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1. Introduction. Let F1, . . . , FR be forms of degree k with real coeffi-
cients in N variables. We shall be concerned with simultaneous small values
of the system (F1, . . . , FR) at integer points. In other words, we seek for
solutions to the system of inequalities

(1) |F1(x)| < τ, . . . , |FR(x)| < τ

where x = (x1, . . . , xN ) ∈ ZN . In this generality, an affirmative answer
has been found by Schmidt [36] provided that k is odd and N is very large
compared with k and R. In the case of integer coefficients the system (1)
reduces to a system of diophantine equations,

(2) F1(x) = F2(x) = . . . = FR(x) = 0 ,

and this specific case of Schmidt’s result is due to Birch [8].
In the present paper we restrict our attention to diagonal forms,

(3) Fi =
N∑

j=1

λijx
k
j (1 ≤ i ≤ R).

Then it is possible to find solutions of (1) and (2) in a smaller number of
variables. In the case of equations, Davenport and Lewis [29] showed that
for k odd the condition

(4) N ≥ [9R2k log 3Rk]

assures the existence of a non-trivial solution of (2). When k ≥ 4 is even
they needed

(5) N ≥ [48R2k3 log 3Rk2]

variables and an additional “rank condition” on the matrix of coefficients

(6) Λ = (λij)

to be specified later. Here and throughout it is assumed that no column
of Λ vanishes so that all variables occur explicitly in the system of forms.
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There are a number of improvements known for some small values of k
and R; see Davenport and Lewis [28], Cook [16–19, 21–23], Vaughan [38],
Baker and Brüdern [7], Brüdern [12], Atkinson, Brüdern and Cook [2]. For
analogous results on inequalities, see the results of Pitman [34] and Nade-
salingam [33].

In all published results to date the dependence of N on R and k is still
as bad as in (4) and (5) although recent work of Low, Pitman and Wolff [32]
strongly indicates that N can be taken growing linearly in R. Their simple
handling of certain combinatorial problems which are a familiar occurrence
in the subject, and recent improvements on the Hardy–Littlewood method
due to Vaughan [40] actually permit us to prove results of this strength by
a fairly simple argument. We first state a typical result of this kind in the
case of equations.

Let M be an r×t matrix over a field Γ . For 0 ≤ d ≤ r let µ(d) = µ(d, M)
be the maximal number of columns from M generating a linear space of
dimension d in Γ r. It is obvious that µ(d) is invariant under row operations
applied to M .

Theorem 1. Suppose that Fi (1 ≤ i ≤ R) are given by (3) with λij ∈ Z.
Let N > n0R where n0 = n0(k) is given by Table 1 when k is small , and
where n0(k) = 2k(log k + O(log log k)) when k is large. Suppose that Λ
contains an R× (n0R + 1) submatrix Λ∗ satisfying

(7) µ(d, Λ∗) ≤ n0d (0 ≤ d ≤ R− 1).

Suppose that (2) has a non-singular solution in the p-adic field , for all primes
p including infinity. Then the number Θ of integer solutions to (2) in the
box max |xj | ≤ P satisfies

(8) Θ � PN−Rk .

Table 1

k 2 3 4 5 6

n0(k) 4 8 12 18 30

Of course the existence of p-adic solutions is a necessary proviso in the
theorem. It might be of interest to note that the rank condition (7) cannot be
removed completely (although it certainly can be relaxed somewhat). When
k is even this has been observed by Davenport and Lewis [29] (compare their
remarks following Theorem 2). However, for odd k, there are indications
that some condition like (7) is necessary as well. Cassels and Guy [15] found
an example of a diagonal cubic equation,

(9) a1x
3
1 + a2x

3
2 + a3x

3
3 + a4x

3
4 = 0
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with integer coefficients, which has non-trivial solutions in all p-adic fields,
but no non-trivial integer solution. Now consider the system

a1x
3
1 + a2x

3
2 + a3x

3
3 + a4x

3
4 = 0 ,

b1x
3
1 + b2x

3
2 + . . . + bNx3

N = 0 .

Any solution in integers must have x1 = x2 = x3 = x4 = 0. We may
choose b5, . . . , bN all non-zero so that there are non-singular p-adic solutions
for all p, but the number of integer solutions Θ with |xi| ≤ P is of order
P (N−4)−3 for N > 13, say, contrary to (8). This follows by a straightforward
application of the Hardy–Littlewood method to the second equation.

On the other hand, many of the hypotheses in Theorem 1 are redundant.
For example when k is odd, it is an elementary exercise to show that a non-
singular real solution always exists. However, for even k this condition is
vital. Moreover, Dörner [31] has shown, in a more general context, that
there are non-trivial p-adic solutions provided N > 2Rk and p is sufficiently
large. Atkinson, Brüdern and Cook [3] have proved the same result for all
primes

(10) p > k2R+2 .

Combining this with the argument used to prove Theorem 4 of Davenport
and Lewis [29] we deduce that for all primes satisfying (10) the diagonal
system (2) has a non-singular p-adic solution providing (7) and N > n0R
hold. Note that this restriction on N is much stronger than N > 2Rk. It
is therefore almost obvious that the bound (10) can be reduced further, a
topic to which we hope to return on another occasion. But there will remain
a set of small primes for which there are no solutions to (2) in the p-adic
field. Davenport and Lewis [28] gave an example with k = 3, R = 2 and
p = 7.

In the light of (4) and (5) it is also of considerable interest to obtain
better conditions on N such that (2) always has non-trivial p-adic solutions,
for all primes p. Low, Pitman and Wolff [32] proved this for

(11) N ≥ 48Rk3 log(3Rk2) .

For odd k they also obtained the bound

(12) N ≥ (2 + o(1))R2k log k

as R tends to infinity. There are a number of similar results in the literature
which in some cases are somewhat sharper than (11) or (12); see the papers
of Schmidt [37] and Low, Pitman and Wolff [32] for further references. On
combining this with the ideas from Theorem 4 of Davenport and Lewis [29]
and Lemma 3 of Low, Pitman and Wolff [32] it is easy to deduce from
Theorem 1 the following
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Corollary. Suppose N,R, k satisfy (11) or (12). Then the diagonal
system (2) always has a non-trivial solution.

We spare the reader the details. Note that for fixed k, the bound (11)
grows as R log R whereas in both (10) and Theorem 1 the bound on N
depends on R linearly. This raises the question whether the log R can be
removed from (11).

