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1. Introduction. Let ||z|| denote the distance from z to the nearest
integer. Let € > 0. A well-known theorem of Heilbronn [15] states that for
N > Ci(¢e), and any real number «, we have

min_|lan?|| < N~1/2te
1<n<N

Among many possible extensions, the following was considered by Dani-
cic [9]. We seek a positive number «(s) with the following property:

Let Q(z1,...,x5) be a real quadratic form, then for N > Cy(s,e) we
have

(1.1) 1Q(ny,...,n,)|| < N—e()+e
for some integers nq,...,ng,
(1.2) 0 < max(|nql,...,|ns]) < N.

Danicic was able to take «a(s) = s/(s + 1). An important step forward
occurred when Schinzel, Schlickewei and Schmidt [18] showed the relevance
of the following “discrete version” of the problem. We seek the least positive
number B;(q) with the following property.

For any K; > 0 satisfying
(Ki...K\)Y* > B.(q),

and any quadratic form @Q with integer coefficients, the congruence Q(x) = 0
(mod q) has a nonzero solution satisfying

Further work on this problem was done by Baker and Harman [6] and
by Heath-Brown [14]. Heath-Brown showed that

(1.3) Bs(q) < C’g(s,s)qﬁ(s)+5

where 5(4) = 5/8, 3(6) = 15/26, 5(8) = 6/11, 5(10) = B(11) = 8/15
and B(s) = 1/2 + 3/s? for even s > 12. For s = 3,5,7 the exponent
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B(s) = 1/2 4+ 1/(2s) [6] remains the best known. By arguing as in [6], one
can show that the exponent
s

) = 5 sB0)

is permissible in (1.1), whenever (1.3) holds.
Not surprisingly, one can do better for real additive quadratic forms. It
is convenient for applications to seek solutions in a box rather than a cube.

THEOREM 1. Suppose that (1.3) holds. Let o(1) =1/2, 0(2) =1,
s

o(s) =57 (s — 2)3(s)

Let Q(x1,...,x5) be an additive quadratic form. Let N > C4(s,e). Given
positive N1,..., Ny with

(1.4) Ni...N,> N*

(s >3).

there exist non-negative integers nq,...,ns not all zero satisfying n; < N;
(i=1,...,s) and

1Q(n1,...,ng)| < N—o(s)+e

The case s = 2 of Theorem 1 is a generalization of a theorem of Cook [7].
For s > 3, see [13] and [1] for earlier results along the lines of Theorem 1.

In proving Theorem 1 we assume, as we may, that 1/2 < 8(s) < 1/2 +
1/(2s —4).

We apply Theorem 1 to pairs of additive forms.

THEOREM 2. Define o(s) as above. Let Qq1(x1,...,xzs), Qa2(z1,...,%s)
be additive quadratic forms. Then for N > Cs(s,€) we have

(1.5) max([|Q1(n)[l, |Q2(n)|l) < N7+

for some integers ny,...,ns satisfying (1.2). Here
T(2)=1/3, 7(3)=3/7, 7(4)=1/2;

(s) = {80’(8)/(80(8) +2s—8) for5<s<T,
o(s)/(L+o(s)) for s > 8.

Since o(s) has limit 2 as s — oo, we see that 7(s) has limit 2/3. However,
we can replace 7(s) by an exponent whose limit is 1; see Baker and Har-
man [5]. In fact, the method of [5] may be refined to give an improvement
of Theorem 2 for s > 24.

For earlier results in a small number of variables along the lines of The-
orem 2, see Liu [17] and Baker and Gajraj [4]. The exponent in [4] is much
poorer, namely —1/5 + ¢ for s > 2. This is partly because we now have
at our disposal the “lattice method” of Schmidt [19], whose result may be



Pairs of additive quadratic forms 47

stated as

7(1)=1/6.
Weaker versions of this last result were found earlier by Danicic [8], [10] and
Liu [16].

For arbitrary pairs of quadratic forms, the first results analogous to (1.5)
were given by Danicic [11]. Recently Baker and Briidern [3] improved these
results. For example, the analogue of (1.5) for a pair of binary forms has
1/5 in place of 7(2). Once again, [5] is stronger for large s.

Throughout the paper, implied constants depend at most on €, s. We
write e(f) = e2™. The cardinality of a finite set A is denoted by |.A|.

