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Introduction. The problem of determining the formula for PS(n), the
number of partitions of an integer into elements of a finite set S, that is, the
number of solutions in non-negative integers, hs1 , . . . , hsk

, of the equation

hs1s1 + . . . + hsk
sk = n ,

was solved in the nineteenth century (see Sylvester [4] and Glaisher [3] for
detailed accounts). The solution is the coefficient of xn in

[(1− xs1) . . . (1− xsk)]−1 ,

expressions for which they derived. Wright [5] indicated a simpler method
by which to find part of the solution (at least in the case si = i).

The current paper gives a simple method by which the power-series ex-
pansion of a rational function may be derived. Lemma 1 is well known and
gives the general form of the solution. Lemma 2 is also well known. See, for
example, Andrews [1], Example 2, p. 98. Lemma 3 shows how the recur-
rence relation of Lemma 2 becomes of bounded degree in certain cases. The
recurrence relation is then solved, and the solution is extended from these
certain cases to all cases.

We then apply the result to investigate the growth of the difference
PS(n) − PT (n), where S and T are finite sets, and in particular when this
difference is bounded. The differences P

(0)
S (n) − P

(0)
T (n) and P

(1)
S (n) −

P
(1)
T (n) are also considered, where P

(0)
S (resp. P

(1)
S ) denotes the number of

partitions of n into elements of S with an even (resp. odd) number of parts.

Derivation of the power series of a rational function. Let

g(x) =
k∏

i=1

(1− αix)ai and f(x) =
l∏

i=k+1

(1− αix)a′i
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be any polynomials with constant coefficient 1, where the αi are distinct and
non-zero and the degree of f(x) is less than that of g(x). The power-series
expansion of f(x)/g(x) is derived (see Theorem 2).

Lemma 1.

f(x)/g(x) =
∞∑

n=0

k∑
i=1

ai−1∑
j=0

bi,jn
jαn

i xn ,

where the bi,j are constants and

bi,ai−1 =
1

(ai − 1)!
f(α−1

i )
k∏

ν=1
ν 6=i

(1− ανα−1
i )−aν = ai(−αi)ai

f(α−1
i )

g(ai)(α−1
i )

.

P r o o f. Write f(x)/g(x) in partial fractions:

f(x)/g(x) =
k∑

i=1

ai∑
t=1

Ai,t/(1− αix)t =
k∑

i=1

ai∑
t=1

Ai,t

∞∑
n=0

(
n + t− 1

t− 1

)
αn

i xn .

Since (n+t−1
t−1 ) is a polynomial of degree t− 1 in n, the form of f(x)/g(x) is

as given. Moreover,

bi,ai−1 =
1

(ai − 1)!
Ai,ai

,

as required. The second expression for bi,ai−1 follows by l’Hôpital’s Rule.

Let

f(x)/g(x) =
∞∑

n=0

b(n)xn .

Lemma 2.

nb(n) =
n∑

r=1

( k∑
i=1

aiα
r
i −

l∑
i=k+1

a′iα
r
i

)
b(n− r) .

P r o o f.

d

dx
log[f(x)/g(x)] =

k∑
i=1

aiαi

1− αix
−

l∑
i=k+1

a′iαi

1− αix
.

Hence
∞∑

n=1

nb(n)xn−1 =
{ ∞∑

r=1

( k∑
i=1

aiα
r
i −

l∑
i=k+1

a′iα
r
i

)
xr−1

}{ ∞∑
s=0

b(s)xs
}

,

and the result follows by picking out the coefficient of xn−1 on the right.
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Write ai = −a′i so that

nb(n) =
n∑

r=1

( l∑
i=1

aiα
r
i

)
b(n− r) .

Consider the case where each αi is a root of unity. In this case, write %i

instead of αi. Let L be the least positive integer such that %L
i = 1 for all i,

and let Z be any positive multiple of L.

Lemma 3.

(1) (n + Z)b(n + Z) = nb(n) +
Z−1∑
r=0

( l∑
i=1

ai%
−r
i

)
b(n + r).

P r o o f.

(n + Z)b(n + Z) =
n+Z∑
r=1

( l∑
i=1

ai%
r
i

)
b(n + Z − r)

=
Z∑

r=1

( l∑
i=1

ai%
r
i

)
b(n + Z − r)

+
n+Z∑

r=Z+1

( l∑
i=1

ai%
r
i

)
b(n + Z − r)

=
Z−1∑
s=0

( l∑
i=1

ai%
−s
i

)
b(n + s) +

n∑
t=1

( l∑
i=1

ai%
t
i

)
b(n− t)

=
Z−1∑
s=0

( l∑
i=1

ai%
−s
i

)
b(n + s) + nb(n) .

Let

cj,n =
k∑

i=1

bi,j%
n
i

(where bi,j = 0 for j ≥ ai), so that

b(n) =
m−1∑
j=0

cj,nnj , where m = max ai .

Put b(n) =
∑m−1

j=0 cj,nnj in (1). Then

m−1∑
j=0

cj,n+Z(n + Z)j+1 =
m−1∑
j=0

cj,nnj+1 +
Z−1∑
r=0

l∑
i=1

ai%
−r
i

m−1∑
j=0

cj,n+r(n + r)j .
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Now, cj,n is periodic in n and hence bounded, so equate coefficients of nq in
the above to obtain

(2)
m−1∑

j=q−1

cj,n+Z

(
j + 1

q

)
Zj−q+1

= cq−1,n +
Z−1∑
r=0

l∑
i=1

ai%
−r
i

m−1∑
j=q

cj,n+r

(
j

q

)
rj−q

(rj−q = 1 when r = 0 and j = q). Note that

bi,j =
1
L

L∑
n=1

l∑
ν=1

bν,j%
n
ν %−n

i =
1
L

L∑
n=1

cj,n%−n
i , 1 ≤ i ≤ k .

Operate with (1/L)
∑L

n=1 . . . %−n
p throughout (2), 1 ≤ p ≤ k, to get

m−1∑
j=q−1

bp,j

(
j + 1

q

)
Zj−q+1 = bp,q−1 +

Z−1∑
r=0

l∑
i=1

ai%
−r
i

m−1∑
j=q

bp,j%
r
p

(
j

q

)
rj−q .

Hence

(3)
ap−1∑
j=q

bp,j

(
j + 1

q

)
Zj−q+1 =

ap−1∑
j=q

bp,j

(
j

q

) Z−1∑
r=0

l∑
i=1

ai%
−r
i %r

pr
j−q .

Now drop the p suffix. Observe
∑Z−1

r=0 (%−1
i %)rrj−q is the coefficient of

xj−q+1/(j − q)! in the power-series expansion of

x[1 + (%−1
i %)ex + (%−1

i %)2e2x + . . . + (%−1
i %)Z−1e(Z−1)x]

= x(eZx − 1)/(%−1
i %ex − 1) =

x

%−1
i %ex − 1

∞∑
s=1

(Zx)s/s! .

Hence
∑Z−1

r=0 (%−1
i %)rrj−q is given by a polynomial in Z whose coefficient

of Z is the coefficient of xj−q/(j − q)! in the expansion of x/(%−1
i %ex − 1).

Call this number γi,j−q. Since (3) holds for infinitely many values of Z,
the coefficient of Z on the left-hand side of the equation equals that on the
right-hand side. This gives

bq(q + 1) =
a−1∑
j=q

bj

(
j

q

) l∑
i=1

aiγi,j−q .

