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1. Introduction. Let K be an (absolutely) abelian number field of
conductor n, GK its Galois group over Q, and OK the ring of integers of K.
By QGK we denote the rational and by ZGK the integral group ring of GK .
The field K is a QGK-module via the usual action of GK on K. Let

RK = {α ∈ QGK ;αOK ⊆ OK} .

The set RK is a subring of QGK that contains ZGK . As a ZGK-module,
OK is isomorphic to RK . In accordance with Leopoldt [1], we call RK the
branch order (“Zweigordnung”) of OK . Let us now describe the order RK ,
i.e., the structure of OK as a Galois module.

The letter p always means a prime number. We put

n∗ = {p ; p |n} .

Moreover, if d is a natural number, let

[d] = {q ; q | d, d/q square-free, (q, d/q) = 1} .

The set [d] is called the branch class of d, and it is easy to see that

(1) {d ; d |n} =
•⋃
{[d] ; n∗ | d |n}

(disjoint union). By XK we denote the character group of GK . If χ ∈ XK ,
fχ means the conductor of χ. Moreover, for α =

∑
{aσσ ;σ ∈ GK} ∈ QGK

we put

χ(α) =
∑

aσχ(σ) .

For each divisor d of n with n∗ | d there is a uniquely determined element
εd,K ∈ QGK with

(2) χ(εd,K) =
{

1 if fχ ∈ [d],
0 otherwise.
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From (1) and (2) one sees that (εd,K ;n∗ | d |n) is a complete system of
orthogonal idempotents of QGK . Hence

QGK =
⊕

{QGKεd,K ;n∗ | d |n} ,

and it is known that

(3) RK =
⊕

{ZGKεd,K ;n∗ | d |n}

(cf. [1], [2]). For this reason we call εd,K the branch idempotent of d, n∗ | d |n.
The ZGK-modules ZGKεd,K are indecomposable, and there does not exist a
decomposition of RK into indecomposable ZGK-submodules different from
(3). Of course, εd,K can be written as

εd,K =
∑

{cσσ ;σ ∈ G} ,

with cσ ∈ Q. It seems that an explicit formula for the coefficients cσ has
not been given so far. Indeed, in the previous papers [1], [2] the branch
idempotent εd,K only appears in the form

εd,K = |GK |−1
∑

{χ(σ)σ ;σ ∈ GK , fχ ∈ [d]} ,

which immediately follows from (2). In this note we give an explicit formula
for the numbers cσ, σ ∈ GK , in the case K = Qn = Q(e2πi/n). We shall see
that this also yields an explicit description of εd,K in the general case.

2. The main result. The Galois group Gn of Qn over Q has the shape

Gn = {σk ; 1 ≤ k ≤ n, (k, n) = 1} ,

where σk is defined by

σk(e2πi/n) = e2πik/n .

It what follows we write εd instead of εd,Qn
. Suppose now that K is an

arbitrary abelian number field with conductor n.
The restriction map

res : QGn → QGK

is Q-linear and defined by res(σk) = σk |K . We note the following

Proposition. Let n be the conductor of K, and let n∗ | d |n. Then

res(εd) = εd,K .

P r o o f. Take a character χ ∈ XK . Then χ̂ = χ ◦ res : QGn → C is a
character of Gn with conductor fχ. Therefore

χ(res(εd)) = χ̂(εd) =
{

1 if fχ ∈ [d],
0 otherwise.

Thus res(εd) satisfies condition (2), which means res(εd) = εd,K .
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Due to the Proposition, εd,K is explicitly known if εd is. Let us therefore
describe εd. As above, let n∗ | d |n and suppose that k ∈ N, 1 ≤ k ≤ n− 1,
(k, n) = 1. We define

dk = (d, k − 1)

and, provided that n∗ | k − 1,

rk =
∏
{p ; p | dk/n∗, p - d/dk} .

Theorem. In the above situation write

εd =
∑

{ckσk ; 1 ≤ k ≤ n, (k, n) = 1}

with ck ∈ Q for all k. Let ϕ : N → N be the Euler function and µ : N → N
the Möbius function. Then

ck =


µ(d/dk)dkϕ(rk)

nrk
if n∗ | k − 1,

0 otherwise.

The coefficient ck of the branch idempotent can also be described in a
somewhat different way. For m ∈ N ∪ {0} put

vp(m) =
{

max{j ; pj |m} if m 6= 0,
∞ otherwise

(so vp(m) is the p-exponent of m).

Corollary. In the context of the Theorem, ck = 0 if n∗ - k − 1 or if
there is a p with vp(d) ≥ vp(k − 1) + 2. Otherwise

ck =
d

n

∏{
1− 1

p
; 2 ≤ vp(d) ≤ vp(k − 1)

}
×

∏{
− 1

p
; vp(d) > vp(k − 1)

}
.

P r o o f o f t h e T h e o r e m. If n∗ | d |n put

(4) γd =
∑

{εq ;n∗ | q | d} .

For a character χ ∈ Xn = XQn ,

(5) χ(γd) =
{

1 if fχ | d,
0 otherwise.

This follows from (1) and (2). The condition (5) determines γd uniquely.
Put

(6) γ̃d =
ϕ(d)
ϕ(n)

∑
{σk ; k ≡ 1 mod d} .
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Let χ ∈ Xn be such that fχ - d. Then there exists a number j, 1 ≤ j ≤ n,
j ≡ 1 mod d, with χ(σj) 6= 1. But γ̃d = σj γ̃d, hence

χ(γ̃d) = χ(σj)χ(γ̃d) ,

which implies χ(γ̃d) = 0. On the other hand, let fχ divide d. Then χ(σk) = 1
for all k ≡ 1 mod d and

χ(γ̃d) = (ϕ(d)/ϕ(n))|{k ; 1 ≤ k ≤ n, k ≡ 1 mod d}| = 1 .

Since γd is determined by (5), we have shown γd = γ̃d, i.e., (6) is the explicit
form of γd.

By means of the Möbius inversion formula we obtain from (4)

(7) εd =
∑

{µ(d/q)γq ;n∗ | q | d} .

On inserting (6) into (7) we get

(8) εd =
∑

(k,n)=1

(∑
{µ(d/q)ϕ(q)/ϕ(n) ;n∗ | q | d, q | k − 1}

)
σk .

If n∗ | q, ϕ(q)/ϕ(n) equals q/n. Hence (8) yields

(9) ck =
{ ∑

{µ(d/q)q/n ;n∗ | q | dk} if n∗ | k − 1,

0 otherwise.
For the remainder of the proof assume that n∗ | k − 1. Then

ck = µ(d/dk)
∑

{µ(dk/q)q/n ;n∗ | q | dk, (d/dk, dk/q) = 1} .

The substitution l = dk/q yields

ck = µ(d/dk)dkn−1
∑

{µ(l)/l ; l | dk/n∗, (d/dk, l) = 1} .

But µ(l) is different from 0 if and only if l is square-free. For a number l of
this kind the assertions

l | dk/n∗, (d/dk, l) = 1 and l | rk

are equivalent. Therefore we get

ck = µ(d/dk)dkn−1r−1
k

∑
{µ(l)rk/l ; l | rk}

= µ(d/dk)dkn−1r−1
k ϕ(rk) ,

which we had to show.

Example. Let n = pm and d = pq, 2 ≤ q ≤ m. Then the Corollary
yields

εd = pq−m
(∑

{(−1/p)σ1+dj/p ; 1 ≤ j < pm−q+1, p - j}

+
∑

{(1− 1/p)σ1+dj/p ; 0 ≤ j < pm−q+1, p | j}
)

.
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