p-primary parts of unit traces
 and the p-adic regulator

by

G. R. Everest* (Norwich)

Suppose K is a totally real algebraic number field with ring of algebraic integers denoted O_{K}. Write U_{K} for the group of units of O_{K}. The structure of U_{K} is known to be (see [6])

$$
\begin{equation*}
U_{K} \cong\{ \pm 1\} \times \mathbb{Z}^{r} \tag{1}
\end{equation*}
$$

where $[K: \mathbb{Q}]=r+1$. The trace map from K to \mathbb{Q} is denoted

$$
\begin{equation*}
T(\mu)=\sum_{\sigma} \sigma(\mu), \quad \mu \in K \tag{2}
\end{equation*}
$$

the sum running over all the embeddings $\sigma: K \rightarrow \mathbb{R}$. In this paper assume further that K / \mathbb{Q} is Galois, this assumption being made for technical convenience only. Suppose $\alpha \in O_{K}$, and $r>1$.

Theorem. There are asymptotic formulae as follows:

$$
\begin{gather*}
T(q)=\#\left\{u \in U_{K}:|T(\alpha u)|<q\right\}=A(\log q)^{r}+O\left((\log q)^{r-1}\right), \tag{3}\\
T_{p^{\prime}}(q)=\#\left\{u \in U_{K}:|T(\alpha u)| \cdot|T(\alpha u)|_{p}<q\right\} \\
=A(\log q)^{r}+O\left((\log q)^{r-1} \log \log q\right),
\end{gather*}
$$

where A denotes a positive constant (see (12)) depending only on K. Here $\left.\left|\left.\right|_{p}\right.$ denotes the usual p-adic absolute value, $| p\right|_{p}=p^{-1}$. So $||\cdot||_{p}$ represents the " p-primary part". In (3) the constant implicit in the big O notation depends only on K and α. In (4) it depends on p, K and α.

Obviously, the interest in formula (4) occurs only when the following condition is satisfied:

$$
\begin{equation*}
\liminf _{u \in U_{K}}|T(\alpha u)|_{p}=0 . \tag{5}
\end{equation*}
$$

[^0]In this case say the orbit $T\left(\alpha U_{K}\right)$ is p-unbounded. This condition can certainly obtain. For example, in the quadratic field $\mathbb{Q}(\sqrt{5})$, the orbit $T\left(U_{K}\right)$ is 3 and 11 -unbounded. However, it is not 31 -unbounded. This represents the sum total of my knowledge of this phenomenon.

Now formula (3) can be extended to a 3 -term asymptotic formula in the manner of the results in [2]. Actually, so can formula (4), and in the p-unbounded case, the error term in (4) is the correct order of magnitude.

The interest in trace values arises from the study of the norm-form equation (see [2]). Given a \mathbb{Q}-basis for $K,\left\{a_{1}, \ldots, a_{r+1}\right\}$, we obtain an equation

$$
\begin{equation*}
N(\boldsymbol{x})=\prod_{\sigma: K \rightarrow \mathbb{R}}\left|\sigma\left(a_{1} x_{1}+\ldots+a_{r+1} x_{r+1}\right)\right|=a \tag{6}
\end{equation*}
$$

Here $\boldsymbol{x} \in \mathbb{Z}^{r+1}$ and a is a fixed, non-zero, rational number. This is called the (full) norm-form equation. One may study the solutions \boldsymbol{x} by observing that they correspond to a finite number of orbits αU_{K}, and moreover, that x_{i} is given as $T(\beta u)$ for some $\beta \in K, u \in U_{K}$. This latter observation comes from a choice of basis, dual to the basis $\left\{a_{1}, \ldots, a_{r+1}\right\}$, with respect to the trace map T.

We will prove (4) in the special case that p is a prime totally split in K. In doing so we will make a study of Leopoldt's p-adic regulator. In order to get a clean proof we will assume Leopoldt's conjecture. The counting arguments are rather more delicate if Leopoldt's conjecture is false.

A lot of our interest lies with orbits of the form αG, where G is a subgroup of U_{K} of finite index which is p-adically homogeneous (see (27)). Using G we can get to the heart of the proof very quickly. An orbit αU_{K} is a finite union of such orbits so the proof of the formulae can easily be reconstructed.

There is a fairly extensive literature on the values taken by sums of (S-) units. A fundamental result in this area is contained in the paper by Evertse [3]. The results presented here build upon those in [3]; also upon other techniques developed recently (see [1], [2], [4]). At rock bottom there has to be some kind of machinery to enable one to transfer the counting of sums of units to heights of units. This is provided by the p-adic Subspace Theorem of Schlickewei (generalising the work of Schmidt), implicit in Evertse's results in [3].

In Section 1 a review is presented of formulae needed to prove (3). In Section 2 some technical lemmas are given in the form of local counting formulae and the definition of the group G is presented. In Section 3 the proof of the Theorem is given.

