
ACTA ARITHMETICA

LXII.2 (1992)
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The classical ellipsoid problem, i.e., the problem of evaluating asymp-
totically the number of lattice points in a multidimensional ellipsoid, was
generalized in [2] to algebraic number fields, and upper and lower estimates
for the pertinent lattice rest were proved (1).

While the O-result obtained there holds generally, the Ω-theorems im-
pose several restrictions on the parameters involved. For instance, the ellip-
soids under consideration are supposed to be centered at lattice points. Also,
the arithmetic nature of the underlying Hermitian forms plays a significant
role.

In the present paper I give a somewhat weaker Ω-estimate valid in the
general case, which fits well into what is known for the rational field.

We begin by formulating the problem. Let K be an algebraic number
field of degree [K : Q] = n = r1 + 2r2 (in the standard notation), d its
discriminant, and r = r1 + r2 − 1. Let ep = 1 for p = 1, . . . , r1 and ep = 2
for p = r1 + 1, . . . , n.

For a fixed rational integer k ≥ 2, consider the set T of all column vectors

ν = (ν(1)
1 , . . . , ν

(1)
k , ν

(2)
1 , . . . , ν

(2)
k , . . . , ν

(n)
1 , . . . , ν

(n)
k )T ∈ Ckn

such that

ν
(p)
j ∈ R (j = 1, . . . , k; p = 1, . . . , r1) ,

ν
(p+r2)
j = ν

(p)
j (j = 1, . . . , k; p = r1 + 1, . . . , r + 1) ;

let 0 ∈ T denote the zero vector, and

ν(p) = (ν(p)
1 , . . . , ν

(p)
k )T for ν ∈ T .

(1) There is a misprint on p. 330, line −10, of [2]: For “endlichen Grad über Q” read
“endlichen Grad über Q”.
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We call ν,α ∈ T congruent with respect to a given system a = (a1, . . . , ak)
of non-zero ideals aj ⊆ K, in symbols

ν ≡ α (a) ,

if there exist numbers µj ∈ aj (j = 1, . . . , k) such that

ν
(p)
j − α

(p)
j = µ

(p)
j (p = 1, . . . , n; j = 1, . . . , k) ,

where µ
(p)
j denotes the pth conjugate of µj .

For p = 1, . . . , r + 1, let Q(p) ∈ Ck×k be a positive definite Hermitian
matrix, real for p = 1, . . . , r1, and let Q(p) be the Hermitian form in k
variables arising from it; we write briefly Q for the system of these forms.

Further, let x = (x1, . . . , xr+1) ∈ Rr+1
+ , R+ denoting the set of positive

real numbers.
For convenience we supplement xp,Q(p) (and thus Q(p)) for r+1 < p ≤ n

by setting

xp+r2 = xp, Q(p+r2) = Q(p) for p = r1 + 1, . . . , r + 1 .

The counting function

Ak(x) = Ak(x;Q, a,α)

is now defined as the number of vectors ν ∈ T satisfying ν ≡ α (a) and

Q(p)(ν(p)) ≤ xp for p = 1, . . . , r + 1

(or, equivalently, for p = 1, . . . , n). The lattice rest in question is

Pk(x) = Pk(x;Q, a,α) = Ak(x)− C0X
k/2

with

X = x1 . . . xn =
r+1∏
p=1

xep
p , C0 =

2kr2ωr1
k ωr2

2k

|d|k/2N(a1 . . . ak)
√

D
,

where

D =
n∏

p=1

detQ(p), ωl = πl/2/Γ ( 1
2 l + 1) ,

and N denotes the ideal norm in K. Then we have the following result.

Theorem. Always (i.e., for all choices of k, Q, a, α)

Pk(x) = Ω±(X(k− r+1
n )/4) as X →∞ .

P r o o f. We shall use extensively the contents of [2]. By Q̃(p) we denote
the Hermitian form associated with the matrix (Q(p))−1, and c stands for
the system of ideals cj = (ajd)−1 (j = 1, . . . , k), where d is the different
of K. c1, . . . , c17 are positive constants which, as well as all O-, �-, and
�-constants, may depend on K, k, Q, a, and α.
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For λ = (λ1, . . . , λn) ∈ Rn
+, λp+r2 = λp (p = r1 + 1, . . . , r + 1), let

(1) a(λ) :=
∑

�≡0(c), Q̃(�)=λ

e−2πi�·� ,

where Q̃(ν) = λ means Q̃(p)(ν(p)) = λp for p = 1, . . . , n, and α · ν denotes
the real number

k∑
j=1

n∑
p=1

α
(p)
j ν

(p)
j .

Since ν and −ν occur together in (1), a(λ) is real.
If a(λ) were always zero, the series

Θ

(
πe1x1

u1
, . . . ,

πenxn

un
; Q̃, c,0,−α

)
in the proof of [2, Hilfssatz 6.1] would reduce to its constant term 1, and it
would follow that

Jε(Pk(x)) := (4πε)−(r+1)/2
∫

Rr+1

Pk(x1e
v1 , . . . , xr+1e

vr+1) exp
(
− 1

4ε

r+1∑
p=1

v2
p

)
dv

= 0 for all x ∈ Rr+1
+ and all ε > 0 .

