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1. Introduction. In [2] K. Ramachandra proved the following general
result. Let S1 denote the set of all L-series. We can define logL(s, χ) for
Re s > 1 by the series ∑

m

∑
p

χ(pm)
mpms

where the sum over m is over all positive integers and p runs over all primes.
For any complex constant z, we can define (L(s, χ))z as exp(z logL(s, χ)).
Let S2 consist of the set of all derivatives of L(s, χ) for all L-series and let
S3 denote the set of logarithms as defined above for all L-series.

Let P1(s) be any finite power product (with complex exponents) of func-
tions of S1. Let P2(s) be any finite power product (with non-negative inte-
gral exponents) of functions of S2. Also let P3(s) denote any finite power
product (with non-negative integral exponents) of functions of S3. Let cn
(n = 1, 2, 3, . . .) be complex numbers which are Oε(nε) for every positive
constant ε and suppose that F0(s) =

∑∞
n=1 cnn

−s is absolutely convergent
in Re s > 1/2. Finally, put

F1(s) = P1(s)P2(s)P3(s)F0(s) =
∞∑
n=1

gnn
−s

and
N1(x) =

∑
n≤x

gn for x ≥ 0 .

Then we have

Theorem 1. Let x and X be sufficiently large and 1 ≤ h ≤ x. Consider a
circle of positive radius (a constant depending only on F1(s)) with 1 as centre
which has no singularities of F1(s) (except possibly s = 1) in its interior
and on the boundary. From this circle remove the point of intersection with
the real axis which lies to the left of 1. Let C0 denote the contour got by
traversing the remaining portion of the circle in the anti-clockwise direction.
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Let

I1(x, h) =
1

2πi

h∫
0

( ∫
C0

F1(s)(v + x)s−1 ds
)
dv .

Then we have with ϕ = 1− 1/B + ε and ϕ′ = 1− 2/B + ε

N1(x+ h)−N1(x) = I1(x, h) +Oε(h exp (−(log x)1/6) + xϕ)

and

1
X

2X∫
X

|N1(x+h)−N1(x)− I1(x, h)|2 dx = Oε(h2 exp (−(logX)1/6)+X2ϕ′).

Here B is the constant occurring in the density result

Nχ(α, T ) = O(TB(1−α)(log T )200)

and ε is an arbitrary small positive constant such that ϕ and ϕ′ are less
than 1.

This Theorem 1 includes as special cases the following two theorems due
to A. E. Ingham and A. Selberg.

Theorem 2. We have

π(x+ h)− π(x) ∼ h(log x)−1

where h = xϕ with any constant ϕ (5/8 < ϕ < 1).

R e m a r k. Due to the “density results” of later writers, notably
G. Halász, P. Turán, H. L. Montgomery and M. N. Huxley the constant
5/8 has been sharpened and the latest 7/12 is due to M. N. Huxley.

Theorem 3. We have, for 1 ≤ h = h(X) ≤ X(logX)−A (where A is
any constant > 10), and ϕ′ > 1/4

1
X

2X∫
X

(
π(x+ h)− π(x)− h

logX

)2

dx = OA(h2(logX)−A +X2ϕ′) .

R e m a r k. Due to the “density results” of the authors mentioned above,
the constant 1/4 has been sharpened and the latest 1/6 follows from Sel-
berg’s method on using Huxley’s result. Ramachandra’s result included the
proper analogues for

∑
n≤x µ(n) (in place of π(x)) which was new. Next in

[1], I. Kátai used Ramachandra’s result to obtain the uniform result∑
ω(n)=k,x≤n≤x+h

1 = (1 + o(1))
h(log log x)k−1

(log x)(k − 1)!

where k is any positive integer (uniformly in 1 ≤ k ≤ log log x +
cx(log log x)1/2 provided cx →∞ sufficiently slowly).
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In the present note, we sketch a uniform version of the general result of
Ramachandra. The statement of the uniform result needs some preparations
which we will take up in the next section. We state certain details in some
generality in order that it may be useful to later workers.