1. Review of counting formulae. The embeddings $\sigma: K \rightarrow \mathbb{R}$ give rise to $r+1$ linear forms on \mathbb{R}^{r}. To see this, choose a basis for U_{K} modulo
the group $\{ \pm 1\}$ in (1), and define

$$
\begin{equation*}
\sigma_{i}(\boldsymbol{x})=\log \left|\sigma_{i}(u(\boldsymbol{x}))\right| \tag{7}
\end{equation*}
$$

Here $u=u(\boldsymbol{x})=e_{1}^{x_{1}} \ldots e_{r}^{x_{r}} ; \boldsymbol{x}=\left(x_{1}, \ldots, x_{r}\right) \in \mathbb{Z}^{r}$ denoting the vector of exponents of u with respect to the chosen basis e_{1}, \ldots, e_{r}, and $\sigma_{1}, \ldots, \sigma_{r+1}$ denoting the distinct embeddings $\sigma_{i}: K \rightarrow \mathbb{R}$. Define

$$
\begin{gather*}
H(u)=\max _{1 \leq i \leq r+1}\left\{\left|\sigma_{i}(u)\right|\right\}, \tag{8}\\
h(u)=h(\boldsymbol{x})=\log H(u), \quad u \in U_{K} \tag{9}
\end{gather*}
$$

Here $h(\boldsymbol{x})$ is defined on \mathbb{Z}^{r} but we consider it as a function on \mathbb{R}^{r} by extension of scalars. The regulator is defined to be (see [6])

$$
\begin{equation*}
R_{K}=\left|\operatorname{det}\left(\sigma_{i}\left(\boldsymbol{e}_{j}\right)\right)\right|, \quad i=1, \ldots, r, \quad \boldsymbol{e}_{j}=\left(0, \ldots, 0, \frac{1}{j}, 0, \ldots, 0\right) \tag{10}
\end{equation*}
$$

It is easy to check that R_{K} is independent of the choices made to define it.
Theorem A (see [1], [4]).
(11) $U_{K}(q)=\#\left\{u \in U_{K}: H(u)<q\right\}=\frac{2(r+1)^{r}}{R_{K} r!}(\log q)^{r}+O\left((\log q)^{r-1}\right)$.

Write

$$
\begin{equation*}
A=\frac{2(r+1)^{r}}{R_{K} r!} \tag{12}
\end{equation*}
$$

Note. In fact $U_{K}(q)$ can be given as a three-term asymptotic formula (see [1]).

Define $H^{*}(u)$ to be the second largest member of the set of valuations considered in the definition of $H\left(H=H^{*}\right.$ is allowed). Define, for $\theta_{0}<1$,

$$
\begin{equation*}
U_{0}=\left\{u \in U_{K}: H^{*}(u) / H(u)<\theta_{0}\right\} \tag{13}
\end{equation*}
$$

Actually the choice of θ_{0} is immaterial provided it is sufficiently small and the notation is chosen to honour this fact. See the remark in the proof of Lemma 2(ii). Define

$$
\begin{equation*}
U_{0}(q)=\#\left\{u \in U_{0}: H(u)<q\right\} . \tag{14}
\end{equation*}
$$

Lemma 1.

$$
\begin{equation*}
U_{0}(q)-U(q)=O\left((\log q)^{r-1}\right) \tag{15}
\end{equation*}
$$

Proof. This is an easy geometric argument. It amounts to counting lattice points in a box whose sides are close to hyperplanes (take logs in (13) and use the fact that $\log H$ and $\log H^{*}$ are given by piecewise linear functions).

Note the following asymptotic approximations for the trace map on units. Write

$$
\begin{gather*}
t(\mu)=\log |T(\mu)| \\
t_{p}^{\prime}(\mu)=\log \left(|T(\mu)| \cdot|T(\mu)|_{p}\right), \quad t_{p}(\mu)=\log |T(\mu)|_{p} \tag{16}
\end{gather*}
$$

for $\mu \in K$.
Lemma 2. (i) The equation $T(\alpha u)=0$ has only a finite number of solutions for $u \in U_{K}$.
(ii) We have

$$
\begin{equation*}
t(\alpha u)=h(u)+O(1), \quad \text { for } u \in U_{0}, T(\alpha u) \neq 0 \tag{17}
\end{equation*}
$$

Here the $O(1)$ term depends upon α.
(iii) Given $\varepsilon>0$, there is a constant $\lambda_{1}(\varepsilon, \alpha, p)$ such that

$$
\left.\begin{array}{rl}
t_{p}(\alpha u) & >-\varepsilon h(u)-\lambda_{1} \\
t(\alpha u) \tag{18}\\
t_{p}^{\prime}(\alpha u)
\end{array}\right\}>(1-\varepsilon) h(u)-\lambda_{1} \quad \text { for all } u \in U_{K} \text { with } T(\alpha u) \neq 0 .
$$

Note. In view of (i) assume always that $T(\alpha u) \neq 0$. The finitely many exceptions to this clearly do not affect the type of results given in this paper.

