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1. Introduction.Iterating polynomial maps gives a convenient way of
finding extensions of Q whose Galois groups are subgroups of special im-
primitive groups known as wreath products, as has been shown by Odoni
([o1], [o2]). Subgroups of wreath products occur as Galois groups not only
for the iterates studied by Odoni, but also for the algebraic number fields
generated by the periodic points of a polynomial map (see [m1] and [vh]).
In particular, studying periodic points of iterated maps over a number field
leads naturally to some parametrized families of polynomials with special
Galois groups. One of the purposes of this paper is to illustrate this by in-
vestigating the algebraic and number-theoretic properties of periodic points
of order 3 of a quadratic map over an arbitrary field κ whose characteristic
is different from 2. The investigation shows that the arithmetic properties
of these periodic points are related to an interesting curve of genus 4. This
is part of a larger project to study the Galois groups of periodic points of
arbitrary polynomial maps. (See [m1] and [pa].)

Thus, let σ(x) be a polynomial over a field κ, and denote by σn(x) the
n-fold iteration of σ with itself:

σ0(x) = x , σn+1(x) = σ(σn(x)) , n ≥ 0 .

Then σn(x)− x factors over κ as

σn(x)− x =
∏
d |n

Φd,σ(x) ,

where the polynomial Φn,σ(x) is defined using the Möbius function µ:

Φn,σ(x) =
∏
d |n

(σd(x)− x)µ(n/d) .

The polynomial Φn,σ(x) has among its roots all the periodic points of σ of
exact order n in an algebraic closure of κ; usually these are all the roots of
Φn,σ(x), e.g. when Φn,σ(x) has no multiple roots. The degree of Φn,σ(x) is
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equal to

degΦn,σ(x) =
∑
d |n

µ(n/d)(deg σ)d ,

and the splitting fields Σn,σ of these polynomials Φn,σ(x) are the fields whose
Galois groups are computed in [m1] and [pa]. (Also see [vh].)

In [m1] it is proved that

(1) Φn,σ(x) |Φn,σ(σ(x)) ,

which implies that the map σ permutes the roots of Φn,σ(x), and that these
roots fall into distinct orbits under σ. This is a well-known result in the
classical case, when κ = C or R.

This raises the following

Question. Are the elements of an orbit algebraic conjugates over the
base field κ?

The answer to this question is no in general, since, for example, if σ(x) =
x2 − 29/16, we have

(2) Φ3,σ(x) =
(
x+

7
4

)(
x+

1
4

)(
x− 5

4

)(
x3 +

1
4
x2 − 41

16
x+

23
64

)
.

However, the answer to the above question is yes “generically”. This means
that if σ(x) = xk + a1x

k−1 + . . .+ ak is a “generic” polynomial over Q with
coefficients ai which are algebraically independent variables over Q, then
the divisibility relation f(x) | f(σ(x)) holds for all irreducible factors f of
Φn,σ̄(x) over Q(a1, a2, . . . , ak). (For the proof see [m1].) In general, the
roots of an irreducible factor f of Φn,σ(x) consist of complete orbits if and
only if

(3) f(x) | f(σ(x)) .

In this paper I will first use the elementary theory of function fields to
consider this question in detail when σ is quadratic and n = 3. In this
case degΦ3,σ(x) = 6, and using (1) it is easy to see that the set of degrees
of the irreducible factors of Φ3,σ(x) can only be one of the following: {6},
{3, 3}, {1, 1, 1, 3}, {1, 1, 1, 1, 1, 1}, {2, 2, 2}. Furthermore, it is clear that if
two polynomials σ1 and σ2 are related by

σ1 = ` ◦ σ2 ◦ `−1 ,

where ` is a linear polynomial in κ[x], then the corresponding Φ-polynomials
will factor in the same way (as long as these polynomials have no multiple
roots). We will call such pairs of polynomials equivalent, or linearly conju-
gate, pairs.

On the basis of extensive calculations over Q it appears that the fac-
torization types {1, 1, 1, 1, 1, 1} and {2, 2, 2} never occur. I will prove this
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fact in Section 3. A consequence is that for every quadratic polynomial σ
over Q, at least one of the orbits of roots of Φ3,σ(x) consists of algebraic
conjugates over Q. In addition, each of the factorization types {6}, {3, 3},
{1, 1, 1, 3} occurs for infinitely many classes of polynomials over Q.

The argument will show that the factorization of Φ3,σ(x) over Q depends
on several diophantine conditions. We first state

Theorem 1. Let κ be a field whose characteristic is different from 2. If
σ(x) is a quadratic polynomial in κ[x] for which Φ3,σ(x) factors as a product
of three irreducible quadratics, then either :

(i) σ(x) is equivalent to x2, the polynomial x3 − x2 − 2x+ 1 splits in κ
and −7 is not a square in κ; or

(ii) the equation

(4) δ2 = 4α(α+ 1)(α2 − 3α+ 4)

has solutions in κ other than (α, δ) = (0, 0), (−1, 0), (1,±4), for which the
number d given by

(4′) d =
α2 − 1− (3α2 − 2α− 9)β

β3 − β2
,

with

(4′′) β =
−4α3 + 2α2 + 6α+ δ

−8(α3 − α2 − 2α+ 1)
6= 0 ,

is not a square in κ.

If β = 1 in (4′′), then instead of (4′) we have d = (11 ±
√

17)/2, corre-
sponding to the solutions (α, δ) = ((1±

√
17)/2,±2(1±

√
17)) of (4).

In case (ii), σ(x) is equivalent over κ to the polynomial x2− (d+28)/16.
Conversely , if the conditions of (i) or (ii) hold , then Φ3,σ(x) factors as

a product of three irreducible quadratic polynomials over κ.

The curve defined by equation (4) is rationally equivalent to the curve

(5) E : Y 2 = 4X3 − 11X2 + 8X ,

an elliptic curve of rank 0 over Q, whose only rational solutions are (0, 0),
(1,±1), (2,±2). (See [cm], where the same curve occurs in the context of
coding theory, and [a], Table 1, curve 14A.) Consequently, the curve (4)
has only the rational solutions listed in the theorem. Furthermore, every
quadratic polynomial σ(x) in κ[x] not equivalent to x2, for which Φ3,σ(x)
factors as a product of three irreducible quadratics, gives rise to a solution
(X,Y ) of (5) with X 6= 0, 1, 2.

Theorem 2. (a) If κ is an algebraic number field , then Φ3,σ(x) splits
into linear factors for at most finitely many equivalence classes of quadratic
polynomials over κ.
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(b) For any algebraic number field κ, the factorization types {6}, {3, 3},
{1, 1, 1, 3} occur as the degree sets of the irreducible factors of Φ3,σ(x) for
infinitely many inequivalent quadratic polynomials.

(c) Over an arbitrary field κ, Φ3,σ(x) has linear or cubic factors if and
only if discΦ3,σ(x) is a square in κ; this holds if and only if σ(x) is linearly
conjugate to x2 + a, where a = −(s2 + 7)/4 for some s in κ.

The same result holds for any global field κ whose characteristic is dif-
ferent from 2.

As noted above, Theorems 1 and 2 can be sharpened when the base field
is κ = Q.

Theorem 3. Over Q, Φ3,σ(x) never has irreducible quadratic factors and
never splits completely , when σ is a quadratic polynomial. For any quadratic
polynomial σ over Q, Φ3,σ(x) has at least one orbit of roots (under σ) con-
sisting of algebraic conjugates over Q. Moreover , Φ3,σ(x) is reducible over
Q if and only if σ is linearly conjugate to x2 + a, where a = −(s2 + 7)/4 for
some rational number s.

Compare this theorem and Theorem 2(b) with Theorem II of Narkiewicz
[n], which shows that the factorization type {1, 1, 1, 3} does not occur for
any monic quadratic polynomial σ(x) with integral coefficients over Q (or
over an imaginary quadratic field with conductor > 4).

Over number fields other than Q, Φ3,σ(x) can have quadratic factors. As
an example of this take κ = Q(

√
3) and

σ(x) = x2 − 1− 11
√

3
24

,

so that

Φ3,σ(x) =
(
x2 + 2x+

18− 5
√

3
24

)(
x2 − 1 +

√
3

2
x+

12− 5
√

3
24

)
×

(
x2 − 1−

√
3

2
x− 18 + 23

√
3

24

)
.

This example comes from the solution (3/2,
√

3/2) in κ = Q(
√

3) of
equation (5). It is easy to see that the factors of Φ3,σ(x) do not satisfy (3),
so that the elements of the two orbits of roots in this example are not al-
gebraic conjugates over Q(

√
3). (In general, a factor f of Φn,σ(x) can only

satisfy (3) if deg f is divisible by n.)
In fact, there are infinitely many inequivalent polynomials σ(x) over

Q(
√

3) for which Φ3,σ(x) factors as a product of quadratics, since the point
(3/2,

√
3/2) has infinite order on (5). (See [si], p. 220, Theorem 7.1.) The

same holds for any number field κ (or global field with characteristic 6= 2)
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over which the rank of the curve (5) is positive (see the remarks following
Theorem 5 below).