In the case of diagonal diophantine inequalities p-adic conditions should
not show up since we consider the arithmetic properties of F1, . . . , FR with
respect to the archimedean valuation only. In particular, the lower bound
on N in Theorem 1 alone should be enough to ensure the existence of a
solution to (1). Theorem 2 below shows that in fact this is true for a large
class of forms. To state the result we require some notation. With the
matrix Λ we associate linear forms in R + 1 variables. Let J ⊂ {1, . . . , N}
with |J | = R + 1. Let AJ be the (R + 1)× (R + 1) matrix formed with the
columns

t(λ1,j , . . . , λR,j , ξj), j ∈ J ,

and let

(13) LJ (ξJ ) = det AJ

where ξJ = (ξj)j∈J .

Definition. Let L(ξ) be a linear form over the reals in t variables. The
supremum of all real numbers σ such that the inequalities

|L(x)| < U−σ, 0 < max |xi| ≤ U

have an integer solution for all sufficiently large U is called the order of L.

For a brief discussion of linear forms of finite order see Cook [20]. We re-
mark that by a well known result of Schmidt [35] linear forms with algebraic
coefficients are of finite order.

Theorem 2. Suppose that λij ∈ R, that N = n0(k)R + 1, and that
at least one of the linear forms (13) is of finite order and has coefficients
linearly independent over the rationals. Suppose that µ(d) ≤ n0d holds for
0 ≤ d ≤ R−1. Then the number Θ2 of solutions to the diagonal inequalities
(1) in integers with |xi| ≤ P satisfies

lim sup
P→∞

PRk−NΘ2 > 0 .

It should be noted that the hypotheses in Theorems 1 and 2 have been
designed to allow a particularly simple proof. At the cost of combinatorial
difficulties it is possible to reduce the number of variables slightly. However,
the improvements are significant for smaller values of R and k only. We
illustrate this in the following result which shows, roughly speaking, that in
Theorem 2 one may take n0(3) = 7.
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Theorem 3. Let k = 3 and N = 7R+1. Suppose that at least one of the
linear forms (13) is of finite order and has coefficients linearly independent
over the rationals. Suppose that µ(d, Λ) ≤ 11d/2 for 1 ≤ d ≤ R − 1. Then,
with Θ2 as in Theorem 2, we have lim supP→∞ P−4R−1Θ2 > 0.

Again we have put the strong rank condition µ(d) ≤ 11d/2 to keep
the argument reasonably simple. It should be possible to reduce this to
µ(d) ≤ 7d, and we conjecture that Θ2 > 0 holds without any rank condition.
When R = 1 the rank condition is void, and when R = 2 it can in fact
be removed (see the result in Brüdern and Cook [13]). The next case is
R = 3, and this case of Theorem 3 might be the most interesting one
since the number of variables now is N = 22 as in the recent work of
Atkinson, Brüdern and Cook [2] on the cognate problem of three additive
cubic equations. At the end of the paper we shall present combinatorial
arguments to reduce the rank condition in Theorem 3 to µ(d) ≤ 7d when
R = 3. A detailed discussion of this subject matter is postponed to Section 7.

It is clear that there is a result corresponding to Theorem 3 for cubic
equations. However, in this specific situation even further refinements are
possible by yet another method which is to be presented in a forthcoming
publication [14].

2. Mean value estimates. All the results announced so far are in fact
consequences of a single principle which depends on mean value estimates
for modified Weyl sums. We write e(α) = exp(2πiα) and introduce the
sequence

(14) A(P,Q) = {x ≤ P : p | x ⇒ p ≤ Q} .

Let

(15) gk(α) = g(α) =
∑

x∈A(P,P η)

e(αxk)

where η > 0 is a small positive constant to be determined later. One would
expect that for s ≥ 2k the inequality

(16)
1∫

0

|g(α)|s dα � P s−k,

or at least the slightly weaker bound

(17)
1∫

0

|g(α)|s dα � P s−k+ε,

holds. This is a weakened form of Hardy and Littlewood’s conjecture K on
average.
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Proposition. Suppose that n0 > 4k and that (17) holds for s ≥ n0.
Then the statements of Theorems 1 and 2 hold for N > Rn0 + 1. This is
also true if n0 > 2k and (16) holds for s ≥ n0.

When k ≥ 4 it is known that (17) holds for s ≥ n0 where n0 is as in
Theorem 1, and η is sufficiently small in terms of ε (see Vaughan [40, §4] and
the remarks preceding Theorem 1 of Vaughan and Wooley [41]). Moreover,
we have n0 > 4k for k ≥ 6. When k = 4 we know from Lemma 5.2 of
Vaughan [40] that (16) holds for s ≥ 12 (consider the underlying diophantine
equations). Similarly (16) holds when k = 5 and s = 18; this follows from
the results of [41]. Therefore when k ≥ 4 Theorems 1 and 2 follow from the
Proposition.

Note that when k = 3 we know that (17) holds for s = 8 by Hua’s
Lemma (Vaughan [39], Lemma 2.5). This remark also shows that there is
actually no need to use the somewhat complicated sums (15) in this case.
It would suffice to use the standard Weyl sums

(18) f(α) =
∑

ηP<x≤P

e(αx3)

and their quadratic analogue. Thus we shall exclude the cases k = 2,
k = 3 from the considerations for Theorems 1 and 2, partly because there
is a simple proof based on (18), and mainly since there are more effective
methods for the case k = 3, as we have pointed out in the introduction. It
is of course possible to deduce the cases k = 2, k = 3 from the Proposition
if a uniform treatment is wished.

Unfortunately when k = 3, s = 7, (17) is not known at present. The
little extra which is required to prove Theorem 3 is motivated by the bound

(19)
1∫

0

|f(α)g3(να)6| dα � P 4+ε

which we proved in Brüdern and Cook [13] for any fixed real ν 6= 0. Thus
(19) may be considered as a surrogate for (17) when k = 3, s = 7. It is
the presence of two different exponential sums in this integral which causes
extra complications of a combinatorial nature in the proofs of Theorem 3 in
Section 6 and its refinement in Section 7.

3. The circle method. The methods for counting solutions of dio-
phantine equations and inequalities are slightly different but based on a
common principle, and large parts of the analysis are much the same. We
remark that it suffices to count solutions of (1) or (2) in positive integers.
This is obvious when k is even, and when k is odd this requires a preliminary
transformation of some xi into −xi (see Pitman [34]).
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Let

(20) Λj = λ1,jα1 + . . . + λR,jαR (1 ≤ j ≤ N)

and let U denote a cube in RR with sides parallel to the coordinate hyper-
planes, and of volume 1. We define

(21) G(α) =
N∏

j=1

g(Λj) .