2. Proof of Theorem 1. We require two lemmas from [2].

LEMMA 1. Let z; (j = 1,...,N) be real numbers satisfying ||z;|| > M 1.
Then
N
(2.1) Z ’Ze(mxn) > N/6.
m<M n=1

Proof. This is Theorem 2.2 of [2].

LEMMA 2. Let § > 0 and N > Cs(5). Let o be real. Let L be a natural
number such that

(2.2) L° <N.
If
L N 9
(2.3) Z ‘ Z e(momQ)’ > A
m=1 n=1

where A > N'1OL, then there exist coprime integers v and s with r <
LN?t9A-T and

(2.4) lar —s| < N°A™!.

Proof. This is given in all essentials in [2], although the condition (2.2)
is weaker than the corresponding inequality in [2].

Our next step is to prove Theorem 1 under the additional restrictions
(2.5) §>2; N;>N/* (j=1,...,s).

LEMMA 3. The assertion of Theorem 1 is true when (2.5) holds.

Proof. Suppose that the assertion is false. Then, by Lemma 1,

M
(2.6) > Ty(m)...To(m) > Cr(s)Ny ... N,
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Here M =1+ [N°®)=¢], Q(x) = a12? + ... + a2,
m) = ‘ Z e(maan)‘.
n<N;

The contribution from those m in (2.6) havmg i (m) < N~2 for some index
j is negligible. We cover [N=2,C7Nj ... N4 by O(lo g N) subintervals of the
type [A,24). There must exist numbers A; >N2(j=1,....,s) and a
subset B of [1, M) NZ having

A'<T4( )<2A' G=1,....8),

(2.7) > Ti(m (m) > Ny...Ng/(log N)*.
meB

This implies

(2.8) IB|?A3... A2 > N?...N2(log N)~2
We may suppose ¢ is sufficiently small. Writing § = £2,
(2.9) IBI*A2 ... A2 > |BI*"2N%...N2N~°.

Choose j, 1 < j < s. The inequality
2 146
(2.10) |B|A < MN;

must be satisfied. Otherwise,
M
> Tj(m)®> > MN;™°.

Now M? < N&/* < N;. Since N; is large, Lemma 2 yields a natural number
r such that

TSMN]2+6(MN1+6) N],
lojr?|| < rllagr]| < NJFO(MNH)™ =M1,

contradicting our hypothesis. This proves (2.10).
From (2.10),

(2.11) IBI*A? ... A2 < M*(Ny...N,)'o.
Suppose first that s = 2. Then
IB|2A2A2 < M?(N;Ny)'*o.
Combining this with (2.8), (1.4), we have
NENZ(log N)~* <« M?(N;Np)' 2,
M? > N> (log N)™*
This contradicts the definition of M, and Lemma 3 is proved for s = 2.
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Suppose now s > 2. We combine (2.9) and (2.11) to obtain an upper
bound for |B]:

IBI*"2(Ny...N)>?N7° < M*(Ny...N,)*?,

(212)  |BFT2 < MP(Ny ... N)HHINS < (MN-1)sNG+HDS
from (1.4).
Choose any m € B. For any j < s for which
(2.13) A > le/2+57
we apply the case L = 1 of Lemma 2. This yields integers r;, b; satisfying
(2.14) 1 <rj < (Nj/4;)°N7
(2.15) mayr} —b;| < rjllmayrgl| < (Nj/A;) N2

If (2.13) fails, the last expression in (2.15) is at least 1, and we can trivially
satisfy (2.14) and

(216) |mozjrj2» — bj| S (Nj/Aj)4N45_2 .
By (2.9), (2.12) and (1.4),
(2.17) A2, AX(Ny... N3 (m/M s/
> B 72N T(Ny ... N3 (m/M)*/?
> Ns—6s6(MN—1)—2s/(s—2) (m/M)S/2 )
By the definition of M, the last expression in (2.17) is at least m?(s)+2s9,
Thus
K,...K,> 03(3,5)3m85(3)+86,
where K; = A?N;lfg‘s(m/M)l/?
We apply (1.3). There are integers x1, ..., x4, not all zero, satisfying

(2.18) Zb]-:n? =0 (mod m),
j=1

Taking n; = rjz; we have, by (2.14) and (2.19),
0 < nyj < (N;/A;)PNJAIN % (m/M)Y/? < N;.