Another such field is Q(
√

17), since the point ((7+
√

17)/8, (−1+
√

17)/4)
on (5) also has infinite order; this point corresponds to the point ((1 +√

17)/2, 2 + 2
√

17) on (4) mentioned in Theorem 1(ii).
We prove Theorems 1 and 2 by studying the polynomial Φ3,σ(x) for

σ(x) = x2 + y over the field κ(y). This involves no loss of generality since
every quadratic polynomial is equivalent over κ (when charκ 6= 2) to a
polynomial of this form. Thus we let

f(x, y) = Φ3,σ(x) = x6 + x5 + (3y + 1)x4 + (2y + 1)x3(6)
+ (3y2 + 3y + 1)x2 + (y2 + 2y + 1)x+ y3 + 2y2 + y + 1

= y3 + (2 + x+ 3x2)y2 + (1 + 2x+ 3x2 + 2x3 + 3x4)y
+ 1 + x+ x2 + x3 + x4 + x5 + x6 ,

and define the algebraic function field

K = κ(x, y) , where f(x, y) = 0 .

We show that f is absolutely irreducible over κ (assuming charκ 6= 2)
and that K has genus 0. More precisely, we have

Theorem 4. If charκ 6= 2, the curve f(x, y) = 0 is rational , with
parameter

(7) t = 1 + 2y + 2x+ 2x2 ,

where

(8) x =
t3 + t2 − t+ 7

4(t2 − 1)

and

(9) y = − t
6 − 2t5 + 11t4 + 20t3 + 23t2 − 18t+ 29

16(t2 − 1)2
.

(N o t e: (i) for x and y on the curve (6) the value of t in (7) is never ±1;
(ii) t = 0 gives the polynomial σ(x) = x2 − 29/16 in (2);
(iii) Narkiewicz’s Theorem II in [n], referred to above, implies that the

value of y in (9) is never a rational integer when t is in Q.)

Now let N be the normal closure of K/κ(y). The following result holds
for N .

Theorem 5. If charκ 6= 2, then the genus g of the function field N is

g =
{

4 if charκ 6= 7,
1 if charκ = 7.
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N = κ(t, u) has generators t, u (t is the quantity defined in Theorem 4)
which satisfy the equation

(10) h(t, u) = (t2 − 1)u3 + (t3 − 2t2 − 9t+ 2)u2

− 9(t2 − 1)u− (t3 − 2t2 − 9t+ 2) = 0 .

This equation is symmetric in t and u and absolutely irreducible. The Galois
group of N/κ(y) has order 18:

(11) Gal(N/κ(y)) ∼= Z/3Z ··∼ Z/2Z ,

the wreath product of Z/3Z and Z/2Z.

Theorems 1 and 2 will follow from Theorems 4 and 5 by considering the
way the prime divisors of κ(y) split in subfields of N . The fact that N has
genus 4 whenever κ is a number field, together with Faltings’ theorem [fa],
will give Theorem 2(a), since every σ for which Φ3,σ(x) splits completely over
κ yields a κ-rational point on (10). Theorem 2(b) is an easy consequence of
Hilbert’s irreducibility theorem.

In Section 3 we show that the only Q-rational solutions of (10) are (t, u) =
(±1,±1), by showing that N has degree 2 over a subfield which is elliptic
and computing the Q-rational prime divisors of this elliptic subfield. In fact,
there is an automorphism π of N/κ(y) which simply switches t and u, and
the fixed field Nπ of π is elliptic (see §3, Lemma 6):

Nπ = κ(X,Y ) , where Y 2 = 4X3 − 11X2 + 8X .

Thus Nπ is defined by the curve (5). This gives another way of looking at
Theorem 1. Essentially, f(x, a) factors into a product of quadratics if and
only if the numerator divisor of y − a in κ(y) lies below a κ-rational prime
divisor of Nπ which is inert in N/Nπ. Moreover, σ induces an automorphism
on Nπ which corresponds to a translation on the elliptic curve defining Nπ

by the point (1, 1), a point of order 3.
This computation implies that the function field N/Q has exactly 9

prime divisors with degree 1 over Q (see §3). We use this fact to complete
the proof of Theorem 3.

The second, related, object we investigate is the Galois group of Φ3,σ(x),
as σ(x) = x2+a varies over quadratic polynomials in κ[x] for which Φ3,σ(x) is
irreducible. (If Φ3,σ(x) is reducible over κ its Galois group is either 1, Z/2Z,
Z/3Z or Z/3Z×Z/3Z.) We prove the following result for an arbitrary field
κ with charκ 6= 2 or 7.

Theorem 6. Let σ(x) = x2 + a, and assume that Φ3,σ(x) is irreducible
over κ (charκ 6= 2 or 7). (This is equivalent to a 6= −(s2 + 7)/4 for s in κ
and that the conditions of Theorem 1 do not hold.) Let Σ3,σ be the splitting
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field of Φ3,σ(x) over κ and Γ3,σ = Gal(Σ3,σ/κ). Then exactly one of the
following situations holds:

(i) a is given by

(12) a =
−2z + 3

8
− w

8(z − 4)
=
−2z2 + 11z − 12− w

8(z − 4)
,

where (z, w) 6= (∞,∞), (4, 0) is a κ-rational point on the elliptic curve

(13) E′ : w2 = 4z3 − 35z2 + 120z − 176 = (z − 4)(4z2 − 19z + 44) ,

and Γ3,σ
∼= Z/6Z;

(ii) for some value of ξ 6= −7,−11 in κ,

(14) a = −ξ
3 + 29ξ2 + 243ξ + 559

16(ξ + 7)(ξ + 11)
and Γ3,σ

∼= S3;
(iii) neither (i) nor (ii) hold and Γ3,σ

∼= Z/3Z ··∼ Z/2Z, the wreath product
of Z/3Z with Z/2Z.

Together with equation (6), the conditions of Theorem 6 give three
parametrized families of sixth degree polynomials whose Galois groups over
κ are the three groups listed above.

Theorem 7. Let κ be a number field (or a global field with characteristic
different from 2 or 7).

(a) For both groups Γ = S3 and Z/3Z ··∼ Z/2Z there are infinitely many
inequivalent quadratic maps σ for which the Galois group of Φ3,σ(x) over κ
is isomorphic to Γ .

(b) Let φ be the isogeny φ : E → E′ from the curve E defined by (5) to
the curve E′ in (13), given by

φ(X,Y ) =
(
X3 − 4X + 4

(X − 1)2
, Y

X3 − 3X2 + 4X − 4
(X − 1)3

)
= (z, w) .

Let E(κ) denote the group of points on E which are defined over κ.

(i) If φ(E(κ)) = E′(κ), then there are no quadratic maps σ in κ[x] for
which Γ3,σ

∼= Z/6Z;
(ii) if φ(E(κ)) 6= E′(κ), and the rank of E(κ) is zero, then there are at

most finitely many inequivalent quadratic maps σ for which Γ3,σ
∼= Z/6Z;

(iii) if φ(E(κ)) 6= E′(κ), and the rank of E(κ) is positive, then there are
infinitely many inequivalent quadratic maps σ for which Γ3,σ

∼= Z/6Z.

The curve E′ in (13) is 3-isogenous to the curve (5) and has only the Q-
rational solutions (4, 0), (5,±7), (12,±56) (see curve 14C in Table 1 of [a]).
The field κ = Q satisfies condition (b)(ii) of Theorem 7, a fact which leads
to part (a) of the following result (see §4).
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Theorem 8. Let σ(x) = x2 + a be a quadratic polynomial in Q[x] for
which a 6= −(s2 +7)/4 for s in Q. Then Φ3,σ(x) is irreducible and the group
Gal(Φ3,σ(x)/Q) is

(a) the cyclic group Z/6Z, iff a = 0,−7/2;
(b) the symmetric group S3, iff a is given by the formula in (ii) of The-

orem 6; and
(c) the full wreath product Z/3Z ··∼ Z/2Z, otherwise.

Cases (b) and (c) both occur for infinitely many values of a.

In case (a) of Theorem 8, the two polynomials with cyclic Galois groups
over Q are

Φ3,x2(x) = x6 + x5 + x4 + x3 + x2 + x+ 1 (conductor 7) ,

Φ3,x2−7/2(x) = x6 +x5− 19
2
x4−6x3 +

109
4
x2 +

25
4
x− 167

8
(conductor 28) .

(The last polynomial generates the real subfield of the field of 28th roots of
unity.) An example with Galois group S3 over Q is

Φ3,x2−1/8(x) = x6 + x5 +
5
8
x4 +

3
4
x3 +

43
64
x2 +

49
64
x+

463
512

(corresponding to ξ = −3 in (14)), a polynomial with discriminant
−2−7 · 36 · 133. Almost any choice for σ will give a polynomial with group
Z/3Z ··∼ Z/2Z. For example, σ(x) = x2 + 1 gives

Φ3,x2+1(x) = x6 + x5 + 4x4 + 3x3 + 7x2 + 4x+ 5 ,

a polynomial of discriminant −36 · 113.