Proof. (i) and (iii). Theorem 2 of Evertse in [3] gives

$$
T(\alpha u)=0 \quad \text { only finitely often }
$$

and

$$
\left.\begin{array}{c}
t_{p}(\alpha u)>-\varepsilon h(u)-\lambda_{1} \\
t(\alpha u) \\
t_{p}^{\prime}(\alpha u)
\end{array}\right\}>(1-\varepsilon) h(u)-\lambda_{1},
$$

for $0<\varepsilon<1$ and $0<\lambda_{1}=\lambda_{1}(K, p, \varepsilon, \alpha)$, provided there is no vanishing sub-sum of $T(\alpha u)$. That is,

$$
\sum_{j=1}^{t} \sigma_{i_{j}}(\alpha u) \neq 0 \quad \forall\left\{i_{1}, \ldots, i_{t}\right\} \subset\{1, \ldots, r+1\}
$$

If K / \mathbb{Q} is Galois then a vanishing sub-sum implies, upon application of all the elements of the Galois group and summing, that

$$
t \sum_{\sigma} \sigma(\alpha u)=0
$$

Thus a sub-sum can vanish only if the whole sum has vanished.
Note. For the non-Galois case a bound is possible in part (iii) but it requires quite a detour into an application of the p-adic Subspace Theorem.
(ii) This follows directly from the definition of U_{0}. Notice that the choice of θ_{0} depends on α. It must be taken so that one of the terms in the sum for $T(\alpha u)$ is dominant.

Finally, in this section, note the effect upon all that we have said, of replacing U_{K} by a subgroup of finite index. Suppose $G \triangleleft U_{K}$.

Theorem B (see [1]).

$$
\begin{equation*}
G(q)=\#\{u \in G: H(u)<q\}=B(\log q)^{r}+O\left((\log q)^{r-1}\right) \tag{19}
\end{equation*}
$$

where B depends upon r, R_{K} and $\left[U_{K}: G\right]$.
Also define

$$
\begin{equation*}
G_{0}=G \cap U_{0} \quad \text { and } \quad G_{0}(q)=\#\left\{u \in G_{0}: H(u)<q\right\} . \tag{20}
\end{equation*}
$$

Then (compare with (15))

$$
\begin{equation*}
G_{0}(q)-G(q)=O\left((\log q)^{r-1}\right) \tag{21}
\end{equation*}
$$

2. Local counting. In this section we will define the p-adic homogeneous hull of U_{K}, and obtain counting formulae for elements whose trace has fixed p-part. Suppose $p>r+1$ is totally split and interpret this in the following way. Suppose there exist embeddings

$$
\begin{equation*}
\tau_{i}: K \rightarrow \mathbb{Q}_{p}, \quad i=1, \ldots, r+1 \tag{22}
\end{equation*}
$$

these coming from the prime ideals lying above p. The group of 1 -units of U_{K} is defined as

$$
\begin{equation*}
U_{1}=\left\{u \in U_{K}: \tau_{i}(u) \equiv 1 \bmod p, 1 \leq i \leq r+1\right\} \tag{23}
\end{equation*}
$$

Then U_{1} is of finite index in U_{K} so choose a basis $\left\{e_{1}, \ldots, e_{r}\right\}$ for this group. Recall the definition of Leopoldt's p-adic regulator:

$$
\begin{equation*}
\left|R_{p}\right|=\operatorname{det}\left(\log _{p} \tau_{i}\left(e_{j}\right)\right), \quad 1 \leq i, j \leq r, \tag{24}
\end{equation*}
$$

where $\log _{p}$ denotes the usual p-adic logarithm on $1+p \mathbb{Z}_{p}$. Leopoldt has conjectured that $\left|R_{p}\right| \neq 0$ and this is known to be true for abelian extensions K / \mathbb{Q} (see [5]) but for only a few non-abelian extensions. See Leopoldt's original paper [7].

Suppose Leopoldt's conjecture is true. The matrix R_{p} is equivalent to a matrix in Smith Normal Form. Choose unimodular matrices T and S (over \mathbb{Z}_{p}), with

$$
T R_{p} S=\left[\begin{array}{ccc}
p^{f_{1}} & & 0 \tag{25}\\
& \ddots & \\
0 & & p^{f_{r}}
\end{array}\right], \quad f_{1} \leq \ldots \leq f_{r}, f_{i} \in \mathbb{N}
$$

Multiply on the right by

$$
S^{\prime}=\left[\begin{array}{ccc}
p^{f_{r}-f_{1}} & & 0 \\
& \ddots & \\
0 & & p^{f_{r}-f_{r}}
\end{array}\right]
$$

Now reduce the matrix $S S^{\prime} \bmod p^{f_{r}+1}$. We always identify $\mathbb{Z} / p^{N} \mathbb{Z}$ with $\mathbb{Z}_{p} / p^{N} \mathbb{Z}_{p}$. This means we have found an integer matrix $S^{\prime \prime}$ which effects the replacement of the set $\left\{e_{1}, \ldots, e_{r}\right\}$ by a set $\left\{g_{1}, \ldots, g_{r}\right\}$ with the following property: the matrix

$$
\begin{equation*}
\left(\log _{p} \tau_{i}\left(g_{j}\right)\right) \tag{26}
\end{equation*}
$$

has Smith Normal Form equal to $\operatorname{diag}\left(p^{f}, \ldots, p^{f}\right), f=f_{r}$.
Define the group G to be

$$
\begin{equation*}
G=\left\langle g_{1}, \ldots, g_{r}\right\rangle \tag{27}
\end{equation*}
$$

the p-adic homogeneous hull of U_{K}. We say G is p-adically homogeneous. Notice that the matrix $S^{\prime \prime}$ is non-singular so the group G is certainly of finite index inside U_{1}, hence in U_{K}.