Not all n; are 0. Moreover,

S S S S

2 _ 2 2 _ -1 2 —1 20 2
E ajn; = E T =m E bjzi +m E zj(aymry —bj).
Jj=1 Jj=1 Jj=1 Jj=1
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By (2.18), (2.19) and (2.16),

S

2

H ZO‘J"J'
j=1

S
<m~! Zx?\ajmrjz- — b,
j=1

S
<m~UY AINTE O (m/ MNP AT < M
j=1

contradicting our initial hypothesis. This proves the lemma.

Proof of Theorem 1. We proceed by induction on s. Clearly Heil-
bronn’s theorem is equivalent to Theorem 1 when s = 1. Now suppose that
s > 1 and the result has been proved for forms in s — 1 variables. It is easily
verified that, since 1/2 < f3(s) < 1/2+41/(2s — 4), we have

(2.20) o(s) <2 and o(s—1) > o(s).

s—1

If N; > N/* (j = 1,...,s), then the induction step follows from
Lemma 3. Thus we may suppose N; < N /4 for some index j, let us say
j = s. Consequently,

Ny...Ny_1> Ns—€/4 > (Ns/(s—l)—€/4)s—1 ]
By the induction hypothesis there are integers ni,...,ns—1, not all zero,
satisfying
OSRZSNl (izl,...,s—l),
2 2 —(s/(s=1)—e/4)(0(s—1)—e/4)  pr—o(s)+e
loani + ... +as_ins_4|| < N <N .

The last inequality follows from (2.20). This completes the induction step
and proves Theorem 1.

3. The lattice method. We write ab for inner product in R? and
la| = (aa)'/?. The area of the parallelogram spanned by a and b is denoted
by det(a,b). Let

Ko={x cR*: |x| < 1}.
If S, 7 C R? and ¢ € R then ¢S denotes the set {cs:s € S}, and S +T =
{s+t:seSteT}.

To facilitate comparison with [19] and [2] we prove the following result

in place of Theorem 2.

PROPOSITION. Let e >0, s > 2, N > Cs(s,¢) and

1/2+2/s (s =2,3,4),
As)=< 4/s+(1—4/s)/o(s) (s=5,6,T7),
1/2+1/(20(s)) (s >8).
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Let A be a positive number satisfying
(3.1) 1< A&+ < N

and let A = AY272. Then for any au,...,os € R? there are integers
ni,...,ns satisfying (1.2) and

(3.2) n2ag + ... +nfa, e A+ K.

To deduce Theorem 2, we first note that

A(s) =1/(27(s)),
as the reader may easily verify. Let A = N2(7(5)=¢) g0 that (3.1) holds. Let
a; = N7()=¢(q;, 3;). Then (3.2) implies
INT = (n2a; 4+ ...+ na,) - N"®Em| < 1

for some integer m, and similarly for the 3;. Now Theorem 2 follows at
once.

In the same vein we have the following corollary of Theorem 1.

COROLLARY. Let s > 1, > 0 and N > Cy(s,0). Suppose that Ny, ...
..., Ny satisfy (1.4). Let S be a one-dimensional subspace of R? and A; a
lattice in S generated by a point z satisfying

(3.3) |z| < NO&)=9,
Then for any au, . .., o, in S there are non-negative integers ny, ..., Ng, not
all zero, satisfying n; < N; and
(3.4) n2aq + ... +nla, € A + K.
In the remainder of the paper, A, A are as in the Proposition. Let IT be

the polar lattice of A, IT = A=1/272. Let IT* be the set of primitive points
of II. Evidently

(3.5) pl > A7V (pe).
(Usually the lattice method is applied to general lattices in R". The right-
hand side of (3.5) would then be, essentially, A~!. The stronger bound (3.5)
is crucial to our proof.)
Let p € IT* and let pt = {x € R? : p = 0}. Clearly 2ANp" is a lattice
in p generated by a point z having
(3.6) 2] = 2AIp|.
In our application of the Corollary, we shall have S = pt, A; =2ANp*.
LEMMA 4. (i) Let p € IT*. Any point a € R? may be written in the form

(3.7) a=1l+s+b



52 R. C. Baker and S. Schaffer

where l € A, s € p- and
(3.8) 6] < [p|~"|lpal .