A field satisfying condition (b)(iii) of Theorem 7 is κ = Q(
√
−11), since

the point (2, 2
√
−11) on E′ has infinite order and is not in φ(E(κ)) (see §4).

Thus Z/6Z occurs as the Galois group of Φ3,σ(x) over Q(
√
−11) for infinitely

many inequivalent quadratic maps.
I do not know an example of a number field κ satisfying condition (b)(i).

Thus the question remains open: are there number fields for which no poly-
nomial Φ3,σ(x) has Galois group Z/6Z? By [si], p. 298, Theorem 4.2, con-
dition (b)(i) holds if and only if the φ-Selmer group S(φ)(E/κ) equals the
Tate–Shafarevich group X(E/κ)[φ], i.e. if and only if no non-trivial homo-
geneous space in S(φ) is globally solvable.

It is very clear by now that the prime 7 plays a special role in the Galois
theory of Φ3,σ(x). When the characteristic of κ is 7, N is an elliptic function
field, a fact which leads to some interesting connections between the third
order periodic points corresponding to different quadratic maps! In this case
we have the following results. For the proofs of Theorems 9–11, see [m2].
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Theorem 9. If charκ = 7, then the field N has generators Z, ∆ satis-
fying

(15) ∆2 = (Z − 1)(Z + 1)(Z − 2) ,

and

t, u =
−Z2

Z2 − 2
± 2(Z + 2)

(Z − 1)(Z2 − 2)
∆ ,

where t goes with the upper sign and u with the lower. The map (x, y) →
(σ(x), y) of κ(x, y)/κ(y) is induced by the automorphism

τ3 : (t, u) →
(
t+ 3
−t+ 1

,
u− 3
u+ 1

)
of N , and τ3 coincides with translation by the point −(3, 1) on the curve
(15):

τ3 : (Z,∆) → (Z,∆)− (3, 1) ;
the point (3, 1) has order 3 on (15).

In the situation of Theorem 9, let Pa be the set of primes of Nκ/κ which
divide the numerator of y − a, for a given a in the algebraic closure κ of κ
(where charκ = 7). If a = ∞, let P∞ be the set of poles of y in Nκ/κ.

Theorem 10. (a) The sets Pa, for a 6= 0,∞, coincide with the minimal
sets P of prime divisors of Nκ/κ which do not contain any of the prime
divisors of N of degree 1 over the prime field F7 and which are invariant
under the operations

(16) p̃→ −p̃, p̃→ p̃+ p̃3, p̃→ ψ(p̃) + p̃1 (p̃ ∈ P ) .

Here ψ is the automorphism ψ : (Z,∆) → (2Z − 3,∆) of (15) and p̃1, p̃3

are the prime divisors corresponding to the points (1, 0) and (3, 1) on (15)
(of orders 2 and 3, respectively). The addition in (16) corresponds to the
addition of points on (15).

(b) For all values a 6= 0 in κ, the map σ(x) = x2 + a has periodic points
of exact order 3. The sets of periodic points (of order 3) of quadratic maps
over κ correspond 1-1 to the sets of points P = Pa on (15) which do not
contain points defined over F7.

It turns out that there are natural relationships between the sets Pa

which arise from the structure of the curve (15), and in particular, from the
way G = Gal(Nκ/κ(y)) sits inside the automorphism group A of Nκ/κ.
G is contained in the subgroup G of A (of order 72), which is generated by
the automorphisms ψ : (Z,∆) → (2Z − 3,∆) and π : (Z,∆) → (Z,−∆) of
(15), together with the automorphisms τ in A which correspond to transla-
tion by points of (15) defined over F7:

τ : (Z,∆) → (Z,∆)− (a, b) (a, b ∈ F7) .
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Denoting by GPa the set of all images of primes in Pa by elements
of G, the following result holds. To state it let τ2 be the automorphism
corresponding to translation by the point (2, 0).

Theorem 11. The set GPa =
⋃4

i=1 Pai
, where a1 = a and the ai are the

roots in κ of the quartic polynomial

ζ4 − 2ζ3 + 2ζ2 − (a+ 1)3(a+ 2)
a

ζ + 2 = 0 (a 6= 0,∞) .

The ai may also be determined by the values of {y, ψ(y), ψ2(y), τ2(y)} modulo
a prime divisor p̃ in Pa, and are rational expressions in the Z-coordinate
of the point on (15) corresponding to p̃ (see [m2]). Moreover , the sets GPa

can be added :

GPa +GPb =
⋃
c

GPc for any a, b in κ ∪ {∞} ,

for suitable values c. In general , 72 values of c arise in this way from a
given pair a, b.

In addition, GP0 = GP∞ = P0∪P∞, and GP0 +GPa = GPa, for any a.
(The set P∞ consists of the nine prime divisors whose Z-coordinates on
(15) are ∞, 0, ±1, ±3, while P0 consists of the three points on (15) with
Z-coordinates ±2.)

The results of Theorems 10 and 11 raise the question: are there similar
results for arbitrary characteristic which involve the Jacobian variety of the
curve (10)?

Finally, the parametrization φ(t) = (x(t), y(t)) of f(x, y) = 0 given by
(8) and (9) also leads to some interesting insights about the real algebraic
curve C defined by f in (6). From Theorem 4 and the discussion in Section 2
(see (17)) follows

Theorem 12. The real curve C : f(x, y) = 0 has three connected com-
ponents Ci (i = 1, 2, 3), which are defined as the images under φ(t) =
(x(t), y(t)) (see (8), (9)) of the respective intervals I1 = (−∞,−1), I2 =
(−1, 1), I3 = (1,∞). These components are cyclically permuted by the map

t→ m(t) = −(t+ 3)/(t− 1) .

If φ(t) ∈ Ci, then φ(m(t)) ∈ Ci+1 (subscripts read modulo 3). Each of the
curves Ci is asymptotic to the curve y = −x2 as t→ ±∞,±1.

The polynomials Φ3,σ(x) can also be used to give an elementary charac-
terization of the cyclic cubic extensions of any field which does not contain
the cube roots of unity. See [m3].

One remark on notation: prime divisors in the fields κ(y), κ(t), N , Nπ

will be denoted respectively by p, p, p̃, q (or q̃), while p will be used for
prime divisors in the field κ(η) introduced in Section 2.
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In further papers I will use similar techniques to consider the possible
groups which can occur as the Galois group of an irreducible Φn,σ(x) of
small degree.

I would like to thank Pratiksha Patel for the extensive calculations which
suggested the results concerning linear and quadratic factors in Theorem 3
(see [pa]). The work in this paper was partially supported by an NSF
grant and the University of Arizona, and partially by a Brachman–Hoffman
fellowship from Wellesley College.

2. The function fields K and N . We first verify that f(x, y) =
Φ3,σ(x) is irreducible.

Lemma 1. If charκ 6= 2, then f(x, y) is irreducible in κ[x, y]. In partic-
ular , f(x, y) is absolutely irreducible over κ. If charκ = 2, and κ contains
the finite field of order 8, then

f(x, y) = (y + x2 + x+ c)(y + x2 + x+ c2)(y + x2 + x+ c4) ,

where c3 + c+ 1 = 0.

P r o o f. If f is reducible over κ, then since f is cubic as a polynomial
in y and y is integral over κ[x], there must be a root of (6) of the form
y = p(x), p(x) ∈ κ[x]. From (6) it is clear that p(x) can only be quadratic.
Putting y = ax2 + bx+ c in for y in f(x, y) then gives

(ax2 + bx+ c)3 + (2 + x+ 3x2)(ax2 + bx+ c)2

+(1 + 2x+ 3x2 + 2x3 + 3x4)(ax2 + bx+ c)

+1 + x+ x2 + x3 + x4 + x5 + x6 = 0 .

Comparing coefficients of x6 gives (a+ 1)3 = 0 and so a = −1. Considering
the constant term gives c3 + 2c2 + c + 1 = 0. Note that the coefficients of
x4 and x5 are identically zero on setting a = −1, and the coefficients of x3

and x2 become
x3 : b3 + b2 − b− 1 = (b− 1)(b+ 1)2 = 0 ,

x2 : 3b2c+ 2bc+ 2b2 − 4c+ 2b+ 3c = 0 .

Putting b2 = 1 in the second equation gives 2(b+1)c = 2(b− 1), which does
hold in characteristic 2 but not otherwise. The statements of the lemma
follow.

For the remainder of this section we assume charκ 6= 2. By Lemma 1
the function field K = κ(x, y) has degree 6 over κ(y) and degree 3 over κ(x).
If we sett = 1 + 2(y+ x+ x2),then a straightforward calculation shows that
the formulas of Theorem 4 hold. Thus K is rational.
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We can verify the formula for y somewhat more elegantly by using prop-
erties of the map σ(x) = x2+y. By results of [m1] we know that σ permutes
the roots of f(x, y), i.e. if (x, y) satisfies f(x, y) = 0, then so does (x2+y, y).
Furthermore, we know that this map

σ : (x, y) → (x2 + y, y)

must be an automorphism of K/κ(y) from the fact that σ3(x) = x. Hence

σ−1 = σ2 : (x, y) → ((x2 + y)2 + y, y) .

