On the branch order of the ring of integers of an abelian number field

by
Kurt Girstmair (Innsbruck)

1. Introduction. Let K be an (absolutely) abelian number field of conductor n, G_{K} its Galois group over \mathbb{Q}, and \mathcal{O}_{K} the ring of integers of K. By $\mathbb{Q} G_{K}$ we denote the rational and by $\mathbb{Z} G_{K}$ the integral group ring of G_{K}. The field K is a $\mathbb{Q} G_{K}$-module via the usual action of G_{K} on K. Let

$$
R_{K}=\left\{\alpha \in \mathbb{Q} G_{K} ; \alpha \mathcal{O}_{K} \subseteq \mathcal{O}_{K}\right\}
$$

The set R_{K} is a subring of $\mathbb{Q} G_{K}$ that contains $\mathbb{Z} G_{K}$. As a $\mathbb{Z} G_{K}$-module, \mathcal{O}_{K} is isomorphic to R_{K}. In accordance with Leopoldt [1], we call R_{K} the branch order ("Zweigordnung") of \mathcal{O}_{K}. Let us now describe the order R_{K}, i.e., the structure of \mathcal{O}_{K} as a Galois module.

The letter p always means a prime number. We put

$$
n^{*}=\{p ; p \mid n\} .
$$

Moreover, if d is a natural number, let

$$
[d]=\{q ; q \mid d, d / q \text { square-free, }(q, d / q)=1\} .
$$

The set $[d]$ is called the branch class of d, and it is easy to see that

$$
\begin{equation*}
\{d ; d \mid n\}=\bigcup^{\bullet}\left\{[d] ; n^{*}|d| n\right\} \tag{1}
\end{equation*}
$$

(disjoint union). By X_{K} we denote the character group of G_{K}. If $\chi \in X_{K}$, f_{χ} means the conductor of χ. Moreover, for $\alpha=\sum\left\{a_{\sigma} \sigma ; \sigma \in G_{K}\right\} \in \mathbb{Q} G_{K}$ we put

$$
\chi(\alpha)=\sum a_{\sigma} \chi(\sigma)
$$

For each divisor d of n with $n^{*} \mid d$ there is a uniquely determined element $\varepsilon_{d, K} \in \mathbb{Q} G_{K}$ with

$$
\chi\left(\varepsilon_{d, K}\right)= \begin{cases}1 & \text { if } f_{\chi} \in[d] \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

From (1) and (2) one sees that $\left(\varepsilon_{d, K} ; n^{*}|d| n\right)$ is a complete system of orthogonal idempotents of $\mathbb{Q} G_{K}$. Hence

$$
\mathbb{Q} G_{K}=\bigoplus\left\{\mathbb{Q} G_{K} \varepsilon_{d, K} ; n^{*}|d| n\right\}
$$

and it is known that

$$
\begin{equation*}
R_{K}=\bigoplus\left\{\mathbb{Z} G_{K} \varepsilon_{d, K} ; n^{*}|d| n\right\} \tag{3}
\end{equation*}
$$

(cf. [1], [2]). For this reason we call $\varepsilon_{d, K}$ the branch idempotent of $d, n^{*}|d| n$. The $\mathbb{Z} G_{K}$-modules $\mathbb{Z} G_{K} \varepsilon_{d, K}$ are indecomposable, and there does not exist a decomposition of R_{K} into indecomposable $\mathbb{Z} G_{K}$-submodules different from (3). Of course, $\varepsilon_{d, K}$ can be written as

$$
\varepsilon_{d, K}=\sum\left\{c_{\sigma} \sigma ; \sigma \in G\right\}
$$

with $c_{\sigma} \in \mathbb{Q}$. It seems that an explicit formula for the coefficients c_{σ} has not been given so far. Indeed, in the previous papers [1], [2] the branch idempotent $\varepsilon_{d, K}$ only appears in the form

$$
\varepsilon_{d, K}=\left|G_{K}\right|^{-1} \sum\left\{\chi(\sigma) \sigma ; \sigma \in G_{K}, f_{\chi} \in[d]\right\}
$$

which immediately follows from (2). In this note we give an explicit formula for the numbers $c_{\sigma}, \sigma \in G_{K}$, in the case $K=\mathbb{Q}_{n}=\mathbb{Q}\left(e^{2 \pi i / n}\right)$. We shall see that this also yields an explicit description of $\varepsilon_{d, K}$ in the general case.
2. The main result. The Galois group G_{n} of \mathbb{Q}_{n} over \mathbb{Q} has the shape

$$
G_{n}=\left\{\sigma_{k} ; 1 \leq k \leq n,(k, n)=1\right\}
$$

where σ_{k} is defined by

$$
\sigma_{k}\left(e^{2 \pi i / n}\right)=e^{2 \pi i k / n}
$$

It what follows we write ε_{d} instead of $\varepsilon_{d, \mathbb{Q}_{n}}$. Suppose now that K is an arbitrary abelian number field with conductor n.