(ii) Let p1, p2 be linearly independent points of IT*. There is a positive
integer c,

(3.9) ¢ < det(p1,p2)A,
such that any a € R? may be written in the form
(3.10) a=c'(k+ad)

where k € A and
(3.11) |d| < Amax(|p1], |p2|) max(||p1al, [|p2al|) -

Proof. These are two special cases of Lemma 7.9 of [2].

LEMMA 5. Let e > 0, N > Cg(g). Let A be a subset of II* with |p| < N
for all p in A. Suppose that any two vectors in A have determinant < Z.
Let e € R2. Let U, V be positive numbers such that for each p in A there
are coprime integers q(p), w(p) having

1<q(p) <U<N, [q(plep—w(p)|<V.
Suppose further that A < N2,
(3.12) ZU?VAN® <1.
Then there is an integer q¢ and a subset C of A such that
Cl > [AINT?, g¢(p)=q forallpeC.

Proof. See [2], Lemma 7.6.

The starting point for the proof of the Proposition is the following variant
of Lemma 1.

LEMMA 6. Let § > 0, N > Co(6). Let x1,..., N be a sequence in R?
with
z, ¢ A+ Ky (n=1,...,N).
Then

> N.

N
Z ‘ Z e(pzn)

p€EIl, 0<|p|<NS n=1

Proof. See [2], Lemma 7.4.

Proof of the Proposition. For brevity, write o = o(s), A = A(s).
We may suppose that 0 < e < 1/2. Let § = £/40, so that

(3.13) AN < 17205
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Suppose that no integers nq, ..., n, satisfy (1.2) and (3.2). By Lemma 6,
we have

(3.14) Y. Tip)...Tp)>N°
0<|p|<N$, pell

where
N
Ti(p) = | Y elnpa)] .

Since every p € II is an integer multiple of a primitive point, it follows that

> Sp)>N°
|p|<N9, pell*
where
[N/ Ip]
S(p)= Y Ti(tp)...T:(tp).
t=1

We cover the interval [A™Y/2 N?) with O(log N) intervals [a,2a). In
view of (3.5), there is an a satisfying

(3.15) ATV2 <a < NY,
Z S(p) > N°/logN .

pell*, a<|p|<2a
There are < Aa? summands here, so that the contribution from p with
S(p) < Né(log N)2A a2

is negligible. Covering [N*(log N)"2A71a~2, a=!N*+°] with O(log N) in-
tervals [B,2B), we see that there is a B with

Né(logN)2A7 ' 2 < B <a 'N*P°
and a subset B of IT* with
a<|p|<2a B<S(p)<2B forpel,

Z S(p) > N*(log N)™2.
peB

It is convenient to write X = N°*B~!, so that
(3.16) X < Ad®N?,
(3.17) S(p)>N°*X"' (peB)
and clearly

(3.18) B> XN~
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Consider the following conditions:
(A) X Z N55 and ACLX2/S_1/2 S N1—105;
(B) Aleg tHl/ox?/s < NI7100 jf5>3 X < N ifs=2.
We will first derive a contradiction provided that (A) or (B) holds. In
conclusion we show that one of (A), (B) must be satisfied.

Suppose first that (A) is satisfied. Using T ... Ts < TP +...+ 717, (3.17)
gives
(3.19) > Ti(tp)' > N X!

t<Ndqg—1

for some index ¢ depending on p. There are only s possible 7, and we may

assume without loss of generality that (3.19) holds for i = 1.
We use the inequality

O+ D)<+ )Y, 0<r <,
for positive numbers b; ([12], p. 28). Thus
(3.20) Y Ti(tp)’ > N’X*°  (peB).
t<Néqg—1
We may apply Lemma 2 to the sum in (3.20). To see this,
a T X5 < A2/3q2/sI NS < ALSTI/2N2 < AAN2S < 130

from (3.16), (3.15), (3.13). Hence

N2X~2/5 > N1+[q~1NF].
The lemma yields natural numbers ¢(p) for each p in B satisfying
(3.21) q(p) < a 1 X?/sN%
(3.22) la(p)pen || < X*/*N—2+20.