Now compute the action of σ on t:

σ(t) = σ(1 + 2(y + x+ x2)) = 2y2 + (4x2 + 4)y + 2x4 + 2x2 + 1 .

A straightforward calculation shows that this last expression equals t+3
1−t ,

and so

(17) σ(t) =
t+ 3
1− t

, σ2(t) =
t− 3
t+ 1

.

Since σ has order 3 and fixes κ(y), K is cubic over the fixed field F of σ,
K = F (t), and [F : κ(y)] = 2.

Now set

(18) η = t+ σ(t) + σ2(t) = (t3 − 9t)/(t2 − 1) .

Then η ∈ F , and in terms of x and y we have

η = t+
t+ 3
1− t

+
t− 3
t+ 1

= (2y + 2x2 + 2x+ 1) + {2y2 + (4x2 + 4)y + 2x4 + 2x2 + 1}
+ {2y2 + (4x2 + 2)y + 2x4 + 2x+ 1}

= 4{y2 + 2(x2 + 1)y + x4 + x2 + x}+ 3 .

Hence

(19)
(
η − 1

2

)2

= [2y2 + 4(x2 + 1)y + 2(x4 + x2 + x) + 1]2 = −4y − 7 ,

(19′) y =
−1
16

(η2 − 2η + 29) ,

and η is quadratic over κ(y). It follows that F = κ(y, η) = κ(η). Therefore
K = κ(t, η) = κ(t) is indeed rational. The formula (9) for y follows easily
from (18) and (19′).

Now consider the normal closure N of K/κ(y). If x′ is a root of f(x, y)
in N , not in the σ-orbit of x, then κ(x′, y) ∼= κ(x, y) and N = κ(y, x, x′).
To determine a parametrizing variable for κ(x′, y), note that the conjugate
η′ of η over κ(y) is η′ = 2 − η. If π is an automorphism of N/κ(y) which
takes η to η′ then without loss of generality we may take

(20) x′ = π(x) , u = π(t) .
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Note that π(x) is not in the σ-orbit of x. If it were then it would follow that
π(x) = σ(x) or σ2(x), and π would coincide with one of the maps σ or σ2

on K, which is not the case since σ fixes κ(η) and π does not.
It follows that κ(x′, y) = κ(u), where

(21)
u3 − 9u
u2 − 1

= 2− η = − t
3 − 2t2 − 9t+ 2

t2 − 1
,

and the root x′ is obtained from u by the formula

x′ =
u3 + u2 − u+ 7

4(u2 − 1)
.

From (21) we see that u satisfies the equation

(22) u3 + (η − 2)u2 − 9u+ 2− η = 0

which must be irreducible over κ(η) since the conjugate equation

(23) t3 − ηt2 − 9t+ η = 0 ,

being the equation satisfied by t over κ(η), is irreducible. Putting in the
expression for η from (18) gives the equation satisfied by u over κ(t):

h(t, u) = (t2 − 1)u3 + (t3 − 2t2 − 9t+ 2)u2(24)
− 9(t2 − 1)u− (t3 − 2t2 − 9t+ 2) = 0 .

We have N = κ(t, u), but at the moment it is not clear that u is not
contained in κ(t), or equivalently, whether t, u generate disjoint extensions
over F . To show that this is the case we prove that there is a prime divisor
of κ(η) which ramifies in κ(t) but not in κ(u). In what follows we use the
symbol ∼= to denote equality of divisors, as in [h1].

Lemma 2. If η2 + 27 ∼= a/p2
∞ and η2 − 4η + 31 ∼= b/p2

∞ in κ(η), where
p∞ is the denominator divisor (pole) of η, then the discriminants dt and du

of the extensions κ(t)/κ(η) and κ(u)/κ(η) are, respectively ,

dt
∼= a2 , du

∼= b2 .

P r o o f. First note that the η-discriminants of the minimal polynomi-
als (23) and (22) of t and u over κ[η] are

disc(t) = (η2 + 27)2 , disc(u) = ((2− η)2 + 27)2 = (η2 − 4η + 31)2 .

It is easily checked that p∞ is unramified in κ(t) and κ(u). For example,
setting t = 1/v and η = 1/β in (23) gives that

v3 − 9βv2 − v + β = 0 ,

and reducing this equation modulo p∞ yields

v3 − 9βv2 − v + β ≡ v3 − v ≡ v(v − 1)(v + 1) (mod p∞) ,
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showing that p∞ splits completely in κ(t). The same obviously holds for
κ(u).

If charκ 6= 3, then neither η2 +27 nor η2−4η+31 has a multiple root in
κ, so a and b are either primes of degree 2 in κ(η) or products of two primes
of degree 1. If charκ = 3, then the primes dividing a ∼= (p0)2 and b ∼= (p−1)2

are wildly ramified. In any case dt and du must both have degree 4 in κ(η)
in order for the genus formulae

0 = gκ(t) = 1
2 deg dt − 2 , 0 = gκ(u) = 1

2 deg du − 2

to hold. (See [h1], p. 457.) This proves the lemma.

Lemma 3. κ(t) and κ(u) are linearly disjoint over F = κ(η).

P r o o f. If some prime divisor p of F divides η2 + 27 and η2 − 4η + 31,
then p divides the difference (η2 + 27) − (η2 − 4η + 31) = 4η − 4. Hence
η−1 would have to be a common factor of both polynomials. This happens
if and only if charκ = 7. In that case

η2 + 27 = η2 − 1 = (η + 1)(η − 1) ,
η2 − 4η + 31 = η2 − 4η + 3 = (η − 3)(η − 1) .

Thus even in this case there is a prime divisor which ramifies in κ(t) but
not in κ(u), and vice versa. The statement of the lemma follows.

Corollary. The equation h(t, u) = 0 in (24) is irreducible (and there-
fore absolutely irreducible) in κ[t, u], for any field κ whose characteristic is
different from 2.

Lemma 3 implies that [κ(t, u) : κ(η)] = 9 and [N : κ(y)] = 18. Since
N is the splitting field of Φ3,σ(x) over κ(y), results of [m1] show that G =
Gal(N/κ(y)) is isomorphic to a subgroup of the wreath product Z/3Z ··∼
Z/2Z. This proves (11), since the latter group has order 18.

We now compute the genus of N . Assume first that charκ 6= 3, 7. In
this case the ramification for each prime p dividing b must be 3 from κ(t)
to N , by Lemma 2. Hence the discriminant dN of N/κ(t) is

dN
∼= b2 in κ(t).

Since degt b = 3degη b = 6, we have

gN = 1
2 deg dN − 2 = 4

by the Hurwitz genus formula ([h1], p. 457). Note that this is consistent
with the fact that the minimal polynomial of u over κ(t) is h(t, u) and the
discriminant of h as a polynomial in u is

discth(t, u) = 4(t6 − 4t5 + 13t4 + 40t3 + 19t2 − 36t+ 31)2 = 4(d(t))2 .
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Since disc d(t) = −234 · 39 · 72, d(t) has distinct roots when charκ 6= 3, 7 and
is irreducible over Q.

If charκ = 3 or 7, then d(t) has multiple roots:

d(t) ≡ (t3 + t2 + 2)2 (mod 3) ,

d(t) ≡ (t+ 2)3(t3 + 4t2 + 5t+ 3) (mod 7) .

If charκ = 3, then as above, the prime divisors of p−1
∼= (η + 1)p∞

must be wildly ramified in N/κ(t). The Dedekind discriminant theorem
([h1], pp. 431, 449) implies that (p−1)3 divides dN . But only the primes
which divide p−1 can be ramified in N/κ(t). Since deg dN must be even (in
κ(t)), degt p−1 = 3degη p−1 = 3, and prime divisors of p−1 are conjugate
over κ(η), we must have dN = (p−1)r for some r ≥ 4. But the formula for
disch(t, u) shows that degt dN ≤ 12, so that degt dN = 12 and gN = 4, as
before.

If charκ = 7, then we have

dt
∼= (p1p−1)2 , where p1p−1/p

2
∞
∼= (η − 1)(η + 1) ,

du
∼= (p1p3)2 , where p1p3/p

2
∞
∼= (η − 1)(η − 3)

in κ(η). Hence dN
∼= (p3)2 · pa, for some a ≥ 0, where p1

∼= p3 in κ(t). Note
that

η ≡ 1 (mod p1) ⇒ t ≡ −2 (mod p) ,
by (23). Setting z = t+ 2 and zw = u+ 2 in (24) and dividing by z3 gives

0 = h(z − 2, zw − 2)/z3 = (3 + 3z + z2)w3 + (3 + 3zw + z2w2) .

Considering the last equation modulo p and using z ≡ 0 (mod p) gives

0 ≡ 3w3 + 3 ≡ 3(w + 1)(w + 2)(w + 4) (mod p) ,

so that p is unramified in N/κ(t). This implies that dN
∼= (p3)2 and

gN = 1
2 degtdN − 2 = 3− 2 = 1 .

