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Abstract. Let f(z) be a conformal mapping of an annulus A(R) = {1 < |z| < R} and
let f(A(R)) be aring domain bounded by a circle and a k-circle. If R(¢)={w : argw = ¢},
and ¢(¢) — 1 is the linear measure of f(A(R)) N R(p), then we determine the sharp lower
bound of £(p1) + £(p2) for fixed p1 and @2 (0 < @1 < o < 2m).

1. Introduction. We denote the chordal distance between the points
wy and wy in the extended complex w-plane C by g(ws,ws), that is,
g(wr, ws) = |wy — wa|/\/(1 + Jwr ) (1 + [wa]?)
if wy and ws are both finite, and
q(wy,00) = 1/4/1 + |wy |2
We define the chordal cross ratio of quadruples wy, ws, w3, wy in C by
q(w1, wa)q(ws, wy)
q(w1, w3)q(w2, ws)

A Jordan curve I' in C is called a k-circle, where 0 < k < 1, if for all
ordered quadruples of points on I,

(12) X(wlaw27w37w4)+X(w27w37w47w1) S 1/k

(11) X(wl,wg,w3,w4) =

This definition of a k-circle was introduced by Blevins [2]. It is well known
that a k-circle is a quasicircle (see [1]). One of the simplest k-circles is
{w : |argw| = arcsink}. Throughout the note the value of arcsin and
arccos is restricted between 0 and 7 /2.

In this note we consider the class C'(k) of conformal mappings w =
f(2) of an annulus A(R) = {1 < |w| < R} whose images Dy = f(A(R))
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are ring domains with inner boundary f(|z| = 1) = {|w| = 1} and outer
boundary I' a k-circle. Let R(0) = {w : arg w = 0} and let £(f) — 1 be
the linear measure of R(0) N f(A(R)). Let D(k,dy) be the ring domain
with Mod D(k,dy) = log R and with inner boundary {|w| = 1} and outer
boundary {w : |arg(w + do)| = 7 — arcsink}. Let fo(z) be a function
mapping A(R) onto e’ D(k,dy) and set

T(w)= 24 LA
w1 w + wq
where

B = arcsin(sin 0/(do(d1 + v/d? — 1))),
wy = (dy ++/d} — 1), dy = \/d?cos? §+sin” 0.

We show the following theorem dealing with radial segments.

THEOREM. Under the above assumptions, we have the inequalities
(1.3) 00) + £(m — 0) > 2(dy + /dZ — 1)
for 0 < 0 < arccos(\/dZ — 1/(2dp)), while
(1.4) 00) + £(m — 0) > 2dy
for arccos(y/d2 — 1/(2dy)) < 6 < 7/2.
For 0 < 0 < 6y, equality is attained only for the function F(z) = T(fo(2))

up to a rotation around the origin, where Oy is a positive constant depending
only on k, and determined in the proof of the theorem.

We remark that this theorem can be reformulated as an estimate for
L(p1) +L(p2) (0 < 1 < o < 2m). For example, (1.3) is equivalent to

(1.5) 1) + U(p2) > 2(de +1/d3 — 1)

with dy = /(1 +d2 + (1 — d2) cos(p2 — ¢1))/2. Let w = f(z) be a confor-
mal mapping of an annulus A(R) (with I" not necessarily a k-circle). Mityuk
[8] obtained the lower bound of ¢(0) + ¢(m + 6) (0 < 6 < m). Our theorem
yields his result by considering the special case of w3 — 1 = 7 and letting
k — 0.

2. Fundamental lemma. In this section we will verify the following
fundamental lemma on the Koebe region for the class C(k).

FUNDAMENTAL LEMMA. Let w = f(z) be a function in C(k). Then the
distance d(I,0) between the origin and I satisfies the inequality

(2.1) d(I,0) > dy .

FEquality holds in (2.1) if and only if Dy is D(k,dy) up to a rotation around
the origin.
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This lemma can be restated as follows: The Koebe region for the class
C(k) is generated by functions f arising from fy by rotations around the
origin.