Given $m \in \mathbb{Q}$, write $m=p^{s} a$, where $p \nmid a \in \mathbb{Q}$. Then $\operatorname{ord}_{p} m$ denotes s, as usual.

Given $\alpha \in O_{K}$ we aim to study the solvability of the equation

$$
\begin{equation*}
\operatorname{ord}_{p} T(\alpha u)=t, \quad t \in \mathbb{N}, \tag{28}
\end{equation*}
$$

for $u \in G$. We will see that the orbit αG is p-unbounded provided α satisfies (29) $\quad \tau_{i}(\alpha) \not \equiv 0 \bmod p, \quad i=1, \ldots, r+1 \quad$ and $\quad T(\alpha) \equiv 0 \bmod p^{f}$.

Note. Given G it is an easy exercise to show that infinitely many $\alpha \in O_{K}$ exist with property (29).

Write (28) in the form

$$
T(\alpha u) \equiv \omega p^{t} \bmod p^{t+1} \quad \text { with } \omega \in \mathbb{F}_{p}^{*}
$$

That is,

$$
\begin{equation*}
\alpha_{1} u_{1}+\ldots+\alpha_{r} u_{r}+\alpha_{r+1} u_{r+1} \equiv \omega p^{t} \bmod p^{t+1} \tag{30}
\end{equation*}
$$

where $\alpha_{i}=\tau_{i}(\alpha), u_{i}=\tau_{i}(u), \omega \in \mathbb{F}_{p}^{*}, t \in \mathbb{N}$. We may suppose that $N_{K \mid \mathbb{Q}}(u)=1, \forall u \in G$, to ease the computations. Then (30) becomes

$$
\begin{equation*}
\alpha_{1} v_{1}+\ldots+\alpha_{r} v_{r}+\alpha_{r+1} \equiv \omega^{\prime} p^{t} \bmod p^{t+1}, \quad \omega^{\prime} \in \mathbb{F}_{p}^{*} \tag{31}
\end{equation*}
$$

where the v_{i} are defined by

$$
\begin{equation*}
v_{i}=u_{1} \ldots u_{i}^{2} \ldots u_{r} \tag{32}
\end{equation*}
$$

Taking p-adic logarithms gives a matrix equation

$$
\left[\begin{array}{cccc}
2 & 1 & & 1 \tag{33}\\
& 2 & & \\
& & \ddots & \\
1 & & & 2
\end{array}\right]\left[\begin{array}{c}
\log _{p} u_{1} \\
\vdots \\
\log _{p} u_{r}
\end{array}\right]=\left[\begin{array}{c}
\log _{p} v_{1} \\
\vdots \\
\log _{p} v_{r}
\end{array}\right]
$$

Also, remembering (27) and taking p-adic logs,

$$
\left[\begin{array}{ccc}
\log _{p} \tau_{1}\left(g_{1}\right) & \ldots & \log _{p} \tau_{1}\left(g_{r}\right) \tag{34}\\
\ldots \ldots \ldots \ldots & \ldots & \ldots \ldots \ldots \\
\log _{p} \tau_{r}\left(g_{1}\right) & \ldots & \log _{p} \tau_{r}\left(g_{r}\right)
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{r}
\end{array}\right]=\left[\begin{array}{c}
\log _{p} u_{1} \\
\vdots \\
\log _{p} u_{r}
\end{array}\right] .
$$

Notice that the matrix with 2's and 1's is invertible if $p>r+1$, so find invertible matrices U and V over \mathbb{Z}_{p} with

$$
U\left[\begin{array}{ccc}
p^{f} & & 0 \tag{35}\\
& \ddots & \\
0 & & p^{f}
\end{array}\right] V \boldsymbol{x}=\left[\begin{array}{c}
\log _{p} v_{1} \\
\vdots \\
\log _{p} v_{r}
\end{array}\right]
$$

Finally, write

$$
U^{-1}\left[\begin{array}{c}
\log _{p} v_{1} \tag{36}\\
\vdots \\
\log _{p} v_{r}
\end{array}\right]=\left[\begin{array}{c}
\log _{p} \omega_{1} \\
\vdots \\
\log _{p} \omega_{r}
\end{array}\right], \quad \text { and } \quad V \boldsymbol{x}=\boldsymbol{y}
$$

Let $N(t)$ denote the number of solutions $\boldsymbol{x} \in\left(\mathbb{Z} / p^{t+1-f} \mathbb{Z}\right)^{r}=\left(\mathbb{Z}_{p} / p^{t+1-f} \mathbb{Z}_{p}\right)^{r}$ of the equations (31), (32), (34).