Hence N is an elliptic function field in characteristic 7.
This completes the proof of Theorem 5.

3. The factorization of f(x, a).We will now use the results of Section 2
to investigate the factorization of the polynomial Φ3,σ(x) = f(x, a), when
σ(x) = x2 + a for given value of a in κ. To consider the factorization of
f(x, a) for a specific value of a we need to look at the corresponding prime
divisor pa, where

y − a ∼=
pa

p∞
in κ(y) .

By Dedekind’s classical result (see [h1], p. 288), if pa does not divide p∞ or
the discriminant of f(x, y) (considered over κ[y]), the factors of f(x, y) ≡
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f(x, a) modulo pa correspond one-to-one to the prime divisors of pa in the
field κ(x, y) = κ(t). Note that

discyf(x, y) = −(4y + 7)3(16y2 + 4y + 7)2 ,

so we only need to exclude the values a = −7/4, (−1 ± 3
√
−3)/8. We also

note that to these values correspond the factorizations

Φ3,x2−7/4(x) =
(
x3 +

1
2
x2 − 9

4
x− 1

8

)2

and

Φ3,x2+(−1+3
√
−3)/8(x)

=
(
x+

1−
√
−3

4

)3(
x3 +

1 + 3
√
−3

4
x2 +

−7 + 9
√
−3

8
x− 14 + 3

√
−3

8

)
.

The above factors are irreducible over Q, Q(
√
−3), respectively. If either of

the above cubics is reducible over κ, they must split completely into linear
factors (since their roots make up an orbit of the map σ). For all other
values of a in κ, f(x, a) will not have multiple factors.

(i) Q u a d r a t i c f a c t o r s a n d t h e p r o o f o f T h e o r e m 1.First
suppose f(x, a) is a product of irreducible quadratic polynomials over κ.
Then the three prime divisors p of pa in κ(t) all have degree 2, so that the
residue class field κ(t) (mod p) is a quadratic extension of κ. Moreover,
the residue class field of κ(η) (mod p) must also have degree 2 over κ since
κ(t)/κ(η) is normal and primes in κ(t) can only have inertial degree 1 or 3
relative to κ(η). Thus pa is inert in κ(η)/κ(y) and splits into three primes
in κ(t)/κ(η). The relation (19) shows that

y ≡ a , η ≡ 1± 2
√
−4a− 7 = 1 +

√
d (mod pa) ,

where d = 4(−4a− 7) is not a square in κ.
The fact that pa splits completely in κ(t)/κ(η) implies that the congru-

ence

t3 − ηt2 − 9t+ η ≡ 0 (mod pa)

must have three distinct roots in κ(
√
d) (see (23)). Hence the equation

(25) t3 − (1 +
√
d)t2 − 9t+ (1 +

√
d) = 0

must have roots of the form α+β
√
d, where α, β are in κ. Putting α+β

√
d

in for t in (25) and setting coefficients of 1,
√
d equal to 0, we get

(26)
α3 − α2 − 9α+ 1 + d(3αβ2 − β2 − 2αβ) = 0 ,

3α2β − 2αβ − α2 − 9β + 1 + d(β3 − β2) = 0 .
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Now multiply through in each equation by the opposite coefficient of d and
subtract; this gives, after simplifying and collecting coefficients of β,

0 = β3(−4α3 + 4α2 + 8α− 4) + β2(4α3 − 2α2 − 6α) + β(−α3 + α) .

If β = 0, then α2 = 1 and α3 = 9α by (26), impossible since charκ 6= 2.
Thus we may divide through by β to obtain

(27) 0 = Q(α, β) = β2(−4α3 +4α2 +8α−4)+β(4α3−2α2−6α)−α3 +α .

This equation has the solution β in κ, so either the coefficient of β2 is zero,
in which case α is a solution to

(28) α3 − α2 − 2α+ 1 = 0 ,

or the discriminant ∆ of Q(α, β) must be a square.
First consider (28). To each solution α of (28) there is a unique solution

(α, β) of (27), unless the coefficient of β is also zero. But the resultant of
the two coefficients (of β and β2) is

R(α3 − α2 − 2α+ 1, 2α(2α2 − α− 3)) = 56 ,

so both coefficients can be zero only if charκ = 7. In this case we also have

α3 − α2 − 2α+ 1 = (α+ 2)3 (mod 7) ,

so α = 2, and then Q(α, β) = α− α3 = 2− 1 = 1 6= 0.
If (28) holds and charκ 6= 7, then β = (α − 1)/(4α − 6). If β 6= 1, i.e.

α 6= 5/3, then d can found from the second equation in (26):

d = −4(2α− 3)2(α2 + 3)
(α− 1)(3α− 5)

= −4 · 7(α− 1)(3α− 5)
(α− 1)(3α− 5)

= −28 ,

since the expression (2α− 3)2(α2 + 3) reduces modulo the cubic α3 − α2 −
2α+ 1. Note that d = −28 also satisfies the first equation in (26) since

α3−α2−9α+1−28(3αβ2−β2−2αβ) =
4(α2 − 3α+ 4)(α3 − α2 − 2α+ 1)

(2α− 3)2
.

As long as −28 is not a square in κ, then for −28 = 4(−4a− 7), i.e. a = 0,
f(x, 0) will factor into three irreducible quadratics over κ. In the excluded
case, if α = 5/3 and β = 1, then from (28) the characteristic of κ must be
13 and d = 164/9 = −2. Hence α = 0 (mod 13), giving the same solution
as before. Indeed, we have

f(x, 0) = x6 + x5 + x4 + x3 + x2 + x+ 1

≡ (x2 + 3x+ 1)(x2 + 5x+ 1)(x2 + 6x+ 1) (mod 13) .

If (28) does not hold then (27) is a quadratic equation and discQ = ∆
is a square in κ:

(29) δ2 = ∆ = 4α4 − 8α3 + 4α2 + 16α = 4α(α+ 1)(α2 − 3α+ 4) ;



360 P. Morton

this is the same as equation (4). Note the solutions (α, δ) = (0, 0), (−1, 0),
both of which lead to β = 0, a case we showed above to be impossible. Also,
the solution (α, δ) = (1,±4) gives β = 0 or 1, both of which are impossible
by (26).

Setting λ = 1/α+ 1 and µ = (λ− 1)2δ/2, (29) becomes

(30) µ2 = λ(4λ2 − 11λ+ 8) ,

which is the equation of an elliptic curve over κ, if the quadratic 4λ2−11λ+8
has distinct roots; this is the case if and only if charκ 6= 7 (the discriminant
is −7).

The diophantine equation (30) has the solutions (λ, µ) = (0, 0), (1,±1),
(2,±2) and the solution “at infinity”, (λ, µ) = (∞,∞). These correspond,
respectively, to the solutions

λ = 0 ⇒ (α, β) = (−1, 0) ,
λ = 1 ⇒ α = ∞ ,

λ = 2 ⇒ (α, β) = (1, 0) or (1, 1) ,
λ = ∞ ⇒ (α, β) = (0, 0)

of (27).
It follows that a solution to (26) must yield a solution in κ to (29), and

hence to (30), other than one of these solutions. Over Q these are the only
solutions of (30) (see [cm]). Thus the only rational values of α that give
solutions to (29) are α = 0,±1.

The second equation in (26) gives formula (4′) for d in case β 6= 1.
Then both equations in (26) hold and f(x, a) does factor as a product of
quadratics when d is not a square in κ.

If β = 1, then (26) and (27) give

α = (1±
√

17)/2 , d = (11±
√

17)/2 ,

and for these values of α we have δ = ±(2 ± 2
√

17) in (29). Then from
4(−4a− 7) = d we get the valuesa = −(67±

√
17)/32,for which f(x, a) does

indeed factor as a product of quadratics, whenever
√

17 ∈ κ but
√
d 6∈ κ.

This completes the proof of Theorem 1.

(ii) P r o o f o f T h e o r e m 2. For the proof of Theorem 2, note that
f(x, a) splits into distinct linear factors over κ if and only if the prime
divisor pa in κ(y) splits into primes of the first degree in K = κ(t), which is
the case if and only if pa splits into primes of the first degree in the normal
closure N of κ(t)/κ(y). Thus any a for which f(x, a) splits into linear factors
yields a first degree prime divisor of N over κ, i.e. a κ-rational point on
the curve (10). In fact, such a point can be obtained from (7) and the
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corresponding equation for u, i.e.

t = 1 + 2a+ 2β + 2β2 , u = 1 + 2a+ 2β′ + 2(β′)2 ,

where β, β′ are roots of f(x, a) belonging to different orbits under σ. Part (a)
of Theorem 2 follows immediately from Faltings’ theorem [fa] and the fact
that N has genus 4.