The restriction map

$$
\text { res : } \mathbb{Q} G_{n} \rightarrow \mathbb{Q} G_{K}
$$

is \mathbb{Q}-linear and defined by $\operatorname{res}\left(\sigma_{k}\right)=\left.\sigma_{k}\right|_{K}$. We note the following
Proposition. Let n be the conductor of K, and let $n^{*}|d| n$. Then

$$
\operatorname{res}\left(\varepsilon_{d}\right)=\varepsilon_{d, K}
$$

Proof. Take a character $\chi \in X_{K}$. Then $\widehat{\chi}=\chi \circ$ res : $\mathbb{Q} G_{n} \rightarrow \mathbb{C}$ is a character of G_{n} with conductor f_{χ}. Therefore

$$
\chi\left(\operatorname{res}\left(\varepsilon_{d}\right)\right)=\widehat{\chi}\left(\varepsilon_{d}\right)= \begin{cases}1 & \text { if } f_{\chi} \in[d] \\ 0 & \text { otherwise }\end{cases}
$$

Thus $\operatorname{res}\left(\varepsilon_{d}\right)$ satisfies condition (2), which means $\operatorname{res}\left(\varepsilon_{d}\right)=\varepsilon_{d, K}$.

Due to the Proposition, $\varepsilon_{d, K}$ is explicitly known if ε_{d} is. Let us therefore describe ε_{d}. As above, let $n^{*}|d| n$ and suppose that $k \in \mathbb{N}, 1 \leq k \leq n-1$, $(k, n)=1$. We define

$$
d_{k}=(d, k-1)
$$

and, provided that $n^{*} \mid k-1$,

$$
r_{k}=\prod\left\{p ; p \mid d_{k} / n^{*}, p \nmid d / d_{k}\right\} .
$$

Theorem. In the above situation write

$$
\varepsilon_{d}=\sum\left\{c_{k} \sigma_{k} ; 1 \leq k \leq n,(k, n)=1\right\}
$$

with $c_{k} \in \mathbb{Q}$ for all k. Let $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ be the Euler function and $\mu: \mathbb{N} \rightarrow \mathbb{N}$ the Möbius function. Then

$$
c_{k}= \begin{cases}\frac{\mu\left(d / d_{k}\right) d_{k} \varphi\left(r_{k}\right)}{n r_{k}} & \text { if } n^{*} \mid k-1, \\ 0 & \text { otherwise. }\end{cases}
$$

The coefficient c_{k} of the branch idempotent can also be described in a somewhat different way. For $m \in \mathbb{N} \cup\{0\}$ put

$$
v_{p}(m)= \begin{cases}\max \left\{j ; p^{j} \mid m\right\} & \text { if } m \neq 0 \\ \infty & \text { otherwise }\end{cases}
$$

(so $v_{p}(m)$ is the p-exponent of m).
Corollary. In the context of the Theorem, $c_{k}=0$ if $n^{*} \nmid k-1$ or if there is a p with $v_{p}(d) \geq v_{p}(k-1)+2$. Otherwise

$$
\begin{aligned}
& c_{k}=\frac{d}{n} \prod\left\{1-\frac{1}{p} ; 2 \leq v_{p}(d) \leq v_{p}(\right.k-1)\} \\
& \times \\
&\left.\times \prod-\frac{1}{p} ; v_{p}(d)>v_{p}(k-1)\right\} .
\end{aligned}
$$

Proof of the Theorem. If $n^{*}|d| n$ put

$$
\begin{equation*}
\gamma_{d}=\sum\left\{\varepsilon_{q} ; n^{*}|q| d\right\} . \tag{4}
\end{equation*}
$$

For a character $\chi \in X_{n}=X_{\mathbb{Q}_{n}}$,

$$
\chi\left(\gamma_{d}\right)= \begin{cases}1 & \text { if } f_{\chi} \mid d \tag{5}\\ 0 & \text { otherwise }\end{cases}
$$

This follows from (1) and (2). The condition (5) determines γ_{d} uniquely.
Put

$$
\begin{equation*}
\widetilde{\gamma}_{d}=\frac{\varphi(d)}{\varphi(n)} \sum\left\{\sigma_{k} ; k \equiv 1 \bmod d\right\} . \tag{6}
\end{equation*}
$$