Lemma 3. Suppose condition (29) is satisfied for $\alpha \in O_{K}$. Then

$$
N(t)= \begin{cases}0, & t<f \tag{37}\\ (p-1) p^{(t+1-f)(r-1)}, & t \geq f\end{cases}
$$

Proof. In order that (35) and (36) be satisfied for $\boldsymbol{y} \in \mathbb{Z}_{p}^{r}$, we must have

$$
\begin{equation*}
\omega_{i} \equiv 1 \bmod p^{f}, \quad i=1, \ldots, r . \tag{38}
\end{equation*}
$$

Assume this is the case, and write

$$
\begin{equation*}
\omega_{i}=1+p^{f} z_{i}, \quad z_{i} \in \mathbb{Z}_{p}, \quad i=1, \ldots, r . \tag{39}
\end{equation*}
$$

In terms of (36), the congruence at (31) becomes

$$
\begin{equation*}
\alpha_{1} \omega_{1}^{u_{11}} \ldots \omega_{r}^{u_{1 r}}+\ldots+\alpha_{r} \omega_{1}^{u_{r 1}} \ldots \omega_{r}^{u_{r r}}+\alpha_{r+1} \equiv \omega^{\prime} p^{t} \bmod p^{t+1} \tag{40}
\end{equation*}
$$

where the matrix U (see (35)) is given as

$$
\begin{equation*}
U=\left(u_{i j}\right), \quad u_{i j} \in \mathbb{Z}_{p} \tag{41}
\end{equation*}
$$

It is clear already, by reducing $\bmod p^{f}$, that no solution of (40) exists if $t<f$. The proof of the lemma will follow by assigning arbitrary values
$\bmod p^{t+1-f}$ to $r-1$ of the z_{i} in (39) (also to $\omega \in \mathbb{F}_{p}^{*}$, see (30)). Then the congruence (40) is solved uniquely for the other z_{i} (hence ω_{i}). This obviously gives the formula required.

To justify this last statement, an argument like Hensel's Lemma is required. The conditions at (29) imply that for some j with $1 \leq j \leq r$, we have

$$
\begin{equation*}
\alpha_{1} u_{1 j}+\alpha_{2} u_{2 j}+\ldots+\alpha_{r} u_{r j} \not \equiv 0 \bmod p \tag{42}
\end{equation*}
$$

If this were not so then the equation

$$
\begin{equation*}
U \boldsymbol{\alpha}=0 \bmod p, \quad \boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{r}\right) \tag{43}
\end{equation*}
$$

would have a non-trivial solution. But U reduces $\bmod p$ to a non-singular matrix. So (42) is certainly justified, let us say $j=1$.

Now assign arbitrary values $\bmod p^{t+1-f}$ to z_{2}, \ldots, z_{r}. The condition (42) is precisely the condition that guarantees a unique solution of (40) for z_{1}, hence ω_{1}. This is a standard argument (à la Hensel). The coefficients of the p-adic expansion for z_{1} are found by induction, condition (42) guaranteeing uniqueness. The proof of the lemma is complete.

On the group G there is a filtration obtained as follows. Every $u \in G$ satisfies

$$
\tau_{i}(u) \equiv 1 \bmod p^{f}, \quad i=1, \ldots, r+1
$$

Given $t \geq f$ define

$$
\begin{equation*}
G_{t}=\left\{u \in G: \tau_{i}(u) \equiv 1 \bmod p^{t}\right\} . \tag{44}
\end{equation*}
$$

Lemma 4. For $t \geq f$,

$$
\begin{equation*}
G_{t}=G^{p^{t-f}} \tag{45}
\end{equation*}
$$

Proof. The question is simply this: what is the general solution of the congruence

$$
\left(\log _{p} \tau_{i}\left(g_{j}\right)\right) \boldsymbol{x} \equiv \mathbf{0} \bmod p^{t} ?
$$

Taking the Smith Normal Form it is obvious that $\boldsymbol{x} \in \mathbb{Z}^{r}$ is a solution if and only if $p^{t-f} \mid x_{i}, i=1, \ldots, r$.

This is important. Fix $N(t)$ solutions of the equation

$$
\operatorname{ord}_{p} T(\alpha u)=t
$$

for $u \bmod G_{t+1}$, say $u_{1}, \ldots, u_{N(t)}$. Here the vector of exponents of u_{j} with respect to the basis $\left\{g_{1}, \ldots, g_{r}\right\}$ (see (27)) is given $\bmod \left(p^{t+1-f} \mathbb{Z}\right)^{r}$. The set of all the solutions is precisely the collection of orbits

$$
\begin{equation*}
u_{j} G_{t+1}, \quad j=1, \ldots, N(t) \tag{46}
\end{equation*}
$$

So far we have studied the congruence (28) for $t \geq f$ and for $u \in G$. In order that the Theorem may be proved, this being a statement about
$u \in U_{K}$, we need to put the result together from results about $u \in G$. So notice the following.