To prove part (b), we note that f(x, a) is certainly irreducible for in-
finitely many values of a in κ, since κ is hilbertian and f(x, y) is irreducible
in x and y. (See [fj] or [s], p. 179.) Thus the factorization type {6} occurs
infinitely often. Furthermore, if t 6= ±1 is an element of κ, then (9) gives
a value for y = a for which f(x, a) has three roots in κ, namely the values
x, σ(x), and σ2(x), where x is defined by (8). Since f(x, a) can split for at
most finitely many values of a in κ, it follows that almost all of these values
give the factorization type {1, 1, 1, 3}.

It remains to show that the factorization type {3, 3} occurs infinitely
often, and to prove part (c). For this we need the following lemma.

Lemma 4. Let κ be an arbitrary field with charκ 6= 2. For a given a in κ,
f(x, a) has a cubic factor , irreducible or not , if and only if the discriminant
of f(x, a) is a square in κ. In this case a = −(s2 + 7)/4, for some s in κ.
For the polynomialσ(x) = x2 − 1

4 (s2 + 7),f(x, a) = Φ3,σ(x) factors as

(31) Φ3,σ(x) = g(x, s)g(x,−s) ,
where

(32) g(x, s) = x3 + 1
2 (1− s)x2 − 1

4 (s2 + 2s+ 9)x+ 1
8 (s3 + s2 + 7s− 1) .

The polynomial g(x, s) is absolutely irreducible over κ[x, s].

P r o o f. If f(x, a) has a cubic factor, then f(x, a) = g1g2, where the
gi are cubic and monic. Without loss of generality f(x, a) has no multiple
roots. If one of the gi is irreducible, its roots must be permuted among
themselves by σ. Suppose this were not the case, so that for some root α of
g1, σ(α) is a root of g2. Then g2 is also irreducible since roots of f(x, a) in
the same orbit generate the same field over κ. Since g1 is irreducible, σ(α)
is a root of g2 for all roots α of g1. If σ2(α) were a root of g1, then σ3(α)
would be a root of g2, impossible since σ3(α) = α. Hence σ2(α) must be a
root of g2, implying that σ must permute the roots of g2, and therefore those
of g1, since σ is 1-1 on the roots of f(x, a). This contradiction establishes
the claim.

Now it follows that a root of an irreducible gi generates a cyclic cubic
extension of κ, hence that disc gi is a square in κ. If both gi are reducible
then they must both have linear factors, and it follows easily that both
polynomials factor completely into linear factors. If one is irreducible and
one not, then the reducible gi certainly factors into linear factors. In any
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case a reducible gi has three roots in κ, and its discriminant is a square in
κ by definition. Thus in all cases, disc gi is a square in κ, whence the same
assertion follows for

disc f(x, a) = disc g1g2 = disc g1 disc g2R(g1, g2)2 .

Conversely, if disc f(x, a) = −(4a+ 7)3(16a2 + 4a+ 7)2 is a square in κ
and f(x, a) does not have multiple roots, then −4a−7 = s2 for some s in κ.
If disc f(x, a) = 0, then either a = (−1± 3

√
−3)/8 or −7/4, both of which

have the form −(s2 + 7)/4. The formula (31) is now easily checked.
The irreducibility of g(x, s) follows from an argument similar to the proof

of Lemma 1 in Section 2.

Now we can complete the proof of Theorem 2(b) using (31), (32), and
the irreducibility of g(x, s) over κ[x, s]. Hilbert’s irreducibility theorem ([s],
p. 179) shows that there are infinitely many values of s in the algebraic
number field κ (even in Z) for which g(x, s) and g(x,−s) are simultaneously
irreducible over κ. For such s, f(x,−(s2 +7)/4) factors into two irreducible
cubics.

In certain algebraic number fields we can give some explicit values of s
for which g(x, s) and g(x,−s) are simultaneously irreducible.

Lemma 5. Let κ be an algebraic number field in which the prime 2 is
unramified and has only first degree prime factors. If s ≡ 1 (mod 2) in κ,
then g(x, s) is irreducible over κ.

P r o o f. If g(x) is reducible over κ, note that its roots α1, α2, α3 are
algebraic integers in κ, since the coefficients of g(x, s) in (32) are algebraic
integers. Hence

(s2 + s+ 7)2 = disc g(x, s) = (α1 − α2)2(α1 − α3)2(α2 − α3)2

implies that each term αi − αj is ≡ 1 (mod 2). But this is impossible
sinceα1 − α3 = (α1 − α2) + (α2 − α3).

(iii) P r o o f o f T h e o r e m 3.Most of the assertions of Theorem 3 follow
from what we have already shown. The last assertion is a consequence of
Lemma 4 since Φ3,σ(x) is reducible over Q if and only if it has cubic factors
(the factorization type {2, 2, 2} does not occur). The first two assertions
will be proved if we show that the factorization type {1, 1, 1, 1, 1, 1} never
occurs. To do this we compute the Q-rational prime divisors of the function
field N/Q.

We start by determining the fixed fieldNπ of the automorphism π defined
in Section 2. Because the defining equation (24) is symmetric in t and u we
may assume π simply switches t and u. We perform the computation for an
arbitrary field κ.
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Lemma 6. The fixed field Nπ of π is given by Nπ = κ(X,Y ), where

(33) X =
2 + ζ

ζ
, Y =

υ(ζ − 2)− (3ζ + 2)
ζ2

,

with ζ = t+ u, υ = tu,and

(34) Y 2 = 4X3 − 11X2 + 8X .

Thus Nπ has genus 1 when κ = Q: its Q-rational torsion group consists of
the prime divisors corresponding to the solutions (X,Y ) = (∞,∞), (0, 0),
(1,±1), (2,±2) of (34).

P r o o f. First of all, it is clear that Nπ = κ(υ, ζ) since π simply switches
t and u and t and u are the roots of the polynomial T 2 − ζT + υ = 0 over
κ(υ, ζ). To determine the relation between ζ and υ, rewrite (24) in terms of
the elementary symmetric polynomials ζ and υ:

(35) υ2(ζ − 2)− υ(6ζ + 4)− (ζ3 − 2ζ2 − 9ζ + 2) = 0 .

Multiplying through in this equation by ζ − 2, completing the square and
using (33) gives the relation (34). Note that (34) coincides with equation (5),
so the last statement of the lemma is a fact we have mentioned already. (A
proof is given in [cm].)

Now consider a Q-rational prime divisor p̃ of N/Q. Then p̃ lies over a
Q-rational prime divisor q̃ of Nπ. From (33) we have

(36) ζ =
2

X − 1
, υ =

ζ2Y + 3ζ + 2
ζ − 2

=
2−X −X2 − 2Y
(X − 1)(X − 2)

.

If the divisor q̃ corresponds to (X,Y ) = (∞,∞), then (ζ, υ) = (0,−1),
whence (t, u) = (1,−1) or (−1, 1). If q̃ ↔ (0, 0), then (ζ, υ) = (−2, 1)
and (t, u) = (−1,−1). If q̃ ↔ (2,−2), then ζ = 2 and υ is integral for q̃.
Putting u = 2 − t in (10) gives easily that (t, u) = (1, 1). Thus (0, 0) and
(2,−2) are ramified in N/Nπ. For the remaining rational points q̃ of Nπ,
corresponding to the solutions (1,±1) and (2, 2) of (34), at least one of ζ
and υ, and therefore at least one of t and u, is non-integral for q̃. Thus
(t, u) = (±1,±1) are the only rational solutions to equation (10).

As before, if f(x, a) factors into linear factors over Q, then the prime
divisor pa (a 6= ∞ or −7/4) of κ(y) splits completely in N , and its prime
divisors in N are Q-rational. Furthermore, t and u are integral for these
prime divisors p̃ (cf. (19), (22) and (23)) and modulo p̃ must, by the last
paragraph, give one of the solutions (±1,±1) of (10). But the parenthetical
remark following Theorem 4 shows that this is impossible. This completes
the proof of Theorem 3.

This argument shows that all the Q-rational primes of N/Q must divide
p∞. Since p∞ ramifies in κ(η)/κ(y) but splits in κ(t)/κ(η) and κ(u)/κ(η),
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it must have ramification index 2 in N and 9 distinct prime divisors, all of
degree 1, in N . Hence N has exactly 9 Q-rational prime divisors.

4. The Galois group of f(x, a).In this section we prove Theorem 6 and
derive the diophantine conditions which determine what the Galois group
of f(x, a) over κ will be for a specific value of a in κ. We begin with the
following well-known lemma.

Lemma 7. Let pa be the numerator divisor of y−a and p̃ a prime divisor
of pa in N/κ not ramified over pa. If Gz is the decomposition group of p̃ in
G = Gal(N/κ(y)), then

Gal(f(x, a)/κ) ∼= Gz .

P r o o f. If Np̃ is the completion of N with respect to the divisor p̃, then
Np̃ is an extension of κ(y)pa

of degree fp̃ with Galois group Gz. (See [h3],
Ch. 1, §3.) If, moreover, N and κ(y) denote the residue class fields of N
and κ(y) modulo p̃ and pa, respectively, then

Gal(N/κ(y)) ∼= Gal(Np̃/κ(y)pa
) ∼= Gz .

(See [h1], pp. 198–199.) But for us N is the splitting field of f(x, a) over
κ(y) = κ, which proves the claim.