Note that γi0 is 1 when i = p and zero otherwise. Hence

(a− 1− q)bq =
a−1∑

j=q+1

bj

(
j

q

)
dj−q , where dj−q = −

l∑
i=1

aiγi,j−q .
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Let

bj =
(

a− 1
a− 1− j

)
uj ,

so that

(a− 1− q)bq =
a−1∑

j=q+1

(
j

q

)(
a− 1

a− 1− j

)
ujdj−q

=
a−1∑

j=q+1

(
a− 1

a− 1− q

)(
a− 1− q

j − q

)
ujdj−q ,

so

(4) uq =
1

a− 1− q

a−1∑
j=q+1

(
a− 1− q

j − q

)
ujdj−q for q < a− 1 .

Lemma 4. Let j < a− 1. Then

(5) uj/ua−1

=
∑

v,n1,...,nv>0
n1+...+nv=a−1−j

1
a− 1− j

(
a− 1− j

n1

)
1

a− 1− j − n1

(
a− 1− j − n1

n2

)

. . .
1

a− 1− j −
∑t

s=1 ns

(
a− 1− j −

∑t
s=1 ns

ns+1

)
. . .

1
nv

(
nv

nv

) v∏
s=1

dns .

P r o o f. The formula is correct for j = a − 2; the right-hand side is
just d1, in agreement with (4). Assume it is correct for all values of j with
q < j < a− 1. Then

uq/ua−1

=
1

a− 1− q

( a−2∑
j=q+1

{(
a− 1− q

j − q

) ∑
v,n1,...,nv>0

n1+...+nv=a−1−j

1
a− 1− j

(
a− 1− j

n1

)

. . .
1
nv

(
nv

nv

)[ v∏
s=1

dns

]
dj−q

}
+ da−1−q

)

=
( a−2∑

j=q+1

∑
v,n1,...,nv>0

(j−q)+n1+...+nv=a−1−q

1
a− 1− q

(
a− 1− q

j − q

)

× 1
a− 1− q − (j − q)

(
a− 1− q − (j − q)

n1

)
. . .

1
nv

(
nv

nv

)
dj−q

v∏
s=1

dns

)
+

da−1−q

a− 1− q
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=
( ∑

v,n0,...,nv>0
n0+n1+...+nv=a−1−q

1
a− 1− q

(
a− 1− q

n0

)

× 1
a− 1− q − n0

(
a− 1− q − n0

n1

)
. . .

1
nv

(
nv

nv

) v∏
s=0

dns

)
+

da−1−q

a− 1− q

=
∑

n0,...,nv>0,v≥0
n0+n1+...+nv=a−1−q

1
a− 1− q

(
a− 1− q

n0

)
. . .

1
nv

(
nv

nv

) v∏
s=0

dns
,

and the result follows by induction.

Lemma 5.

uj

ua−1
= (a− 1− j)!

∑
1h1 ...(a−1−j)ha−1−j

partition of a−1−j

a−1−j∏
r=1

[(r!r)hrhr!]−1dhr
r .

P r o o f. The product of the binomial coefficients in a term of (5) is(
a− 1− j

n1, . . . , nv

)
=

(a− 1− j)!
n1! . . . nv!

.

It will suffice to show that for a given partition 1h1 . . . whw of w,∑ 1
w1(w1 + w2)(w1 + w2 + w3) . . . (w)

=
1∏w

g=1 ghghg!
,

where w1, w2, . . . , wj are the components of the partition, j =
∑

hg, and
the summation on the left-hand side extends over all decompositions of w
with these components.

This is true for w = 1 and in general for the partition w = w1. Suppose
it is true for all partitions of y with y < w. Let 1h1 . . . whw be a partition
of w with hw = 0. Then∑ 1

w1(w1 + w2) . . . (w)
=

1
w

w−1∑
wj=1
hwj

6=0

∑ 1
w1(w1 + w2) . . . (w − wj)

=
1
w

w−1∑
wj=1
hwj

6=0

{( w∏
g=1

g 6=wj

ghghg!
)
w

hwj
−1

j (hwj − 1)!
}−1

=
1
w

w−1∑
wj=1
hwj

6=0

wjhwj∏w
g=1 ghghg!

=
1∏w

g=1 ghghg!
,
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since
w−1∑
wj=1
hwj

6=0

wjhwj = w .

The result follows.

Theorem 1.

b(n) =
k∑

i=1

{
f(%−1

i )
/ k∏

ν=1
ν 6=i

(1− %ν%−1
i )aν

}

×
ai−1∑
j=0

1
j!

∑
1h1 ...(ai−1−j)

hai−1−j

partition of ai−1−j

{ ai−1−j∏
r=1

dhr
r

(r!r)hrhr!

}
nj%n

i ,

where dr is the coefficient of xr/r! in the expansion of
l∑

ν=1

aνx

1− %−1
ν %iex

= xy
h′(y)
h(y)

,

where y = (%ie
x)−1 and h(x) = [f(x)/g(x)]−1.

P r o o f. The form of b(n) is immediate from Lemmas 1 and 5. Note that

xy
h′(y)
h(y)

= xy

l∑
ν=1

aν
d

dy
log(1− %νy) = xy

l∑
ν=1

− aν%ν

1− %νy

= x

l∑
ν=1

aν

1− %−1
ν y−1

as required.

Theorem 2. Let a(n) be the coefficient of xn in the expansion of

f(x)/g(x) =
{ l∏

i=k+1

(1− yix)a′i

}/{ k∏
i=1

(1− yix)ai

}
.

Let

b(n) =
k∑

i=1

{
f(y−1

i )
/ k∏

ν=1
ν 6=i

(1− yνy−1
i )ai

}

×
ai−1∑
j=0

1
j!

∑
1h1 ...(ai−1−j)

hai−1−j

partition of ai−1−j

{ ai−1−j∏
r=1

dhr
r

(r!r)hrhr!

}
njyn

i ,
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with dr the coefficient of xr/r! in the expansion of
∑l

ν=1(aνx/(1−y−1
ν yie

x)).
Then a(n) = b(n) holds whenever the yi are distinct and non-zero.

P r o o f. By Theorem 1, the result holds whenever the yi are distinct
roots of unity. Observe a(n) is the coefficient of xn in{ l∏

i=k+1

(1− yix)a′i

}{ k∏
i=1

( ∞∑
n=0

(
n + ai − 1

ai − 1

)
yn

i xn

)}
,

so a(n) is given by a polynomial, say P (y1, . . . , yl). For a 6= 1, let

x

1− aex
=

∞∑
n=1

cn
xn

n!
.

Then { ∞∑
n=1

cn
xn

n!

}{
(a− 1) +

∞∑
n=1

a
xn

n!

}
= −x ,

so
n−1∑
r=1

cr

r!
a

(n− r)!
+

cn

n!
(a− 1) = 0 for n > 1 ,

and so

cn =
{ n−1∑

r=1

cr

(
n

r

)}
a

1− a
for n > 1 .