In the case of equations we have

(22) Θ1 ≥
∫
U

G(α) dα

since the integral equals the number of solutions of (2), (3) subject to xi ∈
A(P, P η).

To count the solutions of the inequalities (1), (3) in a similar manner we
choose, for a given ξ > 1, a kernel K : R → [0,∞) with K(α) = K(−α),
K(α) � min(1, |α|−ξ) such that its Fourier transform K̂ satisfies

K̂(α) =
{

0 (|α| > τ) ,
1 (|α| ≤ 1

3τ) ,

and 0 ≤ K̂(α) ≤ 1 for all real α. By Lemma 1 of Davenport [25], such a
function exists. Writing

K(α) = K(α1) . . .K(αr) ,

we now have

(23) Θ2 ≥
∫

RR

G(α)K(α) dα .

The object is to show that Θj � PN−Rk when N = n0R + 1 and j = 1
or 2; this implies the Proposition.

Before we go on to discuss these integrals in detail we reduce Θ2 to a
finite integral. Let B(X) be the box max |αi| ≤ X, let ζ > 0 be small, and
put t = RR \B(P ζ). Then if we choose ξ sufficiently large in terms of 1/ζ,
it is obvious that

(24)
∫
t

|G(α)|K(α) dα� 1 .

The next lemma is required for the treatment of the minor arcs in both
problems.

Lemma 1. Let δ > 0, and let E be a set contained in a cube of type U
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such that for α ∈ E there is a j ≤ N with |g(Λj)| < P 1−2δ. Then∫
E
|G(α)| dα� PN−Rk−δ .

Let F be a set contained in a cube of type U such that for α ∈ F there is a
j with |g(Λj)| < P (log P )−δ. Then∫

F
|G(α)| dα� PN−Rk(log P )−δ .

In the proof of this lemma we require the following combinatorial result.
An r × rn matrix over a field is called partitionable if its columns can be
grouped into n disjoint blocks, with each block forming a non-singular r× r
matrix.

Lemma 2 (Aigner’s criterion). An r × nr matrix M is partitionable if
and only if for 0 ≤ d ≤ r − 1 one has µ(d, M) ≤ nd.

For a proof see Aigner [1] or Low, Pitman and Wolff [32].

We shall require the following results on modified Weyl sums.

Lemma 3. Let α ∈ R. There is a γ = γ(k) > 0 such that either |g(α)| <
P 1−γ , or there are coprime integers a, q , and

g(α) � qε−1/(2k)P

(
1 + P k

∣∣∣∣α− a

q

∣∣∣∣)−1/(2k)

(log P )3 .

This is a weakened version of Theorem 1.8 of Vaughan [40] combined
with Lemma 7.1 of Vaughan and Wooley [41]. The next lemma is a special
case of Lemma 8.5 of Vaughan and Wooley [41].

Lemma 4. Let A > 0. Suppose that (a, q) = 1 and q ≤ (log P )A, |qα−a| ≤
(log P )AP−k. Then

g(α) �A,ε Pqε−1/k

(
1 + P k

∣∣∣∣α− a

q

∣∣∣∣)−1/k

.

P r o o f o f L e m m a 1. Let Ej be the set of all α ∈ E such that
|g(Λj)| < P 1−2δ. Since E is the union of all Ej it suffices to prove the lemma
with Ej in place of E . By Lemma 2 and (7) the R × n0R submatrix of
Λ where the jth column is omitted, is partitionable. Hence we can choose
disjoint sets L(1), . . . ,L(n0) from {1, 2, . . . , j−1, j+1, . . . , N}, of R elements
each such that for all t ≤ n0 the matrices AL(t) are non-singular; here AL(t)

denotes the R×R matrix formed with the lth columns of Λ, l ∈ L(t). Now,
for α ∈ Ej we have

(25) G(α) � (G1 + . . . + Gn0) max
�

|g(Λj)|



Diagonal equations and inequalities 133

where
Gt =

∏
l∈L(t)

|g(Λl)|n0 .

Since AL(t) is non-singular a change of variable and (17) yield∫
U

Gt dα�
1∫

0

. . .
1∫

0

|g(α1) . . . g(αR)|n0 dα� PR(n0−k+ε) .

The first part of the lemma now follows from (25). Plainly, the second part
of the lemma follows in the same way providing (16) holds.

To prove the second part if we only have (17), we may suppose that
n0 > 4k. We apply the first part of the lemma with 2kδ < γ where γ is as in
Lemma 3. It now suffices to estimate the contribution from the set F\E = H,
say. By Lemma 3, we may assume that the second alternative of that lemma
holds for all g(Λj) whenever α ∈ H. In particular, Λj (mod 1) ∈M where
M is the union of all intervals |qα− a| ≤ P γ−k subject to 1 ≤ a ≤ q ≤ P γ ,
(a, q) = 1. By Lemmata 3 and 4, when n0 > 4k we easily find that∫

M
|g(α)|n0 dα � Pn0−k .

Hence a change of variable gives∫
H

Gt dα�
∫
M

. . .
∫
M

|g(α1) . . . g(αR)|n0 dα� PR(n0−k) ,

and the second part of the lemma also follows via (25).

4. The problem on equations. The endgame techniques differ con-
siderably as to whether we deal with equations or inequalities. We now
restrict our attention to equations, and suppose in this section that λij ∈ Z.

Let 0 < A ≤ 1 be a constant to be determined later, and put L =
(log P )A. The major arcs M are defined as the union of all boxes

M(q,a) = {α : |qαj − aj | ≤ LP−k (1 ≤ j ≤ R)}
subject to 1 ≤ aj ≤ q ≤ L and (q, a1, . . . , aR) = 1. In (22) we choose U as
the cube LP−k < |αj | ≤ 1 + LP−k and denote the complement of M in U
by m.

Now choose δ > 0 so small that 2kRδ < A. We proceed to show that

(26)
∫
m

|G(α)| dα� PN−Rk(log P )−δ .

By Lemma 1 it suffices to show that for α ∈ m there is a j such that
|g(Λj)| < P (log P )−δ. If this were not the case we see from Lemmata 3 and
4 that for all j ≤ N there are coprime integers aj , qj such that |qjΛj −aj | ≤
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(log P )2δkP−k and qj ≤ P 2δk. After relabelling indices we may suppose
that Λ1, . . . , ΛR are linearly independent forms. Now it follows easily that
there is a q � q1 . . . qR and a′1, . . . , a

′
R such that |qαi − a′i| � (log P )2Rδk.