In order to make use of this lemma recall the characterization of the
fixed field Nz of the group Gz : Nz is the largest extension of κ(y) in
which the prime divisor lying below p̃ has degree 1 over pa. To determine
Gal(f(x, a)/κ) we therefore need to find the maximal subfields Nz of N in
which pa has a prime divisor of degree 1. Then Gal(N/Nz) is the group we
want. (Note: the fields Nz will all be conjugate under G, so it does not
matter which maximal field Nz we use.)

The next step is to determine generators and genus of each subfield
of N/κ(y). Denote by H the subgroup of G that fixes κ(η). Then H ∼=
Z3 × Z3 and we may write the automorphisms in H as (σi, σj), where the
first component acts on t and the second acts on u. For the automorphism
π as defined in Section 3(iii), we have

(37) G = H〈π〉, G/H ∼= 〈π〉 ,

and

(38) π(σi, σj)π = (σj , σi) .

Since we are considering only the case in which f(x, a) is irreducible we need
to know the subgroups of G which have order divisible by 6. There are five:

G, J1 = 〈(σ, σ−1), π〉 (normal in G and isomorphic to S3) ,
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and the three conjugate subgroups

J2 = 〈(σ, σ), π〉, 〈(σ, σ), (σ, σ−1)π〉, 〈(σ, σ), (σ−1, σ)π〉
(all isomorphic to Z/6Z) .

We work with J1 and J2. Denote the corresponding fixed fields by N1

and N2.

Lemma 8. Assume the characteristic of κ is different from 2, 3 or 7.

(a) The genus of N1 is 0. The fixed field N− of 〈(σ−1, σ)〉 has degree 2
over N1 and genus 2.

(b) The genus of N2 is 1. The fixed field N+ of 〈(σ, σ)〉 has degree 2 over
N2 and genus 2.

P r o o f. Recall from Sections 2 and 3 that the only primes of κ(y) which
ramify in N are p∞, p−7/4 and the prime divisors of p′, where p′ is the
numerator divisor of 16y2 + 4y + 7. (If charκ 6= 3, p′ is either prime or
a product of two primes, while if charκ = 3, p′ is a square of a prime.)
By (19), p−7/4

∼= (p1)2 in κ(η) and p1 is unramified in N/κ(η). The same
holds for p∞. Further, p′ is unramified in κ(η)/κ(y), and it is easy to see
that p′ ∼= ab, where a and b are the divisors of κ(η) defined in Lemma 2.

We prove the lemma by considering the ramification of these primes in
each of the fields N∗.

(a) N1 is normal over κ(y) of degree 3. Therefore p∞, p−7/4 are unrami-
fied in N1, but must ramify in N−/N1. Hence the prime divisors of p′ must
ramify in N1, so that the discriminant of N1/κ(y) is d1

∼= (p′)2, and the
genus of N1 is

g(N1) = 1
2 deg(p′)2 − 2 = 0 .

By Lemma 2 the ramification indices in N/κ(η) of the primes dividing a
and b in κ(η) must be 3. Hence none of these primes ramify in N−/N1;
it follows that the discriminant of N−/N1 is d− ∼= p∞p−7/4, and g(N−) =
1
2 degN1

(p∞p−7/4)− 1 = 2.
(b) Consider the field N+ first. N+ has degree 3 over κ(η) and is normal

over κ(y). I claim the prime divisors of a and b are all ramified in N+/κ(η).
For example, consider a prime divisor p of a in κ(η). If p were unramified in
N+, it would also be unramified in N+κ(u) = N , which is false by Lemma 2.
It follows that N/N+ is unramified and hence that g(N+) = 2 by the relative
genus formula for N/N+ ([h1], p. 462):

4 = g(N) = 3g(N+) + 1
2degNδ − 2 = 3g(N+)− 2 .

(δ is the relative different of N/N+.) Now the prime divisors of p′ must
all have ramification index 3 in N+/κ(y) and therefore also in N2/κ(y).
Furthermore, p∞ and p−7/4 must ramify in N2. If not, they are unramified
in the normal closure of N2/κ(y), which is N+, impossible since N+ contains
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κ(η). On the other hand, a prime divisor of either p∞ or p−7/4 can only
have ramification index 2 in N2. It follows that the discriminant of N2/κ(y)
is d2

∼= (p′)2p∞p−7/4, whence

g(N2) = 1
2 deg(p′)2p∞p−7/4 − 2 = 1 .

This completes the proof of Lemma 8.

R e m a r k s. 1. The arguments in Lemma 8 imply that both extensions
N/N+ and N/N− are unramified. This is also clear from the relative genus
formula ([h1], p. 462).

2. The conclusions of Lemma 8 are also valid when charκ = 3. For
N1, N2 and N− this will be clear from the computations which follow (see
Lemmas 10 and 11). For N+ this follows from the first part of the argument
in (b).

Now we determine generators for N2. We first give the action of the
automorphism (σ, σ) on the field Nπ of Lemma 6, in terms of the elliptic
curve (34). For the remainder of this section assume that charκ 6= 2 or 7.

Lemma 9. On Nπ the automorphism (σ, σ) coincides with the automor-
phism τ which corresponds to translation by the point (1, 1) on (34):

τ(X,Y ) = (X,Y ) + (1, 1)(39)

=
(

2X2 − 5X + 4− Y

2(X − 1)2
,

2X3 − 5X2 +X + 4 + (X − 3)Y
2(X − 1)3

)
.

P r o o f. That τ is an automorphism of Nπ follows from well-known re-
sults in the theory of elliptic curves. (See [h2], II. The explicit expressions for
τ(X) and τ(Y ) follow from the addition formula on (34); see [si], pp. 58–59.)
Furthermore, (σ, σ) is also an automorphism of Nπ since (σ, σ) commutes
with π. By means of the equations

(σ, σ)(ζ) =
t+ 3
1− t

+
u+ 3
1− u

=
6− 2ζ − 2υ
1− ζ + υ

,

(σ, σ)(υ) =
t+ 3
1− t

· u+ 3
1− u

=
9 + 3ζ + υ

1− ζ + υ
,

and the formulas (33) and (36), a straightforward calculation proves the
lemma.

We also note the formula

(40) (σ−1, σ−1)(X,Y ) = τ−1(X,Y ) = (X,Y )− (1, 1)

=
(

2X2 − 5X + 4 + Y

2(X − 1)2
,
−2X3 + 5X2 −X − 4 + (X − 3)Y

2(X − 1)3

)
.

R e m a r k. If κ = Q, the fact that (σ, σ) and τ have the same fixed field
insideNπ can be seen on purely theoretical grounds, without any calculation.
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The fixed field of (σ, σ) inside Nπ is N2, a field of genus 1. By Deuring [d]
(p. 206, 3.) any subfield of Nπ of genus 1 is the fixed field of a group of
translation automorphisms of Nπ. In our case this group of translation
automorphisms must correspond to points of order 3 on (34), which can
only be (1,±1). The translation automorphisms corresponding to these two
points are just τ and τ−1.

Now we can compute N2. On setting z=traceN2(X) and w=traceN2(Y ),
equations (39) and (40) easily give

(41)
z = traceN2(X) =

X3 − 4X + 4
(X − 1)2

,

w = traceN2(Y ) = Y
X3 − 3X2 + 4X − 4

(X − 1)3
.

Lemma 10. (a) The field N2 = κ(z, w), where z and w satisfy

(42) w2 = 4z3 − 35z2 + 120z − 176 = (z − 4)(4z2 − 19z + 44) .

(b) In terms of z and w we have

(43) y =
−2z + 3

8
− w

8(z − 4)
=
−2z2 + 11z − 12− w

8(z − 4)
,

(44) z3 + 8(y − 1)z2 + (16y2 − 44y + 19)z − (64y2 − 48y + 20) = 0 .

P r o o f. (a) Equation (42) follows easily from (34). That z and w gen-
erate N2 can be seen by a simple degree calculation:

[Nπ : κ(z, w)] = [Nπ : κ(X)][κ(X) : κ(z)]/[κ(z, w) : κ(z)] = 6/2 = 3 .

Since z and w lie in N2 the assertion follows.
(b) From (19′), (17), (21), (39) and (40) we have

16y + 29 = η(2− η) =
(
t
t+ 3
1− t

· t− 3
1 + t

)(
u
u+ 3
1− u

· u− 3
u+ 1

)
(45)

= υ · (σ, σ)υ · (σ2, σ2)υ

=
2−X −X2 − 2Y
(X − 1)(X − 2)

· −3X + 2X2 − (X − 2)Y
X(X − 1)

× 2− 7X + 4X2 −XY

(X − 1)(X − 2)

= − X(X − 2)(4X3 − 35X2 + 54X − 19)
X(X − 1)2(X − 2)

+
2(X − 1)(X2 −X + 2)Y
X(X − 1)2(X − 2)

.
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Using (41) gives

−16y − 29 =
X(X − 2)2(4X3 − 35X2 + 54X − 19) + 2w(X − 1)4

X(X − 1)2(X − 2)2

=
4X3 − 35X2 + 54X − 19

(X − 1)2
+

2w(X − 1)2

X(X − 2)2

= 4z − 35 +
2w
z − 4

,

from which (43) follows. Finally, equation (42) and the relation w = (−2z−
8y + 3)(z − 4) imply (44).