The next step is to apply Lemma 5 to a suitable subset of B. The (z,y)
plane may be covered by < |B|N~2° angular sections centred at 0, of angle
|B|71N?® < X~1N%. Here we have used (3.18) and the hypothesis X >
N®3. One of these sections must contain > N2 points of B. Let A be the set
of points of B lying in this section. In the notation of Lemma 5, we may take

e=a, 7 = a2X_1N46, U< @_1X2/3N26, V< XQ/SN—2+26

in view of the definition of A, (3.21) and (3.22). Moreover, by (3.16), (3.15)
and condition (A),

ZU2VAN25 < a2X71N45(a71X2/8N25)2(N72+25X2/3)AN25
AG/sN—2+306 (S < 6)

X6/S—IAN—2+126
< < AN72+126 (8 > 6)

< AQ)\N—2+305 < 1.
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We deduce from Lemma 5 that there is a subset C of A of cardinality > N9,
and a natural number ¢ such that ¢(p) = ¢ for every p in C.

Let p1, p2 be two linearly independent points in C. We apply Lem-
ma 4(ii) with a replaced by ga;. There is a natural number ¢ such that

(3.23) ¢ < det(p1,p2)A < a?X IN¥A,
cqar =k+d, kecA,
(3.24) |d| < AaX?/sN—2+23

Here we use once again the definition of A and (3.22).
Now let n = ¢q. By (3.23), (3.21) and condition (A),
1 S n < a2X—1N45Aa—1X2/SN25 — aX?/S—lAN65 < N1—5 .

Moreover,

naq = cqk + cqd

leqd| = n|d| < aX?*"LAN® AaX?/s N—2+20
< a2X4/S—1A2N—2+86 < N—(S

by (3.24) and condition (A). Thus 1 < n < N, n?a; € A+ Ky. We have
reached a contradiction when (A) holds.

Now suppose that condition (B) holds. We deal with the case s > 3 first.
Fix any p in B. From (3.17),

> Titp)...Tu(tp) > N°X .
t<a—1NS?

As in the proof of (2.8), there must be Aj,..., As in [N~2 N] and a set A
of t having

(3.25) 1<t<a 'N° (teA)),

(3.26) A; <Ti(tp) <24; (i=1,...,8 te A
and

(3.27) |APPAT .. AZ > N250X 2,

We may assume that
(3.28) A > ... > A

The next step, in which we deduce a good rational approximation to
a;p, is different according as i < 2 or ¢ > 2. By (3.27) and (3.28),

|A|2A§(3*1) > N2(s—1)—26X—2,
|A|2/(s—1)A§ > N2—26X—2/(s—1) )
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Since s > 3, this implies for ¢ = 1,2 that
(3.29) D> Ti(tp)® = |AJA? > NP2 X 20D,
t<a—1N?
By (3.16), (3.15) and (3.13),
a L X2/ (=D N5 < A2/(571) 2/ (s )= 65 - A1/241/(s=1) \65
< AN < N

Consequently,
(3.30) N[~ 1 N9 < N2 x—2/(= 1)
In view of (3.30), we may apply Lemma 2 to (3.29), obtaining natural num-
bers q1, g2 having
(3.31) g <a TNPTRAT AT,
(3.32) lg? ceipll < gillgscipl| < @™ N+ A7 A2

Now pick any t € A. If A; > N¥/2%% for an index i > 3, we may apply
the case L =1 of Lemma 2 to T;(tp). This gives a natural number r; with

ri < N?TOA72 0 |lritagpl| < A72N°.

Writing ¢; = r;t, we then have, from (3.25),
(3.33) ¢ <a 'N?T2ATZ
(3:34) lqepll < a ' NTHB AT,
Just as in (2.16), we can in fact find ¢; satisfying (3.33), (3.34) for every

1=1,...,s.
Combining (3.31)—(3.34), we have

(3.35) ¢ <a INFPATZO6E) T
(3.36) g ceipl| < a”'NPFPATAC() 2,

where C(i) = |A| for i <2, C(i) =1 for i > 2. Applying Lemma 4(i) and
(3.36), we obtain

where I; € A, t; € p~ and
(3.38) bi| < a taTINPTRATAC6E) T2 < a AN ATAC () 2.