In particular, α ∈ M. This proves (26).
It remains to treat the major arcs. This is fairly straightforward. We

begin by introducing further notation. Let %(u) denote Dickman’s function
which is defined by the relations

%(u) = 0 (u < 0) ,

%(u) = 1 (0 ≤ u ≤ 1) ,

u%′(u) = −%(u− 1) (u > 1) ,

and the request for a differentiable solution for u > 1 which is continuous
at u = 1. Now we introduce

(27) w(β) =
1
k

P k∫
0

x1/k−1%

(
log x

k log P

)
e(βx) dx

and

(28) S(q, a) =
∑
x≤q

e

(
axk

q

)
.

In much the same way as in Brüdern [11], §13, it is shown that

(29) g

(
a

q
+ β

)
= q−1S(q, a)w(β) + O

(
P

log P
(q + P k|β|)

)
.

Note that a, q need not be coprime here.
Let α ∈ M(q,a). Then Λj = bj/q + βj where

bj =
R∑

i=1

λijai, βj =
R∑

i=1

λij

(
αi −

ai

q

)
.

By (29),

g(Λj) = q−1S(q, bj)w(βj) + O(P (log P )A−1) .

The measure of M is � LR+1P−Rk, and it follows that∫
M

G(α) dα =
∑
q≤L

∑
a(q)

q−NS(q, b1) . . . S(q, bN )
∫

M(q,a)

w(β1) . . . w(βN ) dα

+ O(PN−Rk(log P )(R+2)A−1) .

Here
∑
a(q) denotes an R-fold sum over a1, . . . , aR running over a system of

residues modulo q with (q, a1, . . . , aR) = 1. The error term here is acceptable
if we choose A = 1/(2R + 4).
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We now write bj/q = cj/qj in lowest terms. By Theorem 4.2 of Vaughan
[39] we have |S(q, bj)| � q

(k−1)/k
j . Hence

(30)
∑
a(q)

q−N |S(q, b1) . . . S(q, bN )| �
∑
a(q)

(q1 . . . qN )−1/k � q−2−1/k+ε

as we shall now show. Note that after relabelling the variables we may
assume that for j = 0, . . . , n0 − 1 the forms ΛjR+1, . . . , Λ(j+1)R are linearly
independent. By Hölder’s inequality, dropping an excess qN , it suffices to
show that ∑

a(q)

(qjR+1 . . . q(j+1)R)−n0/k � q−2−1/k+ε .

We have n0/k ≥ 2+1/k, and the proposed inequality follows by an obvious
modification of the argument used to prove formula (93) of Davenport and
Lewis [29].

By partial integration,

w(β) � P (1 + P k|β|)−1/k .

Therefore we can use (30) and an obvious variant of Lemma 22 of Davenport
and Lewis [29] to show that

(31)
∫

M

G(α) dα = SI + O(PN−Rk(log P )−δ)

where

S =
∞∑

q=1

∑
a(q)

q−NS(q, b1) . . . S(q, bN ) ,

I =
∫

RR

w(Λ1) . . . w(ΛN ) dα .

It is readily shown that I � PN−Rk (see §13 of Brüdern [11] for details in the
case k = 3, R = 2, the methods extend to the present situation; compare also
§12 of Davenport and Lewis [29]). Moreover, the singular series of course
converges absolutely. In this case the singular series has been studied in
detail by Davenport and Lewis [29]. Their Lemma 31 asserts that S > 0
provided that the corresponding system of equations has a non-singular
p-adic solution for all primes p. Theorem 1 is now available from (31)
and (26).

5. The problem on inequalities. In various aspects the problem on
inequalities is much simpler. For example, there is only one “major arc”
which we now define as M = B(P η−k), and no singular series. For the
minor arcs m, which in the present context are defined as the complement
of M in B(P ζ), we will obtain the crucial saving by a method of Cook [20].
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For a given δ > 0 suppose that α ∈ m and |g(Λj)| > P 1−δ holds for
all j. If δ is sufficiently small we find from Lemma 3 that there are coprime
integers aj , qj such that

(32) qj � P 3kδ, |qjΛj − aj | < P 3kδ−k, aj � qjP
ζ .

We may assume that the linear form associated with the first R+1 variables
has coefficients linearly independent over the rationals, and is of finite order.
Now the method of Cook [20] is readily adopted to derive a contradiction to
the conditions (32) providing δ is sufficiently small (in terms of the order),
and P is restricted to a certain infinite set P of integers. We assume P ∈ P
for the rest of this section. For these P , and α ∈ m we have proved that
g(Λj) � P 1−δ for at least one j.

The box B(P ζ) can be covered by O(PRζ) cubes of volume 1. Hence,
by Lemma 1,

(33)
∫
m

|G(α)|K(α) dα� PN−Rk−δ/2

providing we choose ζ > 0 such that Rζ < δ/2.
It remains to show that

(34)
∫

M

|G(α)|K(α) dα� PN−Rk ,

the proposition and Theorem 2 then follow from (33) and (24).
By Lemma 7.1 of Vaughan and Wooley [41], for α ∈ M,

(35) g(Λj) � P (1 + P k|Λj |)−1/(2k)(log P )3 .

The presence of the logarithmic factor is a nuisance, and we proceed to
prune the major arc in two steps. Let Q = (log P )6NP−k. The first step is
to show that

(36)
∫

M\B(Q)

|G(α)|K(α) dα� PN−Rk(log P )−1 .

We use the trivial estimate for g(ΛN ). The remaining Rn0 columns of Λ
form a partitionable matrix. Hence, by Hölder’s inequality, it suffices to
show that ∫

M\B(Q)

|g(Λj(1)) . . . g(Λj(R))|n0dα� PR(n0−k)(log P )−1

where Λj(1), . . . , Λj(R) are any R linearly independent forms. The mapping
α→ Λ = (Λj(1), . . . , Λj(R)) is a non-singular linear transformation, so that
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by (35) the left hand side in the above inequality is

� (log P )3Rn0PRn0
∫

M

R∏
t=1

(1 + P k|Λj(t)|)−n0/(2k) dΛ .

Here M is the image of M\B(Q). We now observe that for Λ ∈ M we have
max(|Λj(t)|) � (log P )6NP−k, and recall that n0/(2k) > 1. The required
bound follows easily.

Now let R = (log P )1/2P−k. We replace (35) by the estimate from
Lemma 4 to see in the same way that

(37)
∫

B(Q)\B(R)

|G(α)|K(α) dα� PN−Rk(log P )−1 .

It is now straightforward, using (35) and standard arguments, to show that

(38)
∫

B(R)

G(α)K(α) dα = I + O(PN−Rk(log P )−δ)

where δ > 0 and

I =
∫

RR

w(Λ1) . . . w(ΛN )K(α) dα.