Lemma 5. Suppose $\alpha \in O_{K}$ satisfies

$$
\begin{equation*}
\operatorname{ord}_{p} T(\alpha)=\theta \quad \text { for } \theta<f . \tag{47}
\end{equation*}
$$

Then the equation (28) has a solution only for $t=\theta$ but for any $u \in G$.
This is an obvious statement but it is clear that the Theorem follows from the corresponding results about orbits αG, for $\alpha \in O_{K}$. Suppose, in fact, we wanted to study an orbit γU_{K} for some $\gamma \in O_{K}, \tau_{i}(\gamma) \not \equiv 0 \bmod p$ for all $i=1, \ldots, r+1$. Choosing coset representatives turns this into a finite number of orbits of the kind αG. Each of these is either p-bounded or not and Lemmas 3 and 5 give precise criteria to determine which of the two possibilities applies.

In the next section we will run through the counting arguments in the p-unbounded case.
3. Proof of Theorem. Given $\alpha \in O_{K}$ with $\tau_{i}(\alpha) \not \equiv 0 \bmod p$ for each i, suppose the orbit αG is p-unbounded. We agree to identify $u \in G$ with $\boldsymbol{x} \in \mathbb{Z}^{r}$ via the basis $\left\{g_{1}, \ldots, g_{r}\right\}$. Also, for all $t \geq f$, identify G_{t} with $G^{p^{t-f}}$, using (45). This transforms the counting of units to the counting of lattice points inside regions of \mathbb{R}^{r}.

The proof of (3) will act as a dummy run for the proof of (4). Write $(\log q=Q)$
(48) $t(Q)=\#\left\{u \in U_{K}: t(\alpha u)<Q\right\}$

$$
=\#\left\{u \in U_{0}: t(\alpha u)<Q\right\}+\#\left\{u \in U_{K}-U_{0}: t(\alpha u)<Q\right\} .
$$

For the second bracket in (48), apply (18) to deduce that this expression is

$$
\begin{equation*}
O\left(\#\left\{u \in U_{K}-U_{0}:(1-\varepsilon) h(u)-\lambda_{1}<Q\right\}\right) . \tag{49}
\end{equation*}
$$

Now apply (15) to deduce that (49) lies in the error term.
Going back to the first term in (48), apply (17) to get

$$
\begin{equation*}
\#\left\{u \in U_{0}: h(u)+O(1)<Q\right\} . \tag{50}
\end{equation*}
$$

The result follows by applying (15) and (11).
Now suppose that $\alpha \in O_{K}$ and, with the notation of Section $2, \tau_{i}(\alpha) \not \equiv$ $0 \bmod p$ for $i=1, \ldots, r+1$. Suppose that the orbit αG is p-unbounded and count

$$
\begin{align*}
t_{p}^{\prime}(Q) & =\#\left\{u \in G: t_{p}^{\prime}(\alpha u)<Q\right\} \tag{51}\\
& =\#\left\{u \in G: t(\alpha u)+t_{p}(\alpha u)<Q\right\} .
\end{align*}
$$

If we do the same trick as at (48) we may assume that $u \in G_{0}$. Those outside give a contribution only in the error. Thus (51) becomes the simpler
expression

$$
\begin{equation*}
\#\left\{u \in G_{0}: h(u)+t_{p}(u)<Q\right\} . \tag{52}
\end{equation*}
$$

The object we really want to study is

$$
\begin{equation*}
\#\left\{u \in G: h(u)+t_{p}(u)<Q\right\} . \tag{53}
\end{equation*}
$$

This differs from (52) by an amount which is

$$
\begin{equation*}
\#\left\{u \in G-G_{0}: h(u)+t_{p}(u)<Q\right\} . \tag{54}
\end{equation*}
$$

We claim that the expression in (54) already lies in the error, leaving us free to study (53), as we wish. To see this, apply (18) to obtain

$$
(1-\varepsilon) h(u)-\lambda_{1}<h(u)+t_{p}(u)<Q .
$$

Thus (54) is majorised by (rechoose $\varepsilon>0$ if necessary)

$$
\begin{equation*}
\#\left\{u \in G-G_{0}: h(u)<(1+\varepsilon) Q\right\} . \tag{55}
\end{equation*}
$$

The condition that $u \notin G_{0}$ amounts to (see (13))

$$
\begin{equation*}
h^{*}(u) \leq h(u) \leq h^{*}(u)+\lambda_{2} \tag{56}
\end{equation*}
$$

where $h^{*}=\log H^{*}$, and λ_{2} is constant.
Applying (55) means we now estimate

$$
\begin{equation*}
\#\left\{u \in G: h(u)<(1+\varepsilon) Q,\left|h(u)-h^{*}(u)\right|<\lambda_{2}\right\} . \tag{57}
\end{equation*}
$$