2. Some preparations and the statement of the main theorem.
We adopt the notation of [2] (as in [2] an important result used will be the
zero-free region due to I. M. Vinogradov).We note that the results of [2] de-
pend on the properties of ζ(s) and L(s, χ) only in σ ≥ 1/2 and in particular
do not depend on their functional equation. (On page 321 of [2] there is
a reference to Ramachandra’s paper on Titchmarsh’s phenomenon and the
functional equation. But we remark that in constructing the Hooley–Huxley
contour, we may give to the points 1

2 ± im (m = 0, 1, 2, . . .) the same treat-
ment as was given to the zeros and this dispenses with the results referred
to.)

Let an = an(x) (n = 1, 2, 3, . . .) be a sequence of complex numbers
depending on a real parameter x ≥ 10. We assume that an = Oη((nx)η) for
fixed η > 0. The modified Hooley–Huxley contour is formed with respect
to a non-empty finite set of L-functions of bounded moduli (we can to some
extent relax this condition; but we do not consider such questions here)
and with respect to parameters a (a small constant depending on ε), b =
1 − (log log T )−1 and θ = 1 − (log log T )−3. Note that b and θ are not
constants. Suppose that

F (s) =
∞∑
n=1

ann
−s (s = σ + it, σ > 1)

can be continued analytically to the right of the Hooley–Huxley contour (we
explain the Hooley–Huxley contour in the next paragraph) (except possibly
for an isolated singularity at s = 1) and in |s − 1| ≥ a suitable positive
constant, F (s) = Oη(T η) for every η > 0. (The conditions σ′ ≤ θ and
σ′ > θ following (22) of [2] should read σ ≤ θ and σ > θ respectively.)

We take the rectangle 1/2 ≤ σ ≤ 1, |t| ≤ T + 20000(log T )2 and divide
it into equal rectangles of height 100(log T )2 (the smaller rectangles at the
ends we ignore) seeing that the real line cuts into two equal portions one
of these rectangles R0. Let Rn (n = −n1, . . . , n1) be these rectangles. In a
typical rectangle Rn (with |n| < n1) we fix a new right side and obtain a
new rectangle Rn,0 as follows. Take Rn−1, Rn, Rn+1 whenever all are defined
and in the union of these rectangles, pick out a zero %n with greatest real
part βn of the series F (s). On Rn, we shall fix the new right side σ = βn
instead of σ = 1. Consider only the right edges of these rectangles and join
the ends of these edges by horizontal lines. These form the contour with the
change that the contour shall not cross the real line but shall traverse from
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β0 below the real axis; then it makes a circular detour round the point 1
and comes back to β0 above the real axis.

If βn < θ then, in place of βn, we shall take β′n = βn + 3a(1 − βn). If
βn > θ, then in place of βn,we shall take β′n = βn + b(1− βn). This contour
will work for the proof of the main theorem. If C ′0 denotes the contour from
β′0 below the real line making a circular detour round the point 1 and coming
back to β′0 above the real axis, then it is clear from Cauchy’s theorem and
the fact (1− β0)−1 = O((log log T )10) that∫

C′
0

F (s)
(x+ h)s − xs

s
ds =

h∫
0

du
( ∫
C′

0

F (s)(x+ u)s−1 ds
)

is the same as C ′0 replaced by C0 with an error O(h exp(−(log x)1/2)) pro-
vided T is chosen to be a positive constant power of x.

We will denote the modified contour by M . It consists of C ′0 and the
portion M1 which lies strictly above the real axis and the portion M2 which
lies strictly below the real axis. We divide the contour M1 into three parts
M1,1,M1,2,M1,3 according as σ ≤ θ, θ < σ ≤ θ+ b(1− θ), σ > θ+ b(1− θ).
Similarly for M2 we have three parts M2,1,M2,2,M2,3. Let

G(u) =
∫

M−C′
0

F (s)us−1 ds .