Moreover, the usual method involving Fourier’s inversion formula (see Pit-
man [34] for more details) immediately leads to the lower bound

I � PN−Rk .

By (36)–(38) we see that (34) holds.

6. Cubic inequalities. We shall now describe the refinements in the
method which are needed to deduce Theorem 3. Whenever we refer to earlier
sections of this paper we are always concerned with the special case k = 3.

There is already a demand for a different generating function involving
the exponential sum (18). It is convenient to redefine G(α) as

(39) G(α) = f(Λ1) . . . f(ΛR+1)
7R+1∏

t=R+2

g(Λt)

where we may assume that the linear form associated with the first R + 1
variables has coefficients linearly independent over the rationals, and is of
finite order.

With G(α) now defined as in (39) we still have (23) and (24). As before,
the goal is to show that Θ2 � P 4R+1. We define the major arc as the box
max |αi| ≤ P−9/4. For α ∈ M we then have the standard estimate

f(Λi) � P (1 + P 3|Λi|)−1 .
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This strong bound makes the pruning of the major arc much simpler than in
the general case where no Weyl sums (18) were present. We may therefore
leave it to the reader to prove the lower bound (34) in the present context. It
might be worth mentioning that the use of Lemmata 3 and 4 can be avoided
here if wished.

Defining again m as the complement of M in B(P ζ) it remains to estab-
lish the estimate

(40)
∫
m

|G(α)|K(α) dα� P 4R+1−δ

for some δ > 0.
The next lemma is a multi-dimensional version of (19).

Lemma 5. Let A = (aij) be an r × 7r matrix of real numbers such that
µ(d, A) ≤ 11d/2d for d = 0, 1, . . . , r − 1. Suppose that for 0 ≤ l ≤ 6 the
matrices (aij), 1 ≤ i ≤ r, lr < j ≤ (l + 1)r are non-singular. Let

γj =
r∑

i=1

aijαi (1 ≤ j ≤ 7r)

and suppose that U is a cube as in Lemma 1. Then∫
U

|f(γ1) . . . f(γr)g(γr+1) . . . g(γ7r)| dα� P 4r+ε .

The implied constant depends on aij and ε only.

P r o o f. Let δ = ε2. For any subset J ⊂ {1, . . . , r} let

U(J ) = {α ∈ U : |f(γj)| ≥ P 3/4+δ (j ∈ J ),

|f(γl)| < P 3/4+δ (l ≤ r, l 6∈ J )} .

We estimate the contribution from any of these sets separately. Here we
recall the bounds

1∫
0

|g(β)|6 dβ � P 13/4+δ,(41)

1∫
0

|g(β)|8 dβ � P 5+δ(42)

((41) is Theorem 4.4 of Vaughan [40] when η is sufficiently small, and (42)
follows from Hua’s Lemma, on considering the underlying diophantine equa-
tion). We also need the well known fact that

(43)
∫
F
|f(β)|4 dβ � P 1+δ
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where F is the set of all β ∈ [0, 1] where |f(β)| ≥ P 3/4+δ (see e.g.
Brüdern [9]).

The contributions from U(∅) and U({1, . . . , r}) are easy to estimate. We
have

|g(γr+1) . . . g(γ7r)| ≤
6∑

l=1

|g(γlr+1) . . . g(γ(l+1)r)|6

so that a simple change of variable and (41) give∫
U

|g(γr+1) . . . g(γ7r)| dα� P (13/4+δ)r.

Hence the contribution from U(∅) is � P (3/4+δ)rP (13/4+δ)r � P 4r+ε pro-
viding ε is sufficiently small. For U({1, . . . , r}) we use Hölder’s inequality,
(42) and (43) to find in much the same way that∫

U({1,...,r})

|f(γ1) . . . f(γr)g(γr+1) . . . g(γ7r)| dα

�
( ∫
Fr

|f(γ1) . . . f(γr)|4 dγ1 . . . dγr

)1/4( ∫
U

|g(γr+1) . . . g(γ7r)|4/3 dα
)3/4

� (P r(1+δ))1/4(P r(5+δ))3/4 � P 4+ε

as required.
The other sets can be treated by a hybrid version of the two argu-

ments just given. The problems which now arise are mainly of a notational
character. Therefore we first observe that for symmetry reasons it suffices
to estimate the contribution from the sets U({1, . . . , t}) = Ut, say, where
1 ≤ t ≤ r − 1.

Let aj denote the jth column of A. We split the indices r+1, r+2, . . . , 7r
into two disjoint sets V, W such that |V| = 6t, |W| = 6r−6t. Then we write

(44) |f(γ1) . . . f(γt)g(γr+1) . . . g(γ7r)|

= (|f(γ1)|1/6 . . . |f(γt)|1/6)6
( ∏

v∈V
|g(γv)|1/3

)3( ∏
w∈W

|g(γw)|1/4
)4

.

The right hand side is a product of 6t+18t+4(6r−6t) = 24r factors, and in
this product 24r linear forms γi occur to which there corresponds an r×24r
matrix

(45) At = (aj aj aj aj aj aj av av av aw aw aw aw)1≤j≤t,v∈V,w∈W .

This matrix is partitionable. To see this let 1 ≤ d ≤ r− 1 and suppose that
there are exactly K columns in At lying in a subspace of dimension d. Since
At consists of repetitions of columns from A, there is a corresponding set
of κ columns from A in the same subspace. We can write κ = κ1 + κ2 + κ3
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where κ1 is the number of these columns with index j ≤ t, where κ2 is the
number of columns with index in V, and κ3 is the number of columns with
index in W. By (45),

K = 6κ1 + 3κ2 + 4κ3 ≤ 2κ1 + 4κ.

Note that κ ≤ µ(d, A) ≤ 11d/2. The forms γ1, . . . , γt are linearly indepen-
dent so that κ1 ≤ min(d, t). It follows that K ≤ 24d. By Aigner’s criterion,
At is indeed partitionable.