Since c1 = 1/(1−a), cn is a rational function of a with denominator dividing
(1− a)n. Hence aνx/(1− y−1

ν yie
x) has as coefficient of xn a rational func-

tion of y−1
ν yi whose denominator is non-zero when yν 6= yi. When yν = yi

the coefficient is a constant. Therefore dr is given by a rational function in
y1, . . . , yl whose denominator is non-zero when the yi are distinct. The same
is true of

∏k
ν=1,ν 6=i(1− yνy−1

i )−ai , and moreover f(y−1
i ) is a rational func-

tion in y1, . . . , yl whose denominator is non-zero when yi 6= 0. Hence b(n)
is a rational function in y1, . . . , yl, say Q(y1, . . . , yl)/R(y1, . . . , yl), where
R(y1, . . . , yl) is non-zero for yi distinct non-zero. Therefore P (y1, . . . , yl)
× R(y1, . . . , yl) − Q(y1, . . . , yl) = 0 holds whenever y1, . . . , yl are distinct
roots of unity. That this holds for any distinct non-zero yi and hence
P (y1, . . . , yl) = Q(y1, . . . , yl)/R(y1, . . . , yl) as required, now follows from
Lemma 6.

Lemma 6. Let F (X1, . . . , Xn) be a polynomial which vanishes whenever
X1, . . . , Xn are distinct roots of unity. Then F (X1, . . . , Xn) ≡ 0.

P r o o f. The case n = 1 is clear, since a non-zero polynomial in one
variable has only finitely many zeros. Suppose it is true for 1 ≤ n ≤ k − 1.
Set X1, . . . , Xk−1 equal to distinct roots of unity, %1, . . . , %k−1. Then
F (%1, . . . , %k−1, Xk) is a polynomial in one variable with infinitely many
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zeros, so is identically zero. Thus the coefficient of each power of Xk is zero.
But this coefficient is a polynomial in X1, . . . , Xk−1 evaluated at any set
of distinct roots of unity, so by the induction hypothesis this polynomial is
identically zero. The result follows.

An application. Let S and T be finite multisets of positive integers.
Suppose PS(n) − PT (n) is bounded in n. Define an equivalence relation
by S ∼ T when this holds. We attempt to characterise this relation. By
Theorem 2, we have

PS(n) =
k−1∑
j=0

aj,nnj , PT (n) =
l−1∑
j=0

bj,nnj ,

where k = |S|, l = |T | and aj,n depends on n mod lcm{S} and bj,n depends
on n mod lcm{T}. Let Z = lcm{S ∪ T}. Then

PS(Zm + c)− PT (Zm + c) =
max(k,l)−1∑

j=0

(aj,c − bj,c)(Zm + c)j .

This being bounded in m requires aj,c = bj,c for all j > 0. Put

aj,n =
∑

%

A%,j%
n and bj,n =

∑
%

B%,j%
n

where the sums are over all roots of unity of degree dividing Z. Hence∑
%

(A%,j −B%,j)%n = 0 for j > 0 .

These equations for the A%,j −B%,j are linearly independent for 1 ≤ n ≤ Z
since the % are distinct (Vandermonde determinant). Therefore A%,j = B%,j

for all % and for all j > 0. By Theorem 2,

A%,j =
{ ∏

s∈S
d | s

s
∏
s∈S
d - s

(1− %−s)
}−1 1

j!

∑
partitions of
Nd(S)−1−j

Nd(S)−1−j∏
r=1

dhr

S,r

(r!r)hrhr!
,

where % is a primitive dth root of unity, Nd(S) elements of S are divisible
by d, and dS,r is the coefficient of xr/r! in

∑
s∈S(sx/(1− %sesx)), so

(6) dS,r =
d−1∑
a=0

d(a)
r

∑
s≡a (mod d)

sr ,

where d
(a)
r is the coefficient of xr/r! in x/(1− %aex).

Theorem 3. S ∼ T if and only if

(i) Nd(S) = Nd(T ) whenever max(Nd(S), Nd(T )) ≥ 2,
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(ii) dS,r = dT,r for all r with 1 ≤ r ≤ Nd−2 for all d with Nd = Nd(S) =
Nd(T ) ≥ 3,

(iii)
∏

s∈S,d | s s =
∏

t∈T,d | t t whenever Nd ≥ 2,
(iv)

∏
s∈S,d - s(1− %−s) =

∏
t∈T,d - t(1− %−t) whenever Nd ≥ 2, % a prim-

itive d-th root of unity.

P r o o f. Suppose S ∼ T . Then

A%,Nd(S)−1 =
{ ∏

s∈S
d | s

s
∏
s∈S
d - s

(1− %−s)(Nd(S)− 1)!
}−1

6= 0 ,

where Nd(S) ≥ 1, and A%,j = 0 for j ≥ Nd(S). Moreover,

B%,Nd(T )−1 =
{ ∏

t∈T
d | t

t
∏
t∈T
d - t

(1− %−t)(Nd(T )− 1)!
}−1

6= 0 ,

where Nd(T ) ≥ 1, and B%,j = 0 for j ≥ Nd(T ). Hence Nd(S) = Nd(T )
unless Nd(S) + Nd(T ) = 1, and (i) follows. It then follows that∏

s,d | s

s
∏

s,d - s

(1− %−s) =
∏

t,d | t

t
∏

t,d - t

(1− %−t)

when Nd ≥ 2. Now suppose Nd ≥ 3 and 1 ≤ r ≤ Nd − 2. Note

A%,Nd(S)−2 =
{∏

s
∏

(1− %−s)(Nd − 2)!
}−1

dS,1

and

B%,Nd(T )−2 =
{∏

t
∏

(1− %−t)(Nd − 2)!
}−1

dT,1 ,

so that dS,1 = dT,1. Suppose that dS,g = dT,g for all g with 1 ≤ g < r. Then

A%,Nd(S)−1−r = B%,Nd(T )−1−r

gives {∏
s
∏

(1− %−s)(Nd(S)− 1− r)!
}−1

(
dS,r

r!r
− dT,r

r!r

)
= 0 ,

and so by induction (ii) holds. To prove (iii) and (iv) we introduce Nd,a(S),
the number of elements of S such that (s, d) = a, where a | d.

Lemma 7.
Nd,a(S) =

∑
m | d/a

µ(m)Nam(S) .

P r o o f. Fix d. Let f(a) = Nd,d/a(S), and g(a) = Nd/a(S). Then for
l | d, ∑

a | l

f(a) = #{s : d/l | (s, d)} = Nd/l(S) = g(l) .
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Hence

f

(
d

a

)
=

∑
m | d/a

µ(m)g
(

d

am

)
,

as required. Since am | d, we have Nam(S) ≥ Nd(S) and hence Nam(S) ≥ 2,
whence Nam(S) = Nam(T ). Thus Nd,a(S) = Nd,a(T ). Hence∏

s,d - s(1− %−s)∏
t,d - t(1− %−t)

=
∏
a | d
a<d

{∏
(s,d)=a(1− %−s)∏
(t,d)=a(1− %−t)

}
,

where, for each a, the factor on the right-hand side has the same number of
factors in the numerator as in the denominator. For fixed a, the numbers
1− %−s and 1− %−t are associates, and so

∏
s,d - s(1− %−s)/

∏
t,d - t(1− %−t)

is a unit. It is also positive and rational, so it is equal to unity. Now (iii)
and (iv) follow. Conversely, if (i)–(iv) hold, then

PS(n)− PT (n) =
∑

%
Nd≥2

{ ∏
s

d | s

s
∏
s

d - s

(1− %−s)
}−1

×
(

dS,Nd−1

(Nd − 1)!(Nd − 1)
− dT,Nd−1

(Nd − 1)!(Nd − 1)

)
%n

+ . . . +
∑

%
Nd(S)=1

{ ∏
s

d | s

s
∏
s

d - s

(1− %−s)
}−1

%n

−
∑

%
Nd(T )=1

{ ∏
t

d | t

t
∏

t
d - t

(1− %−t)
}−1

%n ,

which is periodic in n with period Z.