Let $\chi \in X_{n}$ be such that $f_{\chi} \nmid d$. Then there exists a number $j, 1 \leq j \leq n$, $j \equiv 1 \bmod d$, with $\chi\left(\sigma_{j}\right) \neq 1$. But $\widetilde{\gamma}_{d}=\sigma_{j} \widetilde{\gamma}_{d}$, hence

$$
\chi\left(\widetilde{\gamma}_{d}\right)=\chi\left(\sigma_{j}\right) \chi\left(\widetilde{\gamma}_{d}\right)
$$

which implies $\chi\left(\widetilde{\gamma}_{d}\right)=0$. On the other hand, let f_{χ} divide d. Then $\chi\left(\sigma_{k}\right)=1$ for all $k \equiv 1 \bmod d$ and

$$
\chi\left(\widetilde{\gamma}_{d}\right)=(\varphi(d) / \varphi(n))|\{k ; 1 \leq k \leq n, k \equiv 1 \bmod d\}|=1
$$

Since γ_{d} is determined by (5), we have shown $\gamma_{d}=\widetilde{\gamma}_{d}$, i.e., (6) is the explicit form of γ_{d}.

By means of the Möbius inversion formula we obtain from (4)

$$
\begin{equation*}
\varepsilon_{d}=\sum\left\{\mu(d / q) \gamma_{q} ; n^{*}|q| d\right\} \tag{7}
\end{equation*}
$$

On inserting (6) into (7) we get

$$
\begin{equation*}
\varepsilon_{d}=\sum_{(k, n)=1}\left(\sum\left\{\mu(d / q) \varphi(q) / \varphi(n) ; n^{*}|q| d, q \mid k-1\right\}\right) \sigma_{k} \tag{8}
\end{equation*}
$$

If $n^{*} \mid q, \varphi(q) / \varphi(n)$ equals q / n. Hence (8) yields

$$
c_{k}= \begin{cases}\sum\left\{\mu(d / q) q / n ; n^{*}|q| d_{k}\right\} & \text { if } n^{*} \mid k-1 \tag{9}\\ 0 & \text { otherwise }\end{cases}
$$

For the remainder of the proof assume that $n^{*} \mid k-1$. Then

$$
c_{k}=\mu\left(d / d_{k}\right) \sum\left\{\mu\left(d_{k} / q\right) q / n ; n^{*}|q| d_{k},\left(d / d_{k}, d_{k} / q\right)=1\right\}
$$

The substitution $l=d_{k} / q$ yields

$$
c_{k}=\mu\left(d / d_{k}\right) d_{k} n^{-1} \sum\left\{\mu(l) / l ; l \mid d_{k} / n^{*},\left(d / d_{k}, l\right)=1\right\}
$$

But $\mu(l)$ is different from 0 if and only if l is square-free. For a number l of this kind the assertions

$$
l \mid d_{k} / n^{*},\left(d / d_{k}, l\right)=1 \quad \text { and } \quad l \mid r_{k}
$$

are equivalent. Therefore we get

$$
\begin{aligned}
c_{k} & =\mu\left(d / d_{k}\right) d_{k} n^{-1} r_{k}^{-1} \sum\left\{\mu(l) r_{k} / l ; l \mid r_{k}\right\} \\
& =\mu\left(d / d_{k}\right) d_{k} n^{-1} r_{k}^{-1} \varphi\left(r_{k}\right),
\end{aligned}
$$

which we had to show.
Example. Let $n=p^{m}$ and $d=p^{q}, 2 \leq q \leq m$. Then the Corollary yields

$$
\begin{aligned}
& \varepsilon_{d}=p^{q-m}\left(\sum\left\{(-1 / p) \sigma_{1+d j / p} ; 1 \leq j<p^{m-q+1}, p \nmid j\right\}\right. \\
& \left.\quad+\sum\left\{(1-1 / p) \sigma_{1+d j / p} ; 0 \leq j<p^{m-q+1}, p \mid j\right\}\right)
\end{aligned}
$$

References

[1] H. W. Leopoldt, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers, J. Reine Angew. Math. 201 (1959), 119-149.
[2] G. Lettl, The ring of integers of an abelian number field, ibid. 404 (1990), 162-170.

INSTITUT FÜR MATHEMATIK
UNIVERSITÄT INNSBRUCK
TECHNIKERSTR. 25/7
A-6020 INNSBRUCK
ÖSTERREICH