Now we can group the 24r factors in (44) into 24 blocks of r factors each
such that to any block there corresponds a non-singular r×r matrix. Then,
by Hölder’s inequality,∫

U(t)

|f(γ1) . . . f(γt)g(γr+1) . . . g(γ7r)| dα� (I1 . . . I24)1/24

where any factor Ij is of one of the forms∫
U(t)

|fν(1) . . . fν(σ)|4|g(γν(σ+1)) . . . g(γν(%))|8|g(γν(%+1)) . . . g(γν(r))|6 dα ,

and where 1 ≤ ν(l) ≤ t (1 ≤ l ≤ σ), ν(l) ∈ V (σ + 1 ≤ l ≤ %), ν(l) ∈ W
(% + 1 ≤ l ≤ r). After a change of variable in any of these integrals we have

(I1 . . . I24)1/24 �
( ∏

1≤l≤t

∫
F
|f(γl)|4dγl

)1/4

×
( ∏

v∈V

1∫
0

|g(γv)|8dγv

)1/8( ∏
w∈W

1∫
0

|g(γw)|6dγw

)1/6

.

Therefore, by (41)–(43) and the definition of Ut it follows that the contri-
bution from this set to the integral in question is

� P (r−t)(3/4+δ)P t(1/4+δ)P 6t(5+δ)/8P 6(r−t)(13/4+δ)/6 � P 4r+2rδ .

This proves the lemma.

For a given δ > 0 let Et be the set of all α ∈ m where |f(Λt)| ≤ P 1−2δ.
Then, by Lemma 5, since B(P ζ) is covered by O(P rζ) copies of U,∫

Et

|G(α)|K(α) dα� P 4r+rζ+ε−2δ � P 4r−δ

providing ζ and ε are small compared with δ. However, by Weyl’s inequality
(Lemma 2.4 of Vaughan [39]), |f(Λt)| ≥ P 1+2δ implies that there are integers
a, q such that q � P 9δ, |qΛt− a| � P 9δ−3 providing δ is small. This can be
used to show, as in Section 5, that for P in a certain infinite set of integers,
the union of all Et covers m. This proves (40).
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7. Relaxing hypotheses. The rank condition in Theorem 3 can cer-
tainly be relaxed. As was pointed out in the introduction, the results and
proofs of Theorems 1 and 2 suggest that it should be possible to deal with
systems satisfying µ(d) ≤ 7d. Actually, a careful inspection of Section 6
shows that our argument applies to such systems apart from the treatment
of the sets Ut when 1 ≤ t ≤ r − 1, in the proof of Lemma 5. However,
in principle it should be possible to choose the sets V, W so that the rele-
vant matrix At remains partitionable even on the weaker assumption that
µ(d) ≤ 7d although the combinatorial problems associated with this might
be awkward. In view of our recent work on three additive equations in 22
variables [2] it might be interesting to give the details of such a refinement
when r = 3. The key is the following improvement of Lemma 5.

Lemma 6. Suppose that r = 3. Suppose that the matrix (aij)1≤i≤r,1≤j≤7r

partitions into (aij)1≤i≤r,rl<j≤(l+1)r for 0 ≤ l ≤ 6. Then the claim of
Lemma 5 holds.

P r o o f. Inspecting the proof of Lemma 5, we see that we only have to
show that for t = 1 and t = 2 there exist appropriate choices of V = Vt and
W = Wt such that the matrix At defined in (45) is partitionable.

Consider the matrix (al)4≤l≤21. This matrix is partitionable. Define
ν(d) as the maximal number of columns al, 4 ≤ l ≤ 21, generating a linear
space of dimension d. By Aigner’s criterion, ν(d) ≤ 6d.

Let Vt = lin(a1, . . . ,at). This space has dimension t. Let G denote the
set of all indices l with 4 ≤ l ≤ 21 and al ∈ Vt, and put γ = |G|. Since
lin(al : l ∈ G) ⊂ Vt we have γ ≤ ν(t) ≤ 6t. Hence we can choose Vt such
that G ⊂ Vt. We now show that in many cases this choice of V is already
appropriate.

Let d = 1 or d = 2, and let X be a linear space of dimension d, generated
by D = D(d, X) columns from At. Then there must be 6% such columns
aj , 1 ≤ j ≤ t, and 3σ such columns av, v ∈ V, and also 4τ such columns
aw, w ∈ W. Then

(46) D = 6% + 3σ + 4τ .

By Aigner’s criterion, in order to prove that At is partitionable we have to
show that D ≤ 24d.

Note that the σ + τ columns av,aw just considered span a space of
dimension ≤ d. Hence, by Aigner’s criterion, σ + τ ≤ ν(d) ≤ 6d. Hence, if
% = 0, by (46) we have D ≤ 4ν(d) ≤ 24d as required.

Thus we may now suppose that % ≥ 1. On the other hand, it is clear that
% ≤ min(t, d). Now, when d ≤ t and % = d then by construction X ⊂ Vt,
and this implies τ = 0 by choice of V. Now σ ≤ 6d, and by (46) it follows
that D ≤ 6% + 18d ≤ 24d, which is acceptable.
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Now we may suppose that % ≤ d− 1 if d ≤ t, and that % ≤ t if d > t. In
the present context this implies % = 1, d = 2.

We consider first the situation t = 1. We have to estimate D(2, X) where
X is a 2-dimensional space with % = 1, that is, a1 ∈ X. Furthermore, for
any such X we have aj ∈ X for j ∈ G. Let X1, . . . , Xs be all the distinct
2-spaces spanned by a1 and another al. This splits the indices j ∈ H =
{4, 5, . . . , 21} \ G into s disjoint sets X1, . . . ,Xs such that l ∈ Xλ if and only
if al ∈ Xλ. We put hλ = |Xλ|, and may suppose h1 ≥ h2 ≥ . . . ≥ hs > 0.
Moreover,

(47) h1 + h2 + . . . + hs = 18− γ.

Note that Xλ contains al for l ∈ G ∪ Xλ. By Aigner’s criterion,

(48) hλ + γ ≤ ν(2) ≤ 12.

The trivial bound for D is now

D(2, Xλ) ≤ 6 + 3γ + 4hλ ≤ 42 + hλ

(compare (46), (48)). Hence, whenever hλ ≤ 6 we have D(2, Xλ) ≤ 48 as
required, irrespective of a more specific choice of V.

Hence we may now suppose that h1 ≥ . . . ≥ hL ≥ 7 > hL+1. By (47)
we have 7L ≤ 18 − γ. In particular, L ≤ 2. We wish to put hλ − 6 indices
from Xλ into V, for 1 ≤ λ ≤ L. This is always possible since we then have
specified

γ +
∑
λ≤L

(hλ − 6) ≤ 6

elements from V so far; here we used (48) when L = 1 and (47) when
L = 2. But now, by construction, at most six columns al ∈ Xλ have l ∈ W.
Therefore, using (48) once again, we have

D(2, Xλ) ≤ 6 + 3(γ + hλ − 6) + 4× 6 ≤ 48 .