The condition
∏

(1 − %−s) =
∏

(1 − %−t). Let σa = σ
(0)
a (d) = #{s ∈

S : s ∈ a (mod d)}−#{t ∈ T : t ∈ a (mod d)}, and let S0 = {s ∈ S : d - s}.

Lemma 8. The conditions of (iv) in association with condition (i) and
Nd,a(S) = Nd,a(T ) hold if

(a) σa + σd−a = 0 for all a,
(b)

∑[d/2]
a=1 σa is even and

∑[d/2]
a=1 aσa ≡ 0 (mod d)

for all d with Nd ≥ 2.

P r o o f.∏
s∈S0

(1− %−s)∏
t∈T0

(1− %−t)
=

d−1∏
a=1

(1− %−a)σa =
[d/2]∏
a=1

{
1− %−a

1− %a

}σa

,
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by (a). Hence ∏
s∈S0

(1− %−s)∏
t∈T0

(1− %−t)
=

[d/2]∏
a=1

(−%−a)σa = 1 .

Conjecture 1. The conditions of this lemma are necessary.

We observe that, given (a), we cannot have d even,
∑d/2

a=1 aσa ≡ d/2
(mod d) and

∑d/2
a=1 σa odd by showing that these conditions are inconsistent

with 1
2d |

∑[d/4]
a=1 aσa(d/2) and

∑[d/4]
a=1 σa(d/2) even. The required result then

follows by induction. We have
[d/4]∑
a=1

σa(d/2) =
[d/4]∑
a=1

{σa(d) + σa+d/2(d)}

=
[d/4]∑
a=1

{σa(d)− σd/2−a(d)} ≡
d/2∑
a=1

a6=d/4

σa(d) (mod 2) .

This is a contradiction unless 4 | d, in which case σd/4(d) is odd. If 4 | d, then

0 ≡
d/4−1∑
a=1

a{σa(d)− σd/2−a(d)} ≡
d/2−1∑
a=1

a6=d/4

aσa(d) (mod d/2) ,

and hence 1
2d | 1

4dσd/4(d), which is a contradiction. Thus (b) is necessary
given (a).

If we let τa = σa + σd−a, then expressing condition (iv) for d′, d′ | d, in
terms of fundamental units for Z[%d/d′ ] gives 1

2φ(d′)− 1 homogeneous linear
equations in the τa when d′ 6= 1, 2. Further such equations follow from
Nd,a(S) = Nd,a(T ) for each a | d, a < d. The total number of equations is
[d/2], so Conjecture 1 is equivalent to the independence of these equations.
The conjecture can be proved by this method when d is a prime power,
owing to the relatively simple nature of the fundamental units in this case.

The condition dS,r = dT,r. We attempt to simplify the condition (ii).
Let

d(a)
r = fr(%a) and σa = σ(r)

a =
∑

s≡a (mod d)

sr −
∑

t≡a (mod d)

tr ,

so by (6) condition (ii) says
d−1∑
a=0

fr(%a)σa = 0,
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for % a primitive dth root of unity. However, since Nl ≥ Nd, a similar
equation holds for % a primitive lth root of unity, where l | d, namely

l−1∑
b=0

fr(%b)
d−1∑
a=0

a≡b (mod l)

σa = 0 ,

which is to say

(7)
d−1∑
a=0

fr(%a)σa = 0 .

Hence this equation holds for all % such that %d = 1.

Lemma 9. Let hr(µ) = fr(µ)− fr(1). Then

(8) hr(µ) = (−1)rhr(µ−1) .

P r o o f. It suffices to show
x

1− µex
− x

1− ex
=

−x

1− µ−1e−x
− −x

1− e−x
,

which is easily verified. Actually, fr(µ) = (−1)rfr(µ−1) for r > 1.

Corollary. The equations (7) hold if

(9) σa + (−1)rσd−a = 0

for all a, and also
∑d−1

a=0 σa = 0 when r = 1.

P r o o f. Equation (7) with % = 1 is vacuous if fr(1) = 0, and is equivalent
to

∑d−1
a=0 σa = 0 if fr(1) 6= 0. Now fr(1) 6= 0 if and only if r = 1 or r is even,

by the well-known property of Bernoulli numbers. If r is even, (9) gives
d−1∑
a=0

σa =
1
2

d−1∑
a=0

(σa + σd−a) = 0

as required. Subtracting equation (7) with % = 1 from equation (7) with
% = µ 6= 1, µd = 1, yields

d−1∑
a=0

[fr(µa)− fr(1)]σa = 0 ,

or
d−1∑
a=0

hr(µa)σa = 0 .

Hence, by (8), equations (9) give a solution.

Conjecture 2. The equations (9) are necessary.

Alternatively, the matrix (hr(µij)) 1≤i<d/2
1≤j<d/2

, r odd, or (hr(µij)) 1≤i≤d/2
1≤j≤d/2

,

r even, is non-singular, where µ is a primitive dth root of unity.
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Instead of the bounds on i given, we could take i ∈ I, where I consists
of [(d−1)/2] of the non-zero residues modulo d such that I ∩−I = ∅, unless
r is even and d is even, in which case I should be replaced by I ∪ {d/2}.

The following two lemmas give some properties of fr(µ) useful for com-
putation.

Lemma 10. ∑
µ,µd=1

fr(µ) = drfr(1) ,

and hence

(10)
∑

µ primitive dth
root of 1

fr(µ) =
∑
m | d

µ(d/m)mrfr(1) = dr
∏
p | d

(1− p−r)fr(1) .

P r o o f. This follows from∑
µ,µd=1

x

1− µex
=

dx

1− edx
,

a consequence of the formula for dr in Theorem 2.

Lemma 11.

fr(µ) =
r−1∑
k=0

k∑
h=0

r

(
r

k − h

)
(−1)k−hhr−1µk/(1− µ)r

for µ 6= 1.
(Corollary : fr(1) =

∑r−1
k=0

∑k
h=0 r

(
r

k−h

)
(−1)hhr−1/2r(2r − 1) by (10)

with d = 2.)

P r o o f. We have

fr(µ) =
r−1∑
m=1

fm(µ)
(

r

m

)
µ

1− µ
and f1(µ) =

1
1− µ

.

It follows easily by induction that there exist constants ar,k such that

(11) fr(µ) =
r−1∑
k=1

ar,kµk/(1− µ)r .

By (11),∑r−1
k=0ar,kµk

(1− µ)r
=

r−1∑
m=1

m−1∑
j=0

am,j
µj

(1− µ)r

(
r

m

)
µ

1− µ

=
r−1∑
m=1

m−1∑
j=0

am,j

(
r

m

) r−m−1∑
l=0

(
r −m− 1

l

)
(−1)lµj+l+1/(1− µ)r
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=
r−1∑
m=1

r−1∑
k=1

k−1∑
j=0

am,j

(
r

m

)(
r − 1−m

k − 1− j

)
(−1)k−j−1µk/(1− µ)r .