But this amounts to the same idea as that in Lemma 1. The element $u \in G$ is identified with $\boldsymbol{x} \in \mathbb{Z}^{r}$ via the choice of basis. The functions h and h^{*} are piecewise linear functions of \boldsymbol{x} so, as before, we are counting lattice points inside a large box (this time of side $(1+\varepsilon) Q$) which lie close to a finite number of hyperplanes. Thus we obtain

$$
\#\left\{u \in G-G_{0}: h(u)+t_{p}(u)<Q\right\}=O\left(Q^{r-1}\right) .
$$

As claimed, the problem is reduced to the study of (53).
Recall the remarks at (46) in Section 2. Use the filtration

$$
G \geq G_{f} \geq G_{f+1} \geq \ldots
$$

In terms of the notation in Section 2, (53) becomes

$$
\begin{equation*}
\sum_{t=f}^{\infty} \sum_{j=1}^{N(t)} \#\left\{v \in G_{t+1}: h\left(u_{j} v\right)<Q+t \log p\right\} \tag{58}
\end{equation*}
$$

It is clear by applying (18) that the upper range of t is restricted. In fact,

$$
\begin{equation*}
(1-\varepsilon) h(u)-\lambda_{1}<t_{p}^{\prime}(\alpha u) \leq h(u)-t \log p<Q+\lambda_{3} \tag{59}
\end{equation*}
$$

implies

$$
\begin{equation*}
t \log p<\varepsilon h(u)+\lambda_{4} . \tag{60}
\end{equation*}
$$

Now (59) and (60) give

$$
t<\frac{\varepsilon Q+\lambda_{5}}{(1-\varepsilon) \log p}
$$

Rechoosing $\varepsilon>0$ gives

$$
\begin{equation*}
t<\varepsilon Q . \tag{61}
\end{equation*}
$$

This is a little too large to be practical so now we introduce the p-adic analogue of the trick at (48).

Given $u \in G$ with $u=u_{j} v$ as above, write $G_{p}(t)$ for those u with

$$
\begin{equation*}
h\left(u_{j}\right)>p^{t / 2} . \tag{62}
\end{equation*}
$$

Then formula (18) gives

$$
p^{t / 2}<h\left(u_{j}\right)<\frac{Q+\lambda_{6}}{1-\varepsilon},
$$

where the right hand inequality comes by applying (59) directly. Now taking logs gives a much smaller upper bound for t. To summarize, let T denote the maximum value of t allowed. Then

$$
T< \begin{cases}2 \log Q / \log p+\lambda_{7}, & u \in G_{p}(t), \tag{63}\\ \varepsilon Q, & u \in G .\end{cases}
$$

Write $T^{\prime}=2 \log Q / \log p+\lambda_{7}$, assumed to be an integer. Define

$$
N(t, G)=\#\left\{u \in G: t_{p}(u)=-t \log p, h(u)<Q+t \log p\right\} .
$$

Then

$$
t_{p}^{\prime}(Q)=\sum_{t=f}^{T} N(t, G)=\sum_{t=f}^{T^{\prime}} N\left(t, G_{p}(t)\right)+\sum_{t=f}^{T} N\left(t, G-G_{p}(t)\right)
$$

Notice that if $t>T^{\prime}$ then u cannot be in any $G_{p}(t)$. Hence

$$
\begin{equation*}
t_{p}^{\prime}(Q)=\sum_{t=f}^{T^{\prime}} N(t, G)+\sum_{t=T^{\prime}}^{T} N\left(t, G-G_{p}(t)\right)=S_{1}+S_{2} \tag{64}
\end{equation*}
$$

We claim that S_{2} lies in the error term. First show that S_{1} gives the formula claimed. Expand in the manner of (58):

$$
\sum_{t=f}^{T^{\prime}} \sum_{j=1}^{N(t)} \#\left\{v \in G_{t+1}: h\left(u_{j} v\right)<Q+t \log p\right\} .
$$

Use (45), together with (27), to obtain

$$
\begin{equation*}
\sum_{t=f}^{T^{\prime}} \sum_{j=1}^{N(t)} \#\left\{\boldsymbol{v} \in \mathbb{Z}^{r}: h\left(\boldsymbol{u}_{j}+p^{t+1-f} \boldsymbol{v}\right)<Q+t \log p\right\} \tag{65}
\end{equation*}
$$

where we identify elements of G with their vectors of exponents with respect to the basis in (27). Divide through by p^{t+1-f} so that each $p^{f-t-1} \boldsymbol{u}_{j} \in C_{0}$, the unit cube about the origin in \mathbb{R}^{r}. We have remarked already, after (9), that h is defined on \mathbb{R}^{r}. Observe that for any $\delta \in C_{0}$,

$$
h(\boldsymbol{v}+\boldsymbol{\delta})=h(\boldsymbol{v})+O(1) \quad \text { for } \boldsymbol{v} \in \mathbb{Z}^{r}
$$

where the constant implicit in big O is uniform and depends only upon K. Then (65) becomes

$$
\sum_{t=f}^{T^{\prime}} \sum_{j=1}^{N(t)} \#\left\{\boldsymbol{v} \in \mathbb{Z}^{r}: h(\boldsymbol{v})<\frac{Q+t \log p}{p^{t+1-f}}+\lambda_{8}\right\}
$$