We assume that

|F (s)| ≤ exp((log T )ψ) (ψ, 0 < ψ < 1 is any absolute constant)

on M1,1,M1,2,M2,1 and M2,2. Also we assume

|F (s)| ≤ exp((log T )ψ
′
) (ψ′, 0 < ψ′ < 1/5, is any absolute constant)

on M1,3 and M2,3. With these we have the following contributions to G(u)
(x ≤ u ≤ x+ h).

(i) From σ ≤ θ

(1) O

(
exp((log T )ψ)

(
TB(1−σ)

x1−σ′

)
(log T )A

)
≤ exp(2(log T )ψ)

(
TB(1−3a)−1

x

)(1−3a)(1−θ)

(provided TB(1−3a)−1 ≤ x1−δ for some small positive constant δ)

≤ exp(2(log T )ψ) exp(−δ(log x)(1− 3a)(1− θ)) .
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(ii) From θ < σ < θ + b(1− θ)

(2) O

(
exp((log T )ψ)

(
T 167(1−σ)3/2

x1−σ′

)
(log T )A

)
≤ exp((2 log T )ψ)(x−1T 167(1−b)−3/2(1−σ′)1/2

)1−σ
′

≤ exp(2(log T )ψ)(x−1T 167(1−θ)1/2(1−b)−1
)(1−b)(1−θ)

(provided T 167(1−θ)1/2(1−b)−1 ≤ x1/2)

≤ exp(2(log T )ψ) exp(− 1
2 (log x)(1− b)(1− θ)) .

(iii) From σ > θ

(3) O(exp(2(log T )ψ
′
)(xσ

′−1T 167(1−σ)3/2
)(log T )A)

≤ exp(4(log T )ψ
′
)(x−1T 167(1−b)−3/2(1−σ′)1/2

)1−σ
′

≤ exp(4(log T )ψ
′
)(x−1T 167(1−θ)1/2(1−b)−1

)(1−b)α0(log T )−4/5

(provided T 167(1−θ)1/2(1−b)−1 ≤ x1/2 and α0 is a suitable absolute positive
constant)

≤ exp(4(log T )ψ
′
) exp(− 1

2 (log x)(1− b)α0(log T )−4/5) .

Hence if TB(1−3a) = x1−δ, we have the total contribution

O(h exp(−(log x)1/6) + xϕ)

where ϕ = 1− 1/B + ε. The term xϕ comes from Lemma 2 of [2].
Thus we state our

Main Theorem. Let ϕ = 1 − 1/B + ε (where ε > 0 is an arbitrary
constant), 1 ≤ h ≤ x, and N(x) =

∑
n≤x an. Then

N(x+ h)−N(x) = I(x, h) +O(h exp(−(log x)1/6) + xϕ) .

Let ϕ′ = 1−2/B+ε (where ε is as before), 1 ≤ h = h(X) ≤ X(logX)−A

where A ≥ 10 is any constant. Then

1
X

2X∫
X

|N(x+ h)−N(x)− I(x, h)|2 dx = O(h2 exp(−(logX)1/6) +X2ϕ′) .

Here, as in Ramachandra’s paper ,

I(x, h) =
1

2πi

h∫
0

( ∫
C0

F (s)(v + x)s−1 ds
)
dv ,

where C0 is a circular contour with centre 1 and small constant as radius
with its point of intersection with the real axis to the left of 1 being removed
and the integration is done in the anti-clockwise direction.
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R e m a r k 1. The terms h exp(−(log x)1/6) and h2 exp(−(logX)1/6) in
the O-terms can be replaced by h exp(−(log x)1/3(log log x)−10) and
h2 exp(−(logX)1/3(log logX)−10) respectively. Also we can allow ψ′ to be
any positive constant < 1/3.

R e m a r k 2. The first part of the theorem is proved with some details.
The second part can be proved similarly.

3. Special conditions and working examples. In general we can
take F (s) to be F1(s) as before. But we point out that we can tackle the
following more general situation.