Hence

ar,k =
r−1∑
m=1

k−1∑
j=0

(−1)k−j−1

(
r − 1−m

k − 1− j

)(
r

m

)
am,j and a1,0 = 1 .

We show by induction on r that

ar,k =
k∑

h=0

r

(
r

k − h

)
(−1)k−hhr−1 .

This satisfies a1,0 = 1. Suppose it is correct for all m with 1 ≤ m ≤ r − 1.
Then

ar,k =
r−1∑
m=1

k−1∑
j=0

(−1)k−j−1

(
r − 1−m

k − 1− j

)(
r

m

)
am,j

=
r−1∑
m=1

k−1∑
j=0

(−1)k−j−1

(
r − 1−m

k − 1− j

)(
r

m

) j∑
h=0

m

(
m

j − h

)
(−1)j−hhm−1

=
k−1∑
h=0

r−1∑
m=1

k−1∑
j=h

(−1)k−h−1

(
r − 1−m

k − 1− j

)(
m

j − h

)(
r

m

)
mhm−1

=
k−1∑
h=0

r−1∑
m=1

(−1)k−h−1

(
r − 1

k − 1− h

)(
r

m

)
mhm−1 ,

since
∑

j(
r−1−m
k−1−j )( m

j−h ) is the coefficient of xk−1−h in (1+x)r−1−m(1+x)m.
Now

r−1∑
m=1

(
r

m

)
mhm−1 =

d

dh

r−1∑
m=1

(
r

m

)
hm

=
d

dh
[(h + 1)r − hr] = r[(h + 1)r−1 − hr−1] ,

so

ar,k =
k−1∑
h=0

(−1)k−1−h

(
r − 1

k − 1− h

)
r[(h + 1)r−1 − hr−1]

=
k∑

h=0

(−1)k−hr

[(
r − 1

k − 1− h

)
+

(
r − 1
k − h

)]
hr−1

=
k∑

h=0

(−1)k−hr

(
r

k − h

)
hr−1 ,

as required.
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Note that it follows from (8) and fr(1) = 0 for odd r > 1 that ar,k =
ar,r−k. If gr(µ) = (1− µ)rfr(µ), then

gr(µ) = (1− µ)r−1−m

(
r

m

)
µgm(µ) ,

so that gr(1) = rgr−1(1) and hence gr(1) = r!. Thus we see that
∑r−1

k=0 ar,k

= r!.
The following is a generalisation of Lemma 10.

Lemma 12.

cl :=
∑

µ

µd=1

µ−lfr(µ) =
r∑

j=0

(
r

j

)
fj(1)dj lr−j

for 1 ≤ l ≤ d− 1. Also cl = (−1)rcd−l for 1 ≤ l ≤ d− 1, and

fr(µ) =
1
d
{c0 + µc1 + . . . + µd−1cd−1} .

P r o o f. This is a consequence of∑
µ

µd=1

µ−l x

1− µex
=

dxelx

1− edx
for 0 ≤ l ≤ d− 1 .

For µ 6= 1, the denominator of fr(µ) divides (1 − µ)r. For r > 1, odd,
fr(1) = 0, so if p, prime, divides the denominator of cl then p | d. The
denominator of fj(1) is square-free for all j and f0(1) = −1, f1(1) = 1/2,
so cl is an integer congruent to

−lr mod
{

1
2d, 2 | d,
d, 2 - d.

Note that the congruence is also valid for r even and r = 1, although cl may
not be an integer.

We may also note that fr(µ) is the analytic continuation of the power
series r

∑∞
l=0 lr−1µl convergent for |µ| < 1. To see this, observe that∑

r

fr(µ)
r!

xr = x

∞∑
m=0

(µex)m = x

∞∑
m=0

∞∑
j=0

µm (mx)j

j!

for |µex| < 1, and equate coefficients. It follows immediately from this
comment that, for example,∑

%,%d=1

fr(%µ) = drfr(µd) .
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The conjecture for small d

d = 1: Nothing to prove.
d = 2: Something to prove when r is even. The conjecture holds if and

only if hr(−1) 6= 0 for r even, but by (10) hr(−1) = (2r − 2)fr(1) 6= 0 as
required.

d = 3: We need hr(%) 6= 0, %2 + % + 1 = 0. We have hr(%) + hr(%2) =
(3r − 3)fr(1) and hr(%) = (−1)rhr(%2), so for r even hr(%) = 1

2 (3r − 3)fr(1)
6= 0. For r > 1, odd, %2fr(%) + %fr(%2) ≡ −1 (mod 3) by Lemma 12, so
hr(%) = fr(%) 6= 0. For r = 1, we have h1(%) = (1− %)−1 − 1

2 6= 0.
d = 4: We require hr(i) 6= 0 when r is odd, and∣∣∣∣ hr(i) hr(−1)

hr(−1) hr(1)

∣∣∣∣ 6= 0

when r is even. For r even we require hr(−1) 6= 0, since hr(1) = 0, and this
holds as for d = 2. For r > 1 odd,

−ifr(i)+ifr(−i)−fr(−1)+fr(1) ≡ −1 (mod 2) and fr(1) = fr(−1) = 0 ,

so hr(i) = fr(i) 6= 0. Also h1(i) 6= 0.
d = 5: We require hr(%)hr(%4)−hr(%2)2 6= 0, or equivalently (−1)rhr(%)2

− hr(%2)2 6= 0. Suppose this is not so. Let zi = hr(%i). For r > 1, odd, we
have z1 = ±iz2, and so z1 = z2 = z3 = z4 = 0, since i 6∈ Q(%). However,∑4

i=1 µ−izi ≡ −1 (mod 5), so we have a contradiction. For r even we have
z1 = ±z2. If z1 = −z2 then fr(%) + fr(%2) = 2fr(1), and hence c0 = 5fr(1).
But c0 = 5rfr(1) and fr(1) 6= 0, which is a contradiction. If z1 = z2, then
c1 = c2 = c3 = c4, so

z1 =
1
5
(c0 − c1) = −1

5

r−1∑
j=0

(
r

j

)
fj(1)5j = −1

5

r−1∑
j=1

(
r

j

)
fj(1)(5j − 1)

since
∑r−1

j=0

(
r
j

)
fj(1) = 0. By (10), we have z1 = 1

4 (5r − 1)fr(1). We
shall show that these two formulae for z1 are incompatible. Suppose 2k‖r.
If 2l‖j, then 2k−min(k,l) |

(
r
j

)
and 2l+2‖(5j − 1). Hence the numerator of(

r
j

)
fj(1)(5j−1) is divisible by 2k−l−1+l+2 = 2k+1. Hence 1

4 (5r − 1)fr(1) has
numerator divisible by 2k+1, and so 2k+4 | (5r − 1), whence 2k+2 | r, contra-
dicting 2k‖r.

The case r = 1 and d = p, an odd prime. For µp = 1, µ 6= 1, we
have

2h1(µ) =
1 + µ

1− µ
.
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Hence
p−1∑
a=1

1 + µa

1− µa
σa = 0 .