Recalling (3.6), we apply the Corollary, taking S = pt, A; = 24N pt,
and replacing a; by 2t; and N by N* = (aA)Y/7N?5. We replace N; by

N} = (aA)VTAINTEOX2/20 ().
We must verify (1.4). From (3.27),
Ni...N* = (aQA)*/7|A]PA? .. A2N72sH380 x2 > (N*)5
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Thus there are non-negative integers my, ..., mg, not all zero, satisfying
(3.39) 2mity + ... +2mt, € 24 + Ko,
(3.40) m; <N/ (i=1,...,s).

Now let n; = g¢;m;. Not all n; are zero. Moreover, by (3.35), (3.40) and
condition (B),

n; < a—1N2+26A;20(Z-)—1(aA)l/oAZZN—2+36X2/sC(7;)
_ A1/0a1/071X2/sN55 <N
while
niag + ... +nlog =mily + ...+ mil, +mity + ..+ mit,
+m2by + ...+ m2b,.
Here mil; + ... 4+ m?t, € A+ 3K, by (3.39). By (3.40), (3.38) and condi-
tion (B),
Im2b;| < (aA)Y 7 AN—4HO XA/ 30(3)2q 2 N2+ AT4C (1) 2
— A2/0'a2/0'72X4/sN72+115 < N*(S .
We conclude that
niag +...+nla, € A+ K.

We have now reached a contradiction when condition (B) holds and s > 3.
Now let s = 2. Pick any p € B. From (3.17) and condition (B) we have

> Ti(tp)Ta(tp) > N>~
t<a—1N$
Y Titp) > N'Y (i=1,2).
t<a—1N?9
From Cauchy’s inequality,
Z Ty(tp)? > (N175)2 (¢ IN®)~L > N2-118,
t<a—1N?
We may apply Lemma 2, since
N2U8g(Nog—1)=1 = N2-12642 5, N2-125 A=l 5, N1+
from (3.15), (3.13). Thus there are natural numbers ¢, ¢ satisfying
(3.41) ¢ < a IN3
(3.42) lgi(cup)|] < a”'NT2H120
By Lemma 4(i),
Goi =1+ s +b;,
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where I; € A, s; € p~ and
(3'43) ‘bz’ < aflquqi(aip)H < a71a72N136a71N72+126 — a74N72+256 )

Here we used (3.41) and (3.42).
We apply the Corollary as above, this time replacing N, Ny, N by
AaN? . There are non-negative integers m;, ms, not both zero, with

(3.44) 2mis; + 2m3se € 24 + Ko,
(3.45) m; < AaN% .
Now let n; = m;q;. Then
n; < AaN25a—2N145 _ a—1AN166 < A3/2N166 <N,
Im2b;| < A2a*NPq ANT2T2%0 « g 2 AZN 21290 « ASNT2H290 N0

from (3.45), (3.43), (3.15) and (3.13). Just as above, we reach a contradic-
tion when s = 2 and condition (B) holds.

It remains to show that one of (A), (B) is satisfied. If X < N°° we have,
by (3.15) and (3.13),

Al/a'a—l+l/oX2/sN10§ < A1/2+1/(20)N155 < A)\N155 <N
so that (B) holds. If X > N° and s = 2 then
AaXQ/sfl/QzAaXl/Q<<A3/2a2N§ < A3/2N35 < lellé

from (3.16), (3.15), (3.13), so that (A) holds.
It remains to show that, for s > 3,

(3.46) min(AaX2/5_1/2N105, Al/aa—1+1/aX2/sN105> <N

whenever A=1/2 < g < N9, N5 < X < Aa?N?.
If s = 3,4, the left-hand side of (3.46) is

< AaX2/s—l/2N106 < A1/2+2/5a4/sN115 < A1/2+2/5N135 < A)\N136 < N.
If s =5,6,7 the left-hand side of (3.46) is
< <A1/0a71+1/0)174/s(Aa)4/sN105 ]
The exponent of a here is positive, so we obtain the bound
< A(l/o‘)(l—4/s)+4/sN125 — A/\N125 <N.
Finally, if s > 8, the left-hand side of (3.46) is

< (AaX2/s—1/2)1/2(Al/aa—1+1/JX2/s)1/2N106
< A1/2+1/(20')al/(20)X2/5—1/4N105

< A1/2+1/(20)N115 — A)\N115 < N.
This completes the proof of the Proposition.
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