(i) P ′1 =
∏
Lν

−sk where the product is finite and runs over triplets
L, ν, k (ν ≥ 1 integer and k complex).

(ii) P ′2 =
∏

(L(j))k where the product is finite and runs over triplets
L, j, k (k ≥ 0 integer, j = +1,+2, . . . where L(j) (j > 0) is the jth derivative
and L(j) (j < 0) is

∑∞
n=2(log n)−jn−s).

(iii) P ′3 =
∏

(logL)k where the product is finite and runs over pairs L, k
(k ≥ 0 integer) and F (s) = P ′1(s)P

′
2(s)P

′
3(s)F0(s).

The necessary estimates for F (s) are provided by Lemma 5 of [2]. (It
has to be pointed out that in the proof of Lemma 5 of [2], σ does not denote
the real part of s. Also on page 322 of [2] in the proof, the line 7 from the
top should read (1−σ)−1 = O(log log T ) and in the line 5 from the bottom,
the O-condition should read (1− σ)−1 = O(log T ).) The only change in the
lemma is (since now b is not a constant)

logL(s) = O((log T )(1−d)(1−2a)−1
(log log T )4)

and the remark below Lemma 5 of [2] applies without any change.
Now we need the bound for the coefficients an = an(x). For this purpose

we prove some lemmas. Except Lemma 1, all are routine.

Lemma 1. Let h > 1 be any integer and

(ζ(s))h
−s

=
∞∑
n=1

bnn
−s .

Then b1 = 1 and for n > 1 we have 0 ≤ bn ≤ log n.

P r o o f. We have

(ζ(s))h
−s

= exp
(
h−s

∑
m≥1

∑
p

(mpms)−1
)

= 1+
∞∑
ν=1

(
h−s

∑ ∑
. . .

)ν
(ν!)−1

(note that this is also valid for h = 1), and writing( ∑ ∑
. . .

)ν
=

∞∑
n=1

dn(ν)n−s
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we have
∞∑
ν=1

dn(ν)(ν!)−1 = 1

for all n ≥ 2 and so dn(ν) ≤ (ν!). Thus for n ≥ 2

bn =
∑

mhν=n,m≥2ν

dm(ν)(ν!)−1 =
∞∑

ν=1,nh−ν=m,m≥2ν

dm(ν)(ν!)−1 .

Note that if nh−ν < 2ν , then m does not exist; i.e. if ν > log n/ log(2h),
then m does not exist. Since given a ν there is at most one m, we have

bn =
∑

1≤ν≤logn/ log(2h)

dm(ν)(ν!)−1 ≤ log n .

Lemma 2. The product of two series of the form
∞∑
n=1

ann
−s, an = Oη((nx)η) ,

is of the same form.

P r o o f. Since η is arbitrary, the lemma follows from∑
dd′=n

adbd′ �η

∑
dd′=n

(dd′x2)η ≤ x2ηnηd(n)� (nx)10η .

Lemma 3. Let k be any complex number and u = [|k|] + 1. Then the co-
efficients of (ζ(s))kh

−s

(in absolute value) do not exceed those of (ζ(s))uh
−s

.

R e m a r k. Using Lemmas 1, 2 and 3 we can verify the required property
for F (s) uniformly in certain obvious ranges for j and k. (See also Lemma 4
to follow.)

From now on we concentrate on the special case where an is defined
by (ζ(s))k =

∑∞
n=1 ann

−s (an are the well-known coefficients dk(n)) and
k ≥ 1 is an integer. Here we deal with uniformity in k subject to 1 ≤ k ≤
exp(o(log log x)).

Lemma 4. Let dk(n) be defined by

(ζ(s))k =
∞∑
n=1

dk(n)n−s

where Re s > 1 and k is any positive integer. Then uniformly for 1 ≤ k ≤ K
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where K = exp(o(log log x)) we have

dk(n) = Oη((nx)η)

for n > 1 and every constant η > 0.

