the exponent m. Let m = 0, i.e., n = 1
and x ∈ Q. Then 0 = y(χ|xq) = y(χ|xξq) = x · y(χ|xξq) = x .

Now let m > 0, which means p |n, and let n′ = n/p. The induction
hypothesis is as follows: Let q′ = pe′

, e′ ≥ 1 (e′ ≥ 2 for p = 2), x′ ∈ Qn′ ,
and χ′ a primitive character modn′q′; if y(χ′|x′n′q′) = 0 then x′ = 0.

Take x as above. Then

y(χ|xnq) =
n∑

k=1

akχ(1 + qk) = 0 .

For each j ∈ {1, . . . , n} we put bj = ak, where k is the uniquely determined
number in {1, . . . , n} with (1 + q)j ≡ 1 + qk modnq (Lemma 2). Observe
that η = χ(1 + q) is a primitive nth root of unity (use [2], p. 212, and
Lemma 2). Now

y(χ|xnq) =
n∑

j=1

bjη
j = 0 .

Consider the case n = p first. Because 1 + Z + . . . + Zn−1 is the minimal
polynomial of η over Q, all the coefficients bj are equal. Therefore a1 =
. . . = an and x = 0. Suppose now that n = pm, m ≥ 2. Put

x′ =
∑

{akξk
n ; k ∈ {1, . . . , n}, p | k}

and x′′ = x − x′. The “trace argument” in the proof of Lemma 3 shows
that T (ηj) = 0, for all j ∈ {1, . . . , n}, p - j (T is the trace of Qn over
Qn′). Therefore y(χ|x′′nq) = 0, which implies that y(χ|x′nq) = y(χ|xnq) −
y(χ|x′′nq) = 0. However, x′nq is the same as x′n′q′ , with n′ = n/p, q′ = qp.
The induction hypothesis yields x′ = 0. Let

β =
∑

{bjσj ; j ∈ {1, . . . , n}, p - j} ∈ Q[Gn] .

Then βη = y(χ|x′′nq) = 0. By Lemma 3, the coefficients of β fulfill: bj = bj′

for all j, j′ ∈ {1, . . . , n}, p - j, j′, j ≡ j′ modn′. Then ak = ak′ for all
k, k′ ∈ {1, . . . , n}, p - k, k′, k ≡ k′ modn′. We obtain

x′′ =
n′∑

k=1
p - k

ak

n∑
k′=1

k′≡k mod n′

ξk′

n =
n′∑

k=1
p - k

akT (ξk
n) .

But the traces in the last sum vanish, whence x′′ = 0 and x = x′ + x′′ = 0
follows.

P r o o f o f T h e o r e m 2. Let n = 2m, m ≥ 2. There are exactly two
conjugacy classes of primitive characters mod 2n, viz. the set of even and
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the set of odd primitive characters (cf. [2], p. 212). Choose an arbitrary odd
character χ1 and an arbitrary even character χ2, both of them primitive.
Then

M1 = {z ∈ Q[G2n]ξ2n ; y(χ1|z) = 0} = Q[G2n](ξ2n + ξ−1
2n ) ,

M2 = {z ∈ Q[G2n]ξ2n ; y(χ2|z) = 0} = Q[G2n](ξ2n − ξ−1
2n ) ,

are the simple submodules of Q[G2n]ξ2n. For each σ ∈ G2n, χk(σ) is an
(n/2)th root of unity, k = 1, 2, which shows that the Q-linear map

gk : Qn → Qn/2, x 7→ gk(x) = y(χk|ξ2nx) ,

is well defined. Let Vk denote the kernel of gk, k = 1, 2. Then

Vk = {x ∈ Qn ; ξ2nx ∈ Mk} = {x ∈ Qn ; Q[G2n]x2n = Mk} ∪ {0} ,

since Mk is simple. Moreover,

dim Vk = ϕ(n)− dim gk(Qn) ≥ ϕ(n)− ϕ(n/2) = n/4, k = 1, 2 .

But V1 ∩ V2 = {0}, so dim(V1 ⊕ V2) ≥ n/2 = dim Qn. Thus V1 ⊕ V2 = Qn

and dim Vk = n/4, k = 1, 2.

Example. Let n = 2m and m ≥ 2 be as above. Consider the elements

x+ = 1 + ξ−1
n , x− = 1− ξ−1

n

in Qn. Then ξ2nx+ = ξ2n + ξ−1
2n , Q[G2n]x+

2n = M1, ξ2nx− = ξ2n − ξ−1
2n ,

Q[G2n]x−2n = M2. Furthermore, Q[Gn]x+ = Q[Gn]x− = Q ⊕ Q[Gn]ξn.
Hence V1 and V2 cannot be Q[Gn]-modules. Indeed, if they were, Q ⊕
Q[Gn]ξn ⊆ V1 ∩ V2 would follow, which is impossible.

R e m a r k. Clearly the results of this note do not depend on the partic-
ular choice ξn = e2πi/n of a primitive nth root of unity. This choice was
just made for reasons of convenience, e.g., for the sake of the simple relation
ξq
nq = ξn.
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