The fact that N2 is a subfield of Nπ means that the curve (42) is 3-
isogenous to (34) ([si], Ch. III, §4). Thus the ranks of the respective groups
of κ-rational points on (34) and (42) are the same (when κ is a number field),
so that (42) has a finite number of Q-rational solutions. By the Lutz–Nagell
theorem ([si], p. 221) the solutions in Q of (42) are

(46) (z, w) = (4, 0), (5,±7), (12,±56) .

The Q-rational points of (34) lie above the points (z, w) = (∞,∞) and
(4, 0).

We turn now to the calculation of N1.

Lemma 11. (a) The field N1 = κ(ξ), where

ξ = −traceN1υ =
4X2 − 17X + 22 + 2Y

X − 2
,(47)

y = −ξ
3 + 29ξ2 + 243ξ + 559

16(ξ + 7)(ξ + 11)
.(48)

(b) The fixed field N− of 〈(σ−1, σ)〉 is given by N− = κ(ξ, η), where

(49)
(

2(ξ+7)(ξ+11)
(
η − 1

2

))2

= (ξ+7)(ξ+11)(ξ3 +ξ2−261ξ−1597) .

P r o o f. (a) First use (36) to compute the trace of υ to the field N1:

traceN1υ = tu+
t+ 3
1− t

· u− 3
u+ 1

+
t− 3
t+ 1

· u+ 3
1− u

=
υ3 − υζ2 − 6ζ2 + 45υ − 18

υ2 − ζ2 + 2υ + 1
= −4X2 − 17X + 22 + 2Y

X − 2
= −ξ .

If o2 is the pole divisor of X in Nπ, and X − 2 ∼= q2q−2
o2 , where Y ≡ −2

(mod q−2), then the pole divisor of ξ is o2q2, so that

[Nπ : κ(ξ)] = deg(o2q2) = 3 .
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This implies that κ(ξ) = N1. The expression (48) follows from (45) and (47)
by expanding −16y − 29 into a continued fraction whose partial quotients
are polynomials in ξ.

(b) The assertions of (b) follow from Galois theory and equation (19),
which, together with (48), gives(

η − 1
2

)2

= −4y − 7 =
ξ3 + ξ2 − 261ξ − 1597

4(ξ + 7)(ξ + 11)
.

Thus N− is a hyperelliptic function field.
The κ-rational points on Nπ lie above the respective points

(X,Y ) = (∞,∞), (2, 2) → ξ = ∞ ,

(X,Y ) = (0, 0), (1, 1) → ξ = −11 ,
(X,Y ) = (1,−1), (2,−2) → ξ = −7 ,

of N1. These points are conjugate under the automorphisms of N1/κ(y),
which are

(ξ → ξ),
(
ξ → −11ξ + 93

ξ + 7

)
and

(
ξ → −7ξ + 93

ξ + 11

)
.

(i) P r o o f o f T h e o r e m 6.We first note that if f(x, a) = Φ3,σ(x)
is irreducible, then by Lemma 7, pa cannot lie below a first degree prime
divisor of Nπ (or any of the subfields of N conjugate to Nπ), N− or N+. (N
has degree < 6 over each of these fields.) Thus, in the notation of Lemma 7,
Gz = G, J1, or one of the groups conjugate to J2, which we may take to be
J2. If Gz = J2, then pa has a first degree prime divisor in N2, so part (i)
of Theorem 6 follows from Lemma 10 and the fact that y is not integral for
the prime divisors of N2 corresponding to the points (∞,∞), (4, 0) on (42).
If Gz = J1, part (ii) of Theorem 6 follows in the same way from Lemma 11.
The final case Gz = G corresponds to part (iii) of Theorem 6.

(ii) P r o o f o f T h e o r e m 7(a).To prove part (a) we need to prove
the existence of infinitely many values of a in κ for which Gz = G or J1.
Consider the group G first. From (19′), (44) and (48) the three equations

η2 − 2η + 29 + 16y = 0 ,
z3 + 8(y − 1)z2 + (16y2 − 44y + 19)z − (64y2 − 48y + 20) = 0 ,

ξ3 + 29ξ2 + 243ξ + 559 + 16y(ξ + 7)(ξ + 11) = 0 ,

are irreducible in η, z and ξ, respectively (and even absolutely irreducible).
Thus there are infinitely many values of y = a for which the three equa-
tions are simultaneously irreducible over κ, when κ is any global field with
characteristic different from 2. For these values of a, there are no κ-rational
prime divisors in any of the fields κ(η), N2 or N1 lying above pa, since η, z
and ξ must be integral for any such prime divisor. It follows that Gz = G
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for these pa, since there can be no κ-rational prime divisors over pa in any
overfield of κ(η), N2 or N1, either.

Now consider the group J1. From (47) and (34) the irreducible equation
satisfied by X over the field κ(ξ) is

16X3 − (8ξ + 120)X2 + (ξ2 + 34ξ + 269)X − 2(ξ2 + 22ξ + 121) = 0 .

Also, equation (49) shows that N− = κ(H, ξ) with

H2 − (ξ + 7)(ξ + 11)(ξ3 + ξ2 − 261ξ − 1597) = 0 .

By Hilbert’s irreducibility theorem there are infinitely many values of ξ 6=
−7, −11, for which both of these equations are irreducible over κ. If for
any of these values ξ, qξ is the corresponding prime divisor of κ(ξ), then qξ
does not lie below a κ-rational prime divisor of Nπ (or any of its conjugate
fields), or of N−. By (48) each of these values of ξ yields a value of y = a in
κ for which Gz = J1. This completes the proof of Theorem 7(a).

(iii) P r o o f o f T h e o r e m 7(b).By (41) and (42) a prime divisor q
of N2 of degree 1 (over κ) lies below a prime divisor q̃ of Nπ of degree 1
if and only if the image of the point Q̃ corresponding to q̃ on (34) under
the isogeny φ (defined in Theorem 7) is the point Q corresponding to q
on (42). If φ(E(κ)) = E′(κ), it follows that J2 is not the decomposition
group of any prime divisor of pa in N . This proves (i). If φ(E(κ)) 6= E′(κ),
then there are prime divisors q of N2, of degree 1 over κ, which do not lie
below any first degree prime divisor of Nπ. This holds for any prime divisor
corresponding to a point Q in a non-trivial coset of E′(κ)/φ(E(κ)), since φ
is a homomorphism from E(κ) to E′(κ). If E(κ) has rank 0, each of these
cosets is finite, and (since E′(κ) is also finite) there are at most finitely many
first degree prime divisors of N2. If E(κ) has positive rank, each of these
cosets is infinite (φ has a finite kernel). Furthermore, at most finitely many
of the prime divisors corresponding to points in a coset of E′(κ)/φ(E(κ))
can lie below a first degree prime divisor of N+, by Faltings’ theorem and
Lemma 8(b). Lemma 7 now shows that Gal(f(x, a)/κ) = Z/6Z for infinitely
many distinct values of a in κ. This completes the proof of Theorem 7.

Note that the point Q = (2, 2
√
−11) has infinite order in E′(Q(

√
−11)),

since for example

4Q =
(
−23 · 5 · 491

11 · 292
,
22 · 7 · 17 · 53 · 883

√
−11

112 · 293

)
.

(See Theorem 7.1 on p. 220 of [si].) Furthermore, Q 6= φ(Q̃) for any Q̃ in
E(Q(

√
−11)), since the equation

0 = X3 − 4X + 4− 2(X − 1)2 = X3 − 2X2 + 2 ,
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obtained by setting z = 2 in (41), is irreducible over Q(
√
−11). (It is

Eisenstein for the prime ideal (2) of Q(
√
−11).) Thus the field Q(

√
−11)

satisfies condition (b)(iii) of Theorem 7, as we claimed in the introduction.

(iv) P r o o f o f T h e o r e m 8. Theorem 8 is a consequence of Theorems
3, 6 and 7, and the fact that (13) has only the rational points listed in (46).
For this note that the rational points on (13) other than (∞,∞) and (4, 0)
yield the respective values

(5, 7), (12,−56) → y = −7/4 ,
(5,−7) → y = 0 ,
(12, 56) → y = −7/2 ,

for y, by (43). The value −7/4 does not work here since f(x,−7/4) is
reducible (see §3). Also, f(x, 0) and f(x,−7/2) are irreducible over Q, so
Theorem 6(i) implies that both polynomials have the Galois group Z/6Z.

Finally, note that (14) can represent a value of a of the form −(s2 +7)/4
for at most finitely many rational values of ξ. If a = −(s2 +7)/4 is given by
(14), then pa must have a first degree prime divisor in κ(η) and in N1 and
therefore (since both fields are normal over κ(y)) also in the compositum
N1κ(η) = N−, a field of genus 2.
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