From this we would easily conclude, either with the aid of [2, Hilfssatz 4.3]
(= [1, Theorem 3.1]) or directly (cf. the remark at the beginning of [1,
Sect. 3]), that Pk(x) = 0 for all x ∈ Rr+1

+ . But this is impossible since
Ak(x) is certainly not continuous. Thus

M := {λ : a(λ) 6= 0} 6= ∅ .

By [2, Hilfssatz 6.1] (with δ = 1/(4n)) we have for x ∈ Rr+1
+ , 0 < ε ≤ 1/2

(2) Jε(Pk(x)) = Sk(x, ε) + O(ε−(nk−r−1)/4X−1/(4n)) ,

where

Sk(x, ε) = c1X
k/2

∑
λ∈M

a(λ)

×
r+1∏
p=1

{
e−επ2e2

pλpxp

(π2e2
pλpxp)(epk+1)/4

cos(2π
√

e2
pλpxp − 1

4 (epk + 1)π)
}

.

We proceed to select one dominant term from Sk(x, ε).
Let ν ≡ 0 (c), λ = Q̃(ν), such that λ1 . . . λn =: Λ ≤ Λ0. The vector ν is

made up of the conjugates of numbers νj ∈ cj (j = 1, . . . , k). Multiplying
all of these by the same suitably chosen unit, we can obtain a µ ≡ 0 (c)
such that λ′ := Q̃(µ) satisfies

λ′1 . . . λ′n = Λ and λ′p ≤ c2Λ
1/n (p = 1, . . . , n) ,
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hence
k∑

j=1

|µ(p)
j |2 ≤ c3Λ

1/n
0 (p = 1, . . . , n)

by [2, Hilfssatz 5.1]. Since these inequalities have only finitely many solu-
tions µ ≡ 0 (c), it follows that Λ belongs to some discrete subset of R+.
Consequently, we may choose from M a λ∗ = (λ∗1, . . . , λ

∗
n) (c-constants!)

such that

λ∗1 . . . λ∗n = min{λ1 . . . λn : λ ∈ M} .

The inequality between arithmetic and geometric means yields for λ ∈ M

r+1∑
p=1

ep
λp

λ∗p
=

n∑
p=1

λp

λ∗p
≥ n

with equality only for λ = λ∗, hence

(3)
r+1∑
p=1

ep
λp

λ∗p
≥ n + 2c4 for λ ∈ M, λ 6= λ∗ ,

since the left-hand member attains only discrete values.
Now, for t > 1, let

xp =
1

epλ
∗
p

(t + ϑp

√
t), where 0 ≤ ϑp ≤ 3 (p = 1, . . . , r + 1) ,

and

ε = T/t, where T ≥ 1 ;

the ϑp’s and T will be chosen later. Then

(4) c5t ≤ xp ≤ c6t (p = 1, . . . , r + 1)

and, if t ≥ (3n/c4)2,

(5) επ2
r+1∑
p=1

e2
pλ

∗
pxp ≤ Tπ2(n + c4) =: c7T ,

while for λ 6= λ∗ we have by (3)

Y := επ2
r+1∑
p=1

e2
pλpxp ≥ Tπ2(n + 2c4) =:

c7 + c8

1− c8
T ,

say, so that

Y ≥ (c7 + c8)T + c8Y .
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Hence the terms with λ 6= λ∗ contribute to Sk(x, ε) at most

c1e
−(c7+c8)T Xk/2

∑
λ∈M

|a(λ)|
r+1∏
p=1

e−c8επ2e2
pλpxp

(π2e2
pλpxp)(epk+1)/4

,

which, for t ≥ 2c8T , is

� e−(c7+c8)T ε−(nk−r−1)/4 � e−(c7+c8)T X(k−(r+1)/n)/4

by [2, Hilfssatz 5.6] and (4).
Regarding λ = λ∗, (4) and (5) yield

Xk/2|a(λ∗)|
r+1∏
p=1

e−επ2e2
pλ∗pxp

(π2e2
pλ

∗
pxp)(epk+1)/4

� e−c7T X(k−(r+1)/n)/4 .

As ϑ1, . . . , ϑr+1 run independently through [0, 3], the values of each term

2π
√

e2
pλ

∗
pxp = 2π

√
ep(t + ϑp

√
t)

cover an interval of length > 2π; hence the product
r+1∏
p=1

cos
(
2π

√
e2
pλ

∗
pxp − 1

4 (epk + 1)π
)

takes every value between −1 and +1. Thus, if ξ denotes either of the
numbers +1 and −1, we can always find ϑp’s such that

ξSk(x, ε) ≥ e−c7T {c9 − c10e
−c8T }X(k−(r+1)/n)/4 ,

provided t ≥ c11T . Choosing here T = c12 large enough to make the term
in curly brackets positive, we obtain from (2) the following result:

There exist x ∈ Rr+1
+ and ε > 0 such that X is arbitrarily large,

(6) c13X
−1/n ≤ ε ≤ c14X

−1/n ,

and

(7) ξJε(Pk(x)) ≥ c15X
(k−(r+1)/n)/4 .

Now assume

ξPk(x) ≤ %X(k−(r+1)/n)/4 for X ≥ X0 .

Then, as in [2, Hilfssatz 8.3], it follows that

ξJε(Pk(x)) ≤ c16%X(k−(r+1)/n)/4 + O(1)

for X ≥ enX0 and every ε according to (6). Comparing this to (7) yields
% ≥ c17, hence the assertion.
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