More simply,

$$
\sum_{t=f}^{T^{\prime}} \sum_{j=1}^{N(t)} \#\left\{\boldsymbol{v} \in \mathbb{Z}^{r}: h(\boldsymbol{v})<\frac{Q}{p^{t+1-f}}+\lambda_{9}\right\}
$$

So we are back to counting elements of G again. Formula (19) applies to give
(66) $\sum_{t=f}^{T^{\prime}} \sum_{j=1}^{N(t)}\left\{B\left(\frac{Q}{p^{t+1-f}}+\lambda_{9}\right)^{r}+O\left(\left(\frac{Q}{p^{t+1-f}}\right)^{r-1}\right)\right\}$

$$
\begin{aligned}
& =\sum_{t=f}^{T^{\prime}} B(p-1) p^{(t+1-f)(r-1)} \frac{Q^{r}}{p^{(t+1-f) r}}+O\left(\sum_{t=f}^{T^{\prime}} Q^{r-1}\right) \\
& =B Q^{r}(p-1) \sum_{t=f}^{T^{\prime}} \frac{1}{p^{t+1-f}}+O\left(Q^{r-1} \log Q\right)
\end{aligned}
$$

using formula (37) and (63). The sum in the first term differs from $(p-1)^{-1}$ by an amount which is

$$
O\left(p^{-T^{\prime}}\right)=O\left(p^{-2 \log Q / \log p}\right)=O\left(Q^{-2}\right)
$$

So (66) comes out to be

$$
B Q^{r}+O\left(Q^{r-1} \log Q\right)
$$

as we require.
Now go back to (64) and show that S_{2} lies in the error. Filtering as before we see that S_{2} is majorised by
(67) $\sum_{t=T^{\prime}}^{T} \sum_{j=1}^{N(t)} \#\left\{\boldsymbol{v} \in \mathbb{Z}^{r}: h\left(\boldsymbol{u}_{j}\right) \leq p^{t / 2}, h\left(\boldsymbol{u}_{j}+p^{t+1-f} \boldsymbol{v}\right)<Q+t \log p\right\}$.

Divide through by p^{t+1-f} as before. Also notice that a crude upper bound for the number of j with $h\left(\boldsymbol{u}_{j}\right) \leq p^{t / 2}$ is given by $O\left(p^{t r / 2}\right)$. So replace (67) by

$$
\sum_{t=T^{\prime}}^{T} p^{t r / 2} \#\left\{\boldsymbol{v} \in \mathbb{Z}^{r}: h\left(\boldsymbol{v}+p^{f-t-1} \boldsymbol{u}_{j}\right)<\frac{Q+t \log p}{p^{t+1-f}}\right\}
$$

The vectors $p^{f-t-1} \boldsymbol{u}_{j}$ are shrinking:

$$
\left|p^{f-t-1} \boldsymbol{u}_{j}\right|<p^{-t / 2} \quad(| | \text { denoting vector norm })
$$

Therefore S_{2} is majorised by

$$
\begin{equation*}
\sum_{t=T^{\prime}}^{T} p^{t r / 2} \#\left\{\boldsymbol{v} \in \mathbb{Z}^{r}: h(\boldsymbol{v})<\frac{Q}{p^{t}}+\frac{\lambda_{10}}{p^{t / 2}}\right\} \tag{68}
\end{equation*}
$$

Recall the sizes of T^{\prime} and T given at (63). Expand out to obtain

$$
\begin{equation*}
O\left(\sum_{t=T^{\prime}}^{T} \frac{Q^{r}}{p^{t r / 2}}\right)+O\left(\sum_{t=T^{\prime}}^{T} \frac{Q^{r-1}}{p^{t(r-1) / 2}}\right) . \tag{69}
\end{equation*}
$$

Now $p^{-T^{\prime} / 2}$ is $O\left(Q^{-1}\right)$. Putting this into the expressions in (69) shows they are very small indeed.

References

[1] G. R. Everest, Uniform distribution and lattice point counting, J. Austral. Math. Soc., to appear.
[2] -, On the solution of the norm-form equation, Amer. J. Math., to appear.
[3] J.-H. Evertse, On sums of S-units and linear recurrences, Compositio Math. 53 (1984), 225-244.
[4] K. Győry and A. Pethő, Über die Verteilung der Lösungen von Normformen Gleichungen, III, Acta Arith. 37 (1980), 143-165.
[5] N. Koblitz, p-Adic Analysis: A Short Course on Recent Work, London Math. Soc. Lecture Note Ser. 46, Cambridge Univ. Press, 1980.
[6] S. Lang, Algebraic Number Theory, Addison-Wesley, New York 1970.
[7] H. W. Leopoldt, Eine p-adische Theorie der Zetawerte II, J. Reine Agnew. Math. 274/275 (1975), 224-239.

SCHOOL OF MATHEMATICS
UNIVERSITY OF EAST ANGLIA
NORWICH NR4 7TJ, U.K

[^0]: * I am grateful to Daniel Bertrand for saving me from an error in an earlier version of this paper. Also my thanks go to the referee for his helpful comments.