Hence, when t = 1 there is a choice for V such that A1 is partitionable.
Now consider the case t = 2. We imitate the procedure used when

t = 1 but the situation is more complicated. The 2-spaces we still have to
consider are those which contain either a1 or a2 but not both. Thus let
X1,1, . . . , X1,s1 be the distinct 2-spaces containing a1 but not a2. Similarly
define X2,1, . . . , X2,s2 as the distinct 2-spaces containing a2 but not a1. As
before, when u = 1 or 2, the Xu,1, . . . , Xu,su give rise to a splitting of H into
disjoint sets Xu,λ, 1 ≤ λ ≤ su, such that al ∈ Xu,λ if and only if l ∈ Xu,λ.
We put hu,λ = |Xu,λ| and have, as in (47),

(49) hu,1 + . . . + hu,su = 18− γ.

Let ϑu be the number of columns al with l ∈ G which lie on the line generated
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by au. Then ϑu ≤ ν(1) ≤ 6 and ϑ1 + ϑ2 ≤ γ. As in (48) we have

(50) hu,λ + ϑu ≤ ν(2) ≤ 12 .

The simplest bound now is

D(2, Xu,λ) ≤ 6 + 3ϑu + 4hu,λ ≤ 42 + hu,λ.

Hence, as in the case t = 1 we already obtain the required bound D(2, Xu,λ)
≤ 48 for all u, λ with hu,λ ≤ 6.

We may now assume that hu,1 ≥ . . . ≥ hu,Lu
≥ 7, and all other hu,l ≤ 6.

As before we see that Lu ≤ 2. Without loss of generality we may therefore
suppose that

(51) 0 ≤ L2 ≤ L1 ≤ 2, L1 ≥ 1 .

When hu,λ ≥ 7 we wish to put hu,λ − 6 indices from Xu,λ into V. If this
were possible for all u = 1, 2, 1 ≤ λ ≤ Lu, then we would be left with at
most 6 indices from Xu,λ to be put into W so that by (50)

D(2, Xu,λ) ≤ 6 + 3(ϑu + hu,λ − 6) + 4× 6 ≤ 48 .

It remains to show that we can actually put that many indices into V.
If we choose hu,λ − 6 indices from Xu,λ at random for putting these into V
we have determined at most

(52) γ +
2∑

u=1

Lu∑
λ=1

(hu,λ − 6) = γ +
∑
u,λ

hu,λ − 6(L1 + L2)

elements from V, and it remains to show that (52) does not exceed 12. As
a crude argument we first use (49) with u = 1, and then either (49) or (50)
with u = 2, and deduce that (52) is

≤ 18 + min(18, 12L2)− 6(L1 + L2).

For L1, L2 subject to (51) this is ≤ 12 unless L1 = L2 = 1. In this remaining
case we refine the argument as follows. We observe that (52) now becomes

(53) γ + h1,1 + h2,1 − 12 .

If h1,1 + h2,1 ≤ 18 − γ then (53) is ≤ 6, which is more than required. If
h1,1 + h2,1 > 18 − γ then recall that Xu,1 is a subset of the set H with
18 − γ elements. Hence X1,1 ∩ X2,1 contains at least h1,1 + h2,1 + γ − 18
elements. In other words, there are that many columns al ∈ X1,1 ∩ X2,1.
This intersection is a line, whence

h1,1 + h2,1 + γ − 18 ≤ ν(1) ≤ 6.

Therefore (53) does not exceed 12 as required. This completes the proof of
the lemma.
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The reader should have no difficulty to reduce the rank condition in
Theorem 3 to µ(d) ≤ 6d when r = 3, using Lemma 6 alone. However, for a
further reduction yet another argument is required.

Lemma 7. Suppose A = (al)1≤l≤22 is a 3×22 matrix satisfying µ(d) ≤ 7d
for d = 0, 1, 2, 3. Then the columns can be renumbered so that (a1 a2 a3)
is non-singular , and the maximal number µ∗(d) of columns al, 4 ≤ l ≤ 22,
generating a linear space of dimension d satisfies µ∗(d) ≤ 6d (d = 1, 2).

P r o o f. If µ(d) ≤ 6d for d = 1, 2 then the lemma is trivial. Hence we
may suppose that either µ(1) = 7 or 13 ≤ µ(2) ≤ 14.

First consider the case µ(2) ≥ 13. Suppose that there are s different
2-spaces X1, . . . , Xs, say, which contain at least 13 columns aj . Suppose
further that there are t different lines, Y1, . . . , Yt, which contain 7 columns
aj . We note that no aj can lie in two of the Yj , which implies 7t ≤ 22, that
is, 0 ≤ t ≤ 3. Furthermore, it is clear that either Yj ⊂ Xl, or Yj ∩Xl = {0},
and that at most two lines Yj can lie in the same Xl.

Let s = 1 first. If X1 contains two Yl then we take a column from each
of these two lines, and denote them by a1, a2. If X1 contains one Yl, we
take a column lying in this line and denote it by a1. Then we take a column
lying in X1 which is linearly independent of a1 and denote it by a2. If X1

contains no Yl we take two linearly independent columns in X1 and denote
these by a1, a2. Now since X1 contains at least 13 columns there can be at
most one Yl which does not lie in X1. If such a Yj exists we take a column
lying in it and denote it by a3. If not we take an arbitrary column not in
X1 and denote it by a3. In any case, det(a1,a2,a3) 6= 0 and µ∗(d) ≤ 6d by
construction.

Suppose s ≥ 2. Now Xij = Xi ∩Xj is a line and therefore contains at
most 7 columns. It follows that at most 3 columns do not lie in one of the
Xj . In particular, if there are any Yl then these must lie in some Xj .

Now consider the case s = 2. The number of columns in both X1, X2 is
at least 13 so that X12 contains at least 4 columns. Therefore the number
of columns in Xj but not in X12 does not exceed 10. It follows that if
Xj contains two lines Yl then one of these must be X12. Therefore we
first choose a column in X12 and denote it by a3. Then we take a column
aj ∈ Xj which is not in X12. If Xj contains a line Yl 6= X12 then we arrange
that aj is from this line. It is clear that det(a1,a2,a3) 6= 0. We also have
µ∗(d) ≤ 6d since we have used one column from any exceptional line Yl and
two columns from any exceptional 2-space Xj for the choice of a1,a2,a3.

Now let s ≥ 3. We first observe that no three Xj can intersect in a line.
To see this suppose that X1, X2, X3 have one line, L say, in common. Let
λ be the number of columns in L and Hj be the number of columns in Xj
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but not in L. Then
λ + h1 + h2 + h3 ≤ 22

and
13 ≤ λ + hj ≤ 22 .