Using (8), write this as
p−1∑
a=1

1≤a∗≤(p−1)/2

1 + µa

1− µa
(σa − σp−a) = 0 ,

where a∗ is the least positive integer such that aa∗ ≡ 1 (mod p). We derive
a condition equivalent to the condition that the numbers (1 + µa)/(1− µa)
are linearly independent, which in turn is equivalent to the conjecture. Now

(1− µ)
1 + µa

1− µa
= (1 + µa)(1 + µa + µ2a + . . . + µ(a∗−1)a)(12)

= 1 + 2µa + 2µ2a + . . . + 2µ(a∗−1)a + µ .

Reduce the exponents in (12) modulo p and replace µp−1 by −(µp−2

+ µp−3 + . . . + 1). The coefficient of µ0 (and of µ1) is now +1 or −1
according as there does not exist or there exists r, 1 ≤ r ≤ a∗ − 1, such
that ra ≡ −1 (mod p). This condition on r means p − a∗ ≤ a∗ − 1, so
a∗ ≥ 1

2 (p+1). Hence the coefficient of µ0 (and of µ1) is 1. The coefficient of
µm, 2 ≤ m ≤ p− 2, has a contribution +2 if there exists r, 1 ≤ r ≤ a∗ − 1,
such that ar ≡ m (mod p) and is zero otherwise (since a∗ ≤ 1

2 (p−1)). This
condition on r is equivalent to [ma∗]p ≤ a∗ − 1, where [k]p means the least
non-negative residue of k (mod p). Note that this condition is always false
when m = 2, since

[2a∗]p ≤ a∗ − 1 ⇔ a∗ ≥ 1
2 (p + 1) .

Note also that [ma∗]p+[(p+1−m)a∗]p ≡ a∗ (mod p) and so [ma∗]p ≤ a∗−1
if and only if [(p + 1 − m)a∗]p ≤ a∗ − 1. Therefore we need consider only
3 ≤ m ≤ 1

2 (p + 1) and m = 0.
When a∗ = 1 the coefficient is non-zero when m = 0 and zero for 3 ≤

m ≤ 1
2 (p + 1), and when a∗ = 2 the coefficient is non-zero only when

m = 1
2 (p + 1). Hence the 1

2 (p − 1) equations obtained by varying m are
linearly independent if and only if the 1

2 (p− 5) equations corresponding to
3 ≤ m ≤ 1

2 (p−1) are linearly independent. Halving the matrix of coefficients
for these equations gives the following theorem.

Theorem 4. The conjecture with r = 1 and d = p, an odd prime, holds
if and only if the matrix

(aij) 3≤i≤(p−1)/2
3≤j≤(p−1)/2

where aij =
{

1 when [ij]p ≤ i− 1,
0 otherwise,
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is non-singular.

We shall show via Theorem 5 that this matrix is indeed non-singular.
Obviously a similar analysis with r > 1 is not so simple.

The case d = p, an odd prime. We choose the set I mentioned after
Conjecture 2 to be {1, g, g2, . . . , g(p−1)/2−1}, where g is a primitive root
modulo p. Let l = 1

2 (p − 1) and write hi for hr(µi). Then the matrix of
Conjecture 2 becomes

h1 hg hg2 · · · hgl−1

hg hg2 hg3 · · · h1

hg2 hg3 hg4 · · · hg

...
...

...
...

hgl−1 h1 hg · · · hg−2


for r even, 

h1 hg hg2 · · · hgl−1

hg hg2 hg3 · · · −h1

hg2 hg3 hg4 · · · −hg

...
...

...
...

hgl−1 −h1 −hg · · · −hg−2


for r odd, since hi = (−1)rh−i by Lemma 9. The determinant of the first
matrix is

(−1)[l/2]
∏

η,ηl=1

( l−1∑
i=0

ηihgi

)
,

and that of the second is

(−1)l−1+[l/2]
∏

η,ηl=−1

( l−1∑
i=0

ηihgi

)
.

For ω a primitive kth root of unity, k | p − 1, let (a
p )k = ωi, where a ≡ gi

(mod p). Then the Conjecture 2 holds if and only if
l−1∑
i=0

a≡gi

(
a

p

)
k

ha 6= 0 ,

for all such k with k - 1
2 (p− 1) for r odd and k | 1

2 (p− 1) for r even. Noting
that (

−a

p

)
k

h−a =
(
−1
p

)
k

(−1)r

(
a

p

)
k

ha =
(

a

p

)
k

ha ,

we obtain the following.



248 D. V. Lee

Theorem 5. The conjecture with d = p, an odd prime, holds if and only
if
p−1∑
a=1

(
a

p

)
k

ha 6= 0 for all k | p− 1 such that
{

k - 1
2 (p− 1) for r odd,

k | 1
2 (p− 1) for r even.

In particular, when r = 1, the matrix of Theorem 4 is non-singular if
and only if

p−1∑
a=1

[ma]p≤a−1

(
a

p

)
k

6= 0 for some m(k), 2 ≤ m ≤ 1
2 (p− 1) ,

for all k with p ≡ k + 1 (mod 2k) .

Setting m = 2 and using the following result proves Conjecture 2 for d = p
and r = 1.

Lemma 13. For p an odd prime, k | p− 1, k - 1
2 (p− 1), we have

(p−1)/2∑
m=1

(
m

p

)
k

6= 0 .

Equivalently , if χ is a character to the modulus p with χ(−1) = −1, then∑(p−1)/2
m=1 χ(m) 6= 0.

P r o o f. Define

ep(m) = e2πm/p and τ =
p−1∑
m=1

(
m

p

)
k

ep(m) .

Then, by the proof on p. 22 of [2], |τ | = p1/2. From
p−1∑
m=1

(
m

p

)
k

ep(mn) =
p−1∑

m′=1

(
m′

p

)
k

(
n

p

)−1

k

ep(m′) =
(

n

p

)
k

τ ,

we deduce that (
n

p

)
k

=
1
τ

p−1∑
m=1

(
m

p

)
k

ep(mn) .

Define

L(s) =
∞∑

n=0

(
n

p

)
k

n−s .

As is well known (see [2], Chapter 1), L(1) 6= 0. The lemma is trivial for
k ≤ 2, so only the simpler proof of L(1) 6= 0 for k > 2 is needed. From the
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Euler product,

L(1) =
(

1− 1
2

(
2
p

)
k

)−1 ∞∑
n=1

n odd

(
n

p

)
k

n−1

=
(

1− 1
2

(
2
p

)
k

)−1 1
τ̄

p−1∑
m=1

(
m

p

)
k

∞∑
n=1

n odd

ep(−mn)
n

.

Since
∞∑

n=1
n odd

1
n

zn = 1
2 log(1 + z)− 1

2 log(1− z)

for |z| = 1, z 6= ±1, where the logarithms have their principal values, we get

L(1) =
(

1− 1
2

(
2
p

)
k

)−1 1
τ̄

{ ∑
0<θ<π

(− 1
2 log(2 sin 1

2θ)− 1
4 (θ − π)i

+ 1
2 log(2 sin 1

2 (θ + π)) + 1
4θi)

(
m

p

)
k

+ . . . +
∑

π<θ<2π

(− 1
2 log(2 sin 1

2θ)− 1
4 (θ − π)i

+ 1
2 log(2 sin 1

2 (θ − π)) + 1
4 (θ − 2π)i)

(
m

p

)
k

}
,

where θ = 2π − 2πm/p. Hence

L(1) =
(

1− 1
2

(
2
p

)
k

)−1

×1
τ̄

{ ∑
m<p/2

(
m

p

)
k

(− 1
2πi) +

∑
m>p/2

(
m

p

)
k

R1(m) +
∑

m<p/2

(
m

p

)
k

R2(m)
}

,

where R1(m) = 1
2 log(cot 1

2θ) and R2(m) = 1
2 log(− cot 1

2θ), so that, for
m < p/2,

R1(p−m) = 1
2 log(cot 1

2 (2π − θ)) = 1
2 log(− cot 1

2θ) .

