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1. Introduction. Let K be an (absolutely) abelian number field of
conductor n, Gk its Galois group over Q, and Ok the ring of integers of K.
By QG g we denote the rational and by ZG i the integral group ring of G .
The field K is a QG g-module via the usual action of Gg on K. Let

RK:{QE@GK;OZOK QOK}

The set Rk is a subring of QG that contains ZG . As a ZGk-module,
Ok is isomorphic to Rk . In accordance with Leopoldt [1], we call Rk the
branch order (“Zweigordnung”) of Ok . Let us now describe the order Ry,
i.e., the structure of Ok as a Galois module.
The letter p always means a prime number. We put
n* ={p;p|n}.

Moreover, if d is a natural number, let

[d] ={q;q|d, d/q square-free, (q,d/q) =1} .
The set [d] is called the branch class of d, and it is easy to see that

(1) {d;d|n} = J{ld];n"|d|n}

(disjoint union). By X we denote the character group of Gg. If x € Xk,
fx means the conductor of x. Moreover, for « =) {a,0;0 € Gx} € QGg
we put

(@) =3 aox(o).

For each divisor d of n with n*|d there is a uniquely determined element
Ed,K € QG Kk with

_ 1 iffyeld,
2) X(Ed’K)_{O i)th:rwise.
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From (1) and (2) one sees that (eqx;n*|d|n) is a complete system of
orthogonal idempotents of QG . Hence

QGk = @{@GK&LK ;n™|d|n},
and it is known that
(3) Rk = P{ZCkeax;n*|d|n}

(cf. [1], [2]). For this reason we call €4 i the branch idempotent of d, n* | d | n.
The ZG kg-modules ZG e 4,k are indecomposable, and there does not exist a
decomposition of Rx into indecomposable ZG g-submodules different from
(3). Of course, €4 x can be written as

EdK = Z{caa;a € G},

with ¢, € Q. It seems that an explicit formula for the coefficients ¢, has
not been given so far. Indeed, in the previous papers [1], [2] the branch
idempotent €4 x only appears in the form

eax =|Gk|™'D {x(0)o;0 € Gk, fy €[d]},

which immediately follows from (2). In this note we give an explicit formula
for the numbers ¢,, 0 € G, in the case K = Q,, = Q(e*>*/™). We shall see
that this also yields an explicit description of €4 x in the general case.

2. The main result. The Galois group G,, of Q,, over Q has the shape
G, ={ok;1<k<n, (k,n) =1},

where oy, is defined by

O,k(e27ri/n) _ eZﬂik/n )

It what follows we write 4 instead of €4g,. Suppose now that K is an
arbitrary abelian number field with conductor n.
The restriction map

res : QG,, — QGg
is Q-linear and defined by res(oy) = ok | k. We note the following

PROPOSITION. Let n be the conductor of K, and let n*|d|n. Then
res(eq) = €a K -

Proof. Take a character x € Xg. Then ¥ = yores : QG,, — Cis a
character of G,, with conductor f,. Therefore

x(res(eq)) = X(ea) = {(1) ioft}{:rfvi[s?

Thus res(eq) satisfies condition (2), which means res(eq) = €4, x. m
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Due to the Proposition, €4,k is explicitly known if €4 is. Let us therefore
describe 4. As above, let n*|d|n and suppose that k e N, 1 <k <n -1,
(k,n) = 1. We define

dp, = (d,k — 1)
and, provided that n* |k — 1,

e = [ [{p;p|di/n", ptd/d}.

THEOREM. In the above situation write
€4 = Z{ckak;l <k<n, (k,n)=1}

with ¢, € Q for all k. Let ¢ : N — N be the Euler function and pp : N — N
the Mébius function. Then

p(d/di)die(ri)
Cr = nre

ifn*|k—1,
0 otherwise.

The coefficient c¢; of the branch idempotent can also be described in a
somewhat different way. For m € NU {0} put

vp(m) = {maX{j ;p7 [m} i m #£0,

00 otherwise

(so vp(m) is the p-exponent of m).

COROLLARY. In the context of the Theorem, ¢ = 0 if n*tk — 1 or if
there is a p with vy(d) > vy(k — 1) + 2. Otherwise

ck:ZH{1—;;2gvp(d)gvp(k—1)}
XH{—;;vp(d)>vp(k—l)}.

Proof of the Theorem. If n*|d|n put

(4) va=» f{eqin*|qld}.
For a character x € X,, = Xq,,

1 if fy |d
: AL
(5) x(a) 0 otherwise.

This follows from (1) and (2). The condition (5) determines 74 uniquely.
Put

(6) %ZZ)JE@Z{UJC;k=1modd}.

n)
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Let x € X,, be such that f, td. Then there exists a number j, 1 < j < mn,
Jj =1mod d, with x(o;) # 1. But 74 = 0,74, hence
X(Va) = x(0;)x(Ya) »

which implies x(74) = 0. On the other hand, let f, divide d. Then x(o}) =1
for all £k =1 mod d and

xX(Ya) = (e(d)/e(n)){k;1 <k <n, k=1modd}f=1.

Since 74 is determined by (5), we have shown 4 = 74, i.e., (6) is the explicit
form of ~y.
By means of the Mdbius inversion formula we obtain from (4)

(7) ea= Y _{ud/q)ygin* |q|d}.
On inserting (6) into (7) we get
®) = Y (Ylu@/ael)/em)int lald, alk—1})ox.
(k,n)=1
If n* |q, v(q)/¢(n) equals g/n. Hence (8) yields
{Z{u(d/Q)Q/n;n* lqlde} ifn*|k—1,
0

9) Ck = .
otherwise.

For the remainder of the proof assume that n* |k — 1. Then
o = p(d/di) Y {plde/q)a/n;n* | q|dy, (d/dy,di/q) =1},
The substitution | = dj/q yields
e = pld/di)dyn™" 3 (/11 di/n", (dfdy,1) =1}

But p(l) is different from 0 if and only if [ is square-free. For a number [ of
this kind the assertions

ldg/n", (d/dg,l)=1 and []|rg
are equivalent. Therefore we get
cr = p(d/di)dpn ™ r Y {p(Dre/ T r)
= u(d/dy)din ™" o (rn)
which we had to show. m

EXAMPLE. Let n = p™ and d = p9, 2 < ¢ < m. Then the Corollary
yields

ea=p* " (Z{(—l/p)01+dj/p 1< <p™ T ptj}

+ A= 1/P)oriapi0 <5 <9 pl ).



Branch order of the ring of integers 301

References

[1] H.W.Leopoldt, Uber die Hauptordnung der ganzen Elemente eines abelschen Zahl-
korpers, J. Reine Angew. Math. 201 (1959), 119-149.
[2] G.Lettl, The ring of integers of an abelian number field, ibid. 404 (1990), 162-170.

INSTITUT FUR MATHEMATIK
UNIVERSITAT INNSBRUCK
TECHNIKERSTR. 25/7

A-6020 INNSBRUCK
OSTERREICH

Received on 23.12.1991 (2209)