P r o o f. We have (dk(n))l ≤ dJ(n) where J = kl and l is any positive
integer and so

(dk(n))l ≤ n2
∞∑
m=1

dJ(m)m−2 = n2(ζ(2))J ≤ n2eJ .

Thus for all n > 1, we have

log dk(n) ≤ 2 log n
l

+
kl

l
≤ 2 log n

l
+

(log x)η
2l

l

for all large x. Putting l = [η−1] we obtain

log dk(n) ≤ 3η log n+ 3(log x)η .

Replacing η by η/3, we obtain dk(n)� (nx)η for all x ≥ x0(η). This proves
the lemma.

We now resume the case F (s) = (ζ(s))k =
∑∞
n=1 ann

−s where an =
dk(n). We only have to obtain an asymptotic formula for

(4) I(x, h) =
h∫

0

(
1

2πi

∫
C0

(ζ(s))k(v + x)s−1 ds

)
dv .

Now since the expansion of ζ(s)(s − 1) (in powers of s − 1) converges for
|s− 1| ≤ 10 we have

ζ(s)(s− 1) = 1 + ν1(s− 1) + ν2(s− 1)2 + . . .

where νj is a sequence of bounded real numbers. Hence

(ζ(s)(s− 1))k = 1 + ν
(k)
1 (s− 1) + ν

(k)
2 (s− 1)2 + . . .

where |ν(k)
j | is majorized by the coefficient of (s − 1)j in the expansion of

(1− C(s− 1))−k for a suitable constant C > 1. Thus

|ν(k)
1 | ≤ Ck, |ν(k)

2 | ≤ C2 k(k + 1)
2

, . . .

Now, writing y for v + x, we have by Cauchy’s theorem

1
2πi

∫
C0

(ζ(s))kys−1 ds =
(log y)k−1

(k − 1)!
+ ν

(k)
1

(log y)k−2

(k − 2)!
+ . . .+ ν

(k)
k .(5)
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The left-hand side of (5) is

(log y)k−1

(k − 1)!

(
1 +O

(
(k − 1)Ck

log y
+

(k − 1)(k − 2)C2k(k + 1)
2!(log y)2

+ . . .

+
Ckk(k + 1) . . . (2k)

k!(log y)k

))
=

(log y)k−1

(k − 1)!
(1 +O((log y)−1/2))

provided k = O((log y)1/4). In fact, since we need the restriction k ≤
exp(o(log log x)) this is amply satisfied. This completes the proof of the
following Theorem 4 which is a corollary to the main theorem.

Theorem 4. The main theorem is true with F (s) = (ζ(s))k uniformly for
positive integers k ≤ exp(o(log log x)) for the first result and k ≤
exp(o(log log x)) for the second result. Moreover ,

I(x, h) =
h∫

0

(
1

2πi

∫
C0

(ζ(s))k(v + x)s−1 ds

)
dv

=
h∫

0

(log(v + x))k−1

(k − 1)!
(1 +O((log(v + x))−1/2)) dv

=
h(log x)k−1

k − 1!
(1 +O((log x)−1/2)) .

R e m a r k 1. First of all, we note that the implied constant in the the-
orem has to depend on ε and η. The only thing to be checked to conclude
the last step is

(log(v + x))k−1 = (log x)k−1 +O((log x)k−1−1/2) .

This is true because the O-term is really (since log(v + x)− log x = O(1))

k−1∑
r=1

(k − 1)Cr (log x)k−1−r(O(1))r

≤ (log x)k−1(log x)−1/2
k−1∑
r=0

(k − 1)Cr (log x)−r/2(O(1))r

= (log x)k−1−1/2(1 +O((log x)−1/2))k = O((log x)k−1−1/2) .

This completes the proof of Theorem 4.

R e m a r k 2. It is not hard to prove that if 1 ≤ k ≤ exp(o(log log x)),
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then

I(x, h) =
h(log x)k−1

(k − 1)!
(1 +Oη((log x)−1+η)) .
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