Now (
−m

p

)
k

=
(
−1
p

)
k

(
m

p

)
k

= −
(

m

p

)
k

since k - 1
2 (p− 1), and so∑

m<p/2

(
m

p

)
k

R2(m) = −
∑

m>p/2

(
m

p

)
k

R1(m) .

The result follows from L(1) 6= 0.
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Lastly in this section, suppose r is even and l is an odd prime. The
determinant is zero if and only if

∑p−1
i=1 hi = 0 or h1 = h2 = . . . = hp−1.

Note first that
p−1∑
i=1

hi = (pr − p)fr(1) 6= 0 ,

so suppose that h1 = h2 = . . . = hp−1. Then

h1 =
pr − p

p− 1
fr(1) and ci = cj , 1 ≤ i, j ≤ p− 1 ,

and so

f1 = h1 + fr(1) =
1
p
(c0 − c1) = −1

p

r−1∑
j=0

(
r

j

)
fj(1)pj .

Hence

(13)
pr − 1
p− 1

fr(1) = −1
p

r−1∑
j=1

(
r

j

)
fj(1)(pj − 1) .

Now 2a‖(2l + 1)2
b − 1 where a = b + 1 + c(b) where

c(b) =
{

0, b = 0,
v2(l + 1), b > 0.

Suppose 2k‖r. Then

2k+1+c(k)−2

∥∥∥∥pr − 1
p− 1

fr(1) .

If 2m‖j, then
(
r
j

)
fj(1)(pj − 1) is divisible by 2k−m−1+m+1+c(m) = 2k+c(m).

For m = 0, the only non-zero term has j = 1 and is r(p− 1)/2p, which has
2-adic valuation k. Hence the right-hand side of (13) has 2-adic valuation
k. Hence c(k) = 1, so that v2(l + 1) = 1 and l ≡ 1 (mod 4). Thus the
conjecture is valid for l ≡ 3 (mod 4) for r even. Also a p-adic analysis can
be used to show the conjecture is correct if d = p is a regular prime.

The case d = p2. Let p be an odd prime, set d = p2, k = 1
2 (p2 − p),

l = 1
2 (p − 1) and let g be a primitive root modulo d. Define I =

{1, g, g2, . . . , gk−1, p, pg, pg2, . . . , pgl−1}, when for r even the matrix of Con-
jecture 2 becomes 

B

A
...
B

B · · · B 0
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and for r odd, 

B′

−B′

A′ B′
...

B′

B′ −B′ B′ · · · B′ 0


,

where

A =


h1 hg · · · hgk−1

hg hg2 · · · h1

...
...

...
hgk−1 h1 · · · hg−2

 ,

B =


hp hpg · · · hpgl−1

hpg hpg2 · · · hp

...
...

...
hgl−1 hp · · · hpg−2

 ,

and A′ and B′ are formed respectively from A and B by reversing the sign of
all elements below the trailing diagonal. Note that B (or B′) is the relevant
matrix for the case d = p, so, since the determinants of the above matrices
are divisible by (detB)2 and (detB′)2 respectively, if the conjecture fails for
d = p it fails for d = p2 also.

Examples of S ∼ T . Let S = {s1, s2, . . .} and T = {t1, t2, . . .}.
(a) If N(S) = N1(S) ≤ 1 and N(T ) = N1(T ) ≤ 1 then S ∼ T . If the

conditions of (a) fail then N = N(S) = N(T ).
(b) N = 2 : S ∼ T if and only if s1s2 = t1t2 and no number divides

exactly three of s1, s2, t1, t2.
(c) N = 3 : S ∼ T if and only if S = T or

∑3
i=1 si =

∑3
i=1 ti,

∏3
i=1 si =∏3

i=1 ti and there exists c such that (1/c)S and (1/c)T are each multisets
of pairwise coprime elements. An example of this is

S = {m + 1, 2m− 1,m(2m + 1)} , T = {m, 2m + 1, (m + 1)(2m− 1)} ,

for m ≥ 3 and m 6≡ 2 (mod 3).
(d) N = 4 : S ∼ T if and only if S = T or

∏4
i=1 si =

∏4
i=1 ti,

∑4
i=1 si =∑4

i=1 ti,
∑4

i=1 s2
i =

∑4
i=1 t2i , and there exists c such that (1/c)S and (1/c)T

are coprime multisets of elements such that no number divides exactly three
elements of S or exactly three elements of T . Further, if d divides, without
loss of generality, s1, s2, t1, t2 and d does not divide s3, s4, t3, t4 then, without
loss of generality, s3 ≡ t3 (mod d) and s4 ≡ t4 (mod d) and s1s2 = t1t2.
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P r o o f. From (1 − %−s3)(1 − %−s4) = (1 − %−t3)(1 − %−t4) and d | s3 +
s4 − t3 − t4, we have %−s3 + %−s4 = %−t3 + %−t4 , whence, without loss of
generality, %−s3 = %−t3 and %−s4 = %−t4 . An example is

S = {m + 6, 6m + 13,m(m + 8), (m + 2)(6m + 1)} ,

T = {m + 8, 6m + 1, (m + 2)(m + 6),m(6m + 13)} ,

where m does not belong to certain residue classes modulo 2, 3, 5, 7, 11, 13,
23, 47, so that S and T are sets of pairwise coprime elements. If we relax
one of the conditions m 6≡ 2, 4 (mod 5) and m 6≡ 1, 6 (mod 7), however, we
still have a solution. For example, if m ≡ 2 (mod 5), then 5 | s2, s3, t1, t4,
s2s3 = t1t4, s1 ≡ t2 ≡ 3 (mod 5) and s4 ≡ t3 ≡ 2 (mod 5).

(e) Elements of S (and therefore T ) coprime in pairs and N ≥ 3:

S ∼ T ⇔
∏

s =
∏

t ,
∑

s =
∑

t and
∑

s2k =
∑

t2k for 2k ≤ N − 2 .

Conjecture 3. There are solutions of S ∼ T with S 6= T in case (e)
for all N ≥ 3.

A more general theorem. Theorem 3 easily generalises to

Theorem 6. PS(n)− PT (n) = O(nj) if and only if

(i) Nd(S) = Nd(T ) whenever max(Nd(S), Nd(T )) ≥ j + 2,
(ii) dS,r = dT,r for 1 ≤ r ≤ Nd − (j + 2) for all d with Nd ≥ j + 3,
(iii)

∏
s∈S,d | s s =

∏
t∈T,d | t t whenever Nd ≥ j + 2,

(iv)
∏

s,d - s(1− %−s) =
∏

t,d - t(1− %−t) whenever Nd ≥ j + 2.