The last inequality implies 3λ+h1 +h2 +h3 ≥ 39. Combining this with the
first inequality we deduce that 2λ ≥ 17. On the other hand, it is clear that
λ ≤ µ(1) ≤ 7, contrary to the previous inequality.

Thus we may suppose that all the intersection lines Xij are distinct. We
define hij to be the number of columns al in Xij , and let hl be the number
of columns in Xl which do not lie in any Xlj . Then

(54)
s∑

i=1

hi +
∑

1≤i<j≤s

hij ≤ 22 ,

and, for any fixed l,

(55) 14 ≥ hl +
∑

1≤i≤s
i 6=l

hil ≥ 13

since the sum here is the number of columns in Xl. We sum this over l and
obtain

s∑
i=1

hi + 2
∑

1≤i<j≤s

hij ≥ 13s .

From (54) it follows that

(56)
∑

1≤i<j≤s

hij ≥ 13s− 22 .

On the other hand, by (54) again, the left hand side here is ≤ 22, which
gives s ≤ 3. Thus we may suppose that s = 3. In this case, by (56) and (54),
h1 + h2 + h3 ≤ 5. In particular, hj ≤ 5. Hence, if there are any exceptional
lines Yl these must coincide with some Xij . Now hij ≤ µ(1) ≤ 7, and from
(55) and hj ≤ 5 we deduce that hij > 0 for any pair 1 ≤ i < j ≤ 3. Thus
we may take one column from each Xij and denote these by a1,a2,a3. It
is clear that these are linearly independent, and that µ∗(d) ≤ 6d.

It remains to consider the case where µ(2) ≤ 12 but µ(1) = 7. If there
were two exceptional lines Y1, Y2, these would span a 2-space containing
14 columns, which is impossible. Hence we have exactly one exceptional
line Y1. We take a column in Y1 and denote it by a1. Then we take two
further columns such that det(a1,a2,a3) 6= 0. This completes the proof of
the lemma.

Now it is time to reconsider the situation in Theorem 3 when R = 3. We
suppose first that the matrix of coefficients satisfies µ(1) ≤ 7 and µ(2) ≤ 14.



146 J. Brüdern and R. J. Cook

We rearrange columns according to Lemma 7 and define, using the notation
introduced in Section 6,

G(α) = f(Λ1)f(Λ2)f(Λ3)
22∏

l=4

g(Λl) .

The only real difficulty in adopting the method from Section 6 is in the
treatment of the set m as defined there. Let 5ζ < δ < 10−5 and consider
the sets

Gt = {α ∈ m : |g(Λt)| < P 1−δ} .

Then∫
Gt

|G(α)|K(α) dα� P 1−δ
∫

B(P ζ)

|f(Λ1)f(Λ2)f(Λ3)|
22∏

l=4
l 6=t

|g(Λl)| dα .

Now Lemma 6 can be used to estimate the integral on the right by
� P 12+ε+3ζ , which leads to an acceptable bound for the contribution from
Gt. If P is restricted to a certain infinite set of integers then the minor arc
m is covered by the union of all Gt, 4 ≤ t ≤ 22. This can be shown as on
earlier occasions in this paper. For the major arcs we may refer to Section 6.
Thus we have proved the following result which we announce in a notation
slightly digressing from earlier usuage.

Theorem 4. Consider the inequalities

|a1x
3
1 + . . . + a22x

3
22| < ε ,

|b1x
3
1 + . . . + b22x

3
22| < ε ,

|c1x
3
1 + . . . + c22x

3
22| < ε ,

with real coefficients such that at least one of the quartenary linear forms
associated with it has coefficients linearly independent over the rationals, and
is of finite order. Suppose that the matrix of coefficients satisfies µ(1) ≤ 7
and µ(2) ≤ 14. Then the inequalities have a simultaneous non-trivial integer
solution.

This should be compared with the corresponding result on equations in
Atkinson, Brüdern and Cook [2].

Obviously the rank condition can be relaxed further but at present it is
unlikely that it can be removed completely. If µ(1) ≥ 8 then after taking
linear combinations we may suppose that bl = cl = 0 for 1 ≤ l ≤ 8. We put
x9 = . . . = x22 = 0 and solve the single inequality

|a1x
3
1 + . . . + a8x

3
8| < ε .

This can be done using the results of Davenport [26] and Davenport and
Roth [30], irrespective of the coefficients ai (for more recent results on this
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particular problem see Baker [6] and Brüdern [10]).
If µ(2) ≥ 16 then by a similar argument we can reduce the system to a

pair of inequalities

(57)
|a1x

3
1 + . . . + a16x

3
16| < ε ,

|b1x
3
1 + . . . + b16x

3
16| < ε .

Here a combination of the methods of Pitman [34] and Vaughan [38] can be
used to show this pair to be non-trivially soluble.

There remains the case µ(2) = 15, µ(1) ≤ 7. Then, after taking linear
combinations we can arrange that the system becomes

(58)

|a1x
3
1 + . . . + a16x

3
16 + . . . + a22x

3
22| < ε ,

|b1x
3
1 + . . . + b16x

3
16 + . . . + b22x

3
22| < ε ,

|c16x
3
16 + . . . + c22x

3
22| < ε ,

where c16 . . . c22 6= 0. The natural method now would be to put x16 = . . . =
x22 = 0. Then one is in the situation of (57) but with 15 variables in place
of 16. We have recently found [13] that such a pair has solutions providing
one of the ternary linear forms associated with it has coefficients which are
linearly independent over the rationals, and is of finite order. However, this
is not always true. For example, all ai, bi, 1 ≤ i ≤ 15, may be integers.
Then the question reduces to finding a simultaneous non-trivial zero of a
pair of additive cubic forms in 15 variables with integer coefficients. There
are examples due to Davenport and Lewis [28] where such a zero does not
exist.

The above method can be refined. Suppose there is a solution to

(59) |c16x
3
16 + . . . + c22x

3
22| < ε,

for any ε > 0. Then an idea from Davenport and Lewis [28] can be adopted
to the present situation to reduce (58) to a pair of inequalities in 16 rather
than 15 variables which can be solved by (57). Although it is conjectured
that (59) always has a non-trivial integer solution this is known at present
only in the case where the cubic form is a multiple of a form with integer
coefficients only, by recent work of Baker [5]. Thus there remains an excep-
tional case which denies treatment. It transpires that the key is the long
awaited proof that (59) is soluble.
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148 J. Brüdern and R. J. Cook
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