Proof of the fundamental lemma. First we verify this lemma
under the condition that I" = f(|z| = R) contains the point at infinity.

Let w’ be a point on I" such that |w’| = d(I',0) (=a). We consider the
circular symmetrization D} of Dy with respect to the positive real axis.

The following statement is due to Blevins [2]: If I" contains the point
at infinity and a point w’ with |w’| = a, then the circular symmetrization
D3 of Dy with respect to the positive real axis is contained in the domain
D(k,a) ={w: |arg(w + a)| < m — arcsink} N {Jw| > 1}.

Using this and a well known Jenkins result on circular symmetrization [6]
together with the monotonicity property of the module, we obtain the in-
equalities

(2.2) Mod Dy < Mod D} < Mod D(k,a)

where equality Mod Dy = Mod D(k, a) holds if and only if Dy is obtained
from D(k,a) by a rotation around the origin. From the relation

(2.3) Mod Dy = Mod D(k,dy)(= log R),
(2.4) Mod Dy < Mod D(k, a)

and monotonicity of the module, we have

(2.5) a>dy,

which implies the desired inequality (2.1). It is trivial that equality holds in
(2.1) if and only if Dy is D(k, dp) up to a rotation around the origin (see [6]).

Now we consider the case when I" does not contain the point at infinity.
Without loss of generality we can assume a = d(I',0) € I. For a negative
point —d on I, the Mobius transformation ((w) = (1 + dw)/(w + d) maps
the points a and —d to (1 + ad)/(a + d)(< a) and the point at infinity,
respectively. This means that the minimum of d(I0) is attained (if and)
only if I" contains the point at infinity. Therefore the inequality (2.1) holds
even when I" does not contain the point at infinity.

3. Proof of the theorem. Let w; = re? and wy = reet(™9
(= —roe™) be the points on I' such that the segments (e??,r1e?) and
(—e=®, —roe=%) are in Dy. Without loss of generality we can assume
r1 = a, ro = at (a > 0, t > 1), because the case with r; > ry can be
proved analogously.

We consider the Mdbius transformation

w1 @121) -1

(3.1) I

@1 wp —w
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which maps f(A(R)) onto D(I") with inner boundary {|h| = 1} and outer
boundary I". Since the chordal cross ratio is invariant under Mobius trans-
formations, I is also a k-circle. Substituting w = w; and w = w9 into (3.1)
we have the inequalities

(3.2) hw,) = o0, h(ws) = —e%;m.
Now the fundamental lemma and |h(w2)| > do imply

1+ 2a%t cos 20 + a*t? o

a2(1 + 2tcos20 +t2) = 07

(3.4) a*t? — a*(d3(1 + 2t cos 20 + t*) — 2t cos260) +1 > 0.

(3.3)

From (3.4) we easily obtain either

2> d2(1 + 2t cos 20 + t2) — 2t cos 20

(3.5) 57
V/ (d3(1 + 2t cos 20 + 2) — 2t cos 20)2 — 412
+
22
or
(3.6) o2 < d3(1 4 2t cos 20 + t?) — 2t cos 20
2t2
V/ (d3(1 + 2t cos 20 + 2) — 2t cos 20)2 — 412
22 '
Using the fundamental lemma we now show that (3.6) never holds: Let A
and B be positive constants such that A++/A2 — 1 = (B4++/B2 — 1)2. Then

B=/(A+1)/2. If A= (d3(1 + 2t cos 20 + t?) — 2t cos 20) /2t%, we have
A+1 di(14 2tcos26 +t?) — 2t cos 20 L1
2 4t2 2
1+t (d2—1)cos20 d3+dg—1 1

412 2t 2 2 2
On the other hand, the inequality (3.6) implies

(3.8) a? <A—\/A2-1=(B-B2-1)?<B*<d3,

contradicting a > dy > 1, because a = dy would imply dy = B = 1.
Now we utilize (3.5) to obtain
(3.9) (r1+19)? =a*(1+1)?
2
S (1+1)
- 2t2
+ \/(d%(l + 2t cos 20 + t2) — 2t cos 20)? — 4t2)

(3.7) B?