An equivalent reformulation of the original problem. Expressing
S ∼ T in terms of generating functions leads to the following result.

Lemma 14. S ∼ T if and only if

Q(x) = (1− xZ)
( ∏

s∈S

(1− xs)−1 −
∏
t∈T

(1− xt)−1
)

is a polynomial of degree at most Z − 1.

P r o o f. For Q(x) a polynomial of degree Z−1, Q(x)/(1−xZ) is a general
power series whose coefficients are periodic of period Z, and we know that
if PS(n)− PT (n) is bounded then it is of period Z.

Lemma 15. S ∼ T if and only if
∏

s∈S(1 − xs) −
∏

t∈T (1 − xt) has a
zero of order at least 2Nd − 1 at x = %, for % a primitive d-th root of unity ,
where Nd = Nd(S) = Nd(T ) ≥ 2.

P r o o f. This follows from Lemma 14 together with (i) of Theorem 3.
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The difficulties of this approach become apparent when one calculates

dr

dxr

∏
i

(1− xsi) =
∑

a1+...+aN=r

(−1)Σai>01

×
[∏

i

(
si

ai

)
ai!

]
xΣai>0si−r

∏
si

ai=0

(1− xsi)
(

r

a1, . . . , aN

)
.

Partitions into an odd or even number of parts. With the nota-
tion as in the introduction, QS(n) = P

(0)
S (n) − P

(1)
S (n) has the generating

function ∑
QS(n)xn =

∏
s∈S

(1 + xs)−1 ,

and hence, by Theorem 2,

QS(n) =
∑

d

∑
%

% primitive
dth root of 1

{ ∏
s≡d/2

s
∏

s 6≡d/2

(1 + %−s)
}−1

×
Md−1∑
j=0

1
j!

∑
partitions

of Md−1−j

Md−1−j∏
r=1

ehr

S,r

(r!r)hrhr!
%nnj ,

where Md = Md(S) = #{s ∈ S : s ≡ 1
2d (mod d)} for d even and Md = 0

for d odd, and ∑
r

eS,rx
r

r!
=

∑
s

sx

1 + %sesx
.

We note, in passing, the following result for which the full force of Theorem 2
is not required, but merely that QS(n) is bounded if and only if Md ≤ 1 for
all d, which follows from the non-singularity of the Vandermonde determi-
nant as before.

Theorem 7. The difference between the number of partitions of n into
an even number of parts from the multiset S and the number of partitions
into an odd number of parts from S is bounded if and only if the 2-adic
valuations of the elements of S are distinct.

P r o o f. If 2r‖d, then Md ≤ M2r = #{s ∈ S : 2r−1‖s}, so if the 2-adic
valuations of S are distinct, then Md ≤ 1. Conversely, if M2r+1 ≤ 1, then
at most one element of S has 2-adic valuation r.

We consider when the two equations

P
(0)
S (n)− P

(0)
T (n) = O(1) and P

(1)
S (n)− P

(1)
T (n) = O(1)
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hold. These are equivalent to

PS(n)− PT (n) = O(1) and QS(n)−QT (n) = O(1) .

Theorem 8. QS(n)−QT (n) = O(1) if and only if

(i) Md(S) = Md(T ) whenever max(Md(S),Md(T )) ≥ 2,
(ii) eS,r = eT,r for all r with 1 ≤ r ≤ Md − 2 for all d with Md =

Md(S) = Md(T ) ≥ 3,
(iii)

∏
s≡d/2 s

∏
s 6≡d/2(1 + %−s) =

∏
t≡d/2 t

∏
t6≡d/2(1 + %−t) whenever

Md ≥ 2.

P r o o f. Imitate the proof of Theorem 3.

Theorem 9. P
(0)
S (n)−P

(0)
T (n) = O(1) and P

(1)
S (n)−P

(1)
T (n) = O(1) if

and only if

(a) Nd(S) = Nd(T ) if either is at least 2, and Md(S) = Md(T ) if either
is at least 2,

(b)
∑d−1

a=0 fr(%a)σa = 0 for all r such that 1 ≤ r ≤ max(Nd,Md)− 2,
(c)

∏
s,d - s(1 − %−s) =

∏
t,d - t(1 − %−t) where % is a primitive d-th root

of unity for max(Nd,Md) ≥ 2,
(d)

∏
s,d | s s =

∏
t,d | t t if max(Nd,Md) ≥ 2.

P r o o f. The conditions concerning Nd(S) and Nd(T ) are the conditions
of Theorem 3. Suppose these and the conditions of Theorem 8 hold. From (i)
of Theorem 8, we have (a). Now observe that Md(S) = Nd/2(S) − Nd(S),
so that if Md(S) = Md(T ) ≥ 2, then Nd/2(S) ≥ 2, so Nd/2(S) = Nd/2(T )
and hence Nd(S) = Nd(T ). Note that Ml(S) ≥ Md(S) when l | d and d/l
is odd, so if Md ≥ 2, then Ml ≥ 2 and hence Nl(S) = Nl(T ). If, on the
other hand, l | d and d/l is even, then l | 1

2d so Nl(S) ≥ Nd/2(S) ≥ 2 and so
Nl(S) = Nl(T ) for all l | d. Hence, by Lemma 7, Nd,a(S) = Nd,a(T ), and by
an argument analogous to that in the proof of Theorem 3, we obtain

(α)
∏

s≡ 1
2 d

s =
∏

t≡ 1
2 d

t and (β)
∏

s 6≡ 1
2 d

(1 + %−s) =
∏

t6≡ 1
2 d

(1 + %−t) .

Since Nd/2(S) = Nd/2(T ) ≥ 2, we have
∏

d/2 | s s =
∏

d/2 | t t and combin-
ing this with (α) gives

∏
d | s s =

∏
d | t t. Again since Nd/2 ≥ 2, we have∏

d/2 - s(1− %−2s) =
∏

d/2 - t(1− %−2t) and combining with (β) gives∏
d/2 - s(1− %−s)∏
d | s(1 + %−s)

=

∏
d/2 - t(1− %−t)∏
d | t(1 + %−t)

and hence
∏

d/2 - s(1− %−s) =
∏

d/2 - t(1− %−t), since Nd(S) = Nd(T ). Con-
dition (c) follows on multiplying by the factor

∏
s≡d/2(1 − %−s) = 2Md on

either side.
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Finally, we deal with the equation eS,r − eT,r =
∑d−1

a=0 fr(−%a)σa = 0.
Observe that

fr(µ) + fr(−µ) = 2rfr(µ2) ,

so we have
d−1∑
a=0

2rfr(%2a)σa −
d−1∑
a=0

fr(%a)σa = 0 .

However, (%2)d/2 = 1 and Nd/2 ≥ 2, so
∑d−1

a=0 2rfr(%2a)σa = 0, and hence∑d−1
a=0 fr(%a)σa = 0 as required.
Conversely, it is clear from the above argument that, given (a) to (d),

one could write down an explicit periodic formula for each of PS(n)−PT (n)
and QS(n)−QT (n), if one wished.

Note that if l | d then either Ml ≥ Md or Nl ≥ Md, so in (b) we have∑d−1
a=0 fr(%a)σa = 0 for all % such that %d = 1. It follows that all the

results and conjectures related to the conditions of Theorem 3 have obvious
analogues related to Theorem 9.
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