1
— d? <
0 +2_

(da (1 + 2t cos 20 + t*) — 2t cos 20
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141)? 1412
:( —:) <d8( ;_t +cos29>—00529

1+ ¢2 2
+\/<dg< ;tt +cos29>c0320> 1)

> 4(d3(1 + cos 20) — cos 20 + /(d2(1 + cos 20) — cos 20)2 — 1)

=4(dy +/d3 —1)2  (dy = \/d(% cos? ) + sin®0) ,

which implies r1 +ry > 2(dy + \/d? — 1). Since £(0) > 71 and (7 —0) > 7o,
we obtain the desired inequality (1.3). Using the fundamental lemma and
(3.9), we conclude that equality in (1.3) is attained only if t =1, 11 =1y =
00) =l(r—0) =dy++/d? — 1, and only if f(A(R)) is a rotation of D(k,dp)
around the origin.

It follows trivially from the fundamental lemma that

For arccos(\/d2 — 1/(2dp)) < 0 < /2, by a simple calculation, we conclude
that

(3.11) dy +\/d2 —1 < dy,

which implies that the inequality (1.4) is better than (1.3) in this case.
Next we discuss the case of equality in (1.3). For the case of w1 = age
wy = —ape™ " (ap = dy + /d? — 1), we have
14 q2e-2i0 a2 + e2if 4
3.12) h =0 — 00 20 = —dye'” 1),
(3:12) h{uwz) ¢ ap(e? 4 =) 2aq cos 0 0 (8 real)
ag + 2

sin 20 = 2dgag sin B cos

36

)

= 2dgage™ cosh,

sin = dpag sin 3,
B = arcsin(sin€/(doao)) (0<3<6).

Now we determine the value 6y mentioned in the theorem, as follows:
For the extremal function F(z), the point h(co) = —w; = —ape® must be
contained in the complement of e*? D(k,dy), because the extremal function
must be conformal. Considering the rotation around the origin through
7 — 3, we see that the point age®# must lie in the closed domain {w:
larg (w — do)| < arcsin k}. We consider two functions of the angle 6,

(3.13) Y1(0) = ap = \/(dZ — 1) cos2 0 + 1 + /(d? — 1) cos2 8,
(3.14) Y2(0) = dok/sin(f; — ) (03 = arcsink) ,

where (3.14) represents the rays {w : |arg (w — dp)| = arcsink} in polar co-
ordinates (Y2, ). The functions Y = Y7(f) and Y = Y5(0) are, respectively,
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strictly decreasing and increasing, and their values run from do + \/d3 — 1
to1 (0 <6 <7/2) and from dy to oo (0 < 6 < 65), respectively. Therefore
the curves Y = Y1(0) and Y = Y5(6) intersect at some point 6 = 03 (< 62).
Since

a0 = \/(1 — d3)sin? 0 + a3 + /(1 — dB)sin® 0 + &} — 1
(which implies that 8 = ((0) is a strictly decreasing function of 6 for 0 <
0 < m/2) and ((f) < 6, the function § — 5(6) is non-negative and strictly
increasing for 0 < 6 < 7/2 and varies from 0 to 7/2 — arcsin(1/dy) there.
Therefore there exists a constant 6y such that 0 < 8 — 6 < 63 for 0 < 0 < 6.
Then the point age?®?) is contained in {w : |arg(w — do)| < arcsin k} for
0<6<6y.

Since T'(w) is the inverse function of (3.1) the function F'(z) maps A(R)
onto the extremal domain which has two points w; = age’? and w, =
ape’™ 9 on the boundary F(|z| = R) for 0 < 0 < 6, and so the theorem
has been verified.
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