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Equivariant maps of joins of finite G-sets
and an application to critical point theory

by Danuta Rozp Loch-Nowakowska (Toruœ)

Abstract. A lower estimate is proved for the number of critical orbits and critical
values of a G-invariant C1 function f : Sn → R, where G is a finite nontrivial group acting
freely and orthogonally on Rn+1 \ {0}. Neither Morse theory nor the minimax method
is applied. The proofs are based on a general version of Borsuk’s Antipodal Theorem for
equivariant maps of joins of G-sets.

Introduction. Let Sn denote the unit sphere in Rn+1, G a finite group
acting orthogonally on Sn and let f : Sn → R be a G-invariant C1 function.
Let δ denote the greatest common divisor of |Gx| for all x ∈ Sn, where
Gx = {gx | g ∈ G} and |Gx| is the cardinality of Gx.

Benci and Pacella [2] showed that if δ > 1 then f has at least n + 1
orbits of critical points provided that each critical point is counted with its
multiplicity. Furthermore, if the action of G on Sn is free then f has at
least (n+ 1)|G| critical points. Those results were established with the aid
of Morse theory.

The problem of finding lower bounds for the number of orbits of an
invariant functional occurs in the papers of various authors.

Let M be a paracompact and complete Banach manifold endowed with
an action by diffeomorphisms of a finite group G and let M \MG contain
a G-invariant subset S which is G-homeomorphic to a sphere Sn. Assume
that f : M → R is a G-invariant C1 function bounded from below satisfying
the Palais–Smale condition and such that

∀s ∈ S ∀x ∈MG f(s) < r < f(x)

for some r ∈ R.
Under the above assumptions Krawcewicz and Marzantowicz [9] gave
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a lower estimate for the number of critical points of f . The proof of this
result involved the Lusternik–Schnirelmann method. In [10] they extended
this method to the class of locally Lipschitzian functionals invariant with
respect to a finite group action.

Fadell and Rabinowitz [6] introduced the cohomological index to study
the case of general compact Lie group actions.

The case of an action of an arbitrary compact Lie group G on the sphere
SV , where V denotes a finite-dimensional real vector space on which G acts
orthogonally, was studied by Bartsch [1]. Using the notion of the equivariant
Lusternik–Schnirelmann category he provided lower bounds for the number
of critical orbits with a given orbit type of G-invariant C1 functionals f :
SV → R.

The purpose of this paper is to prove a related result. We strengthen
the assumptions and obtain an estimate not only for the number of critical
orbits but also for the number of critical values of the functional f :

Theorem 2. If a finite nontrivial group G acts freely and orthogonally
on Rn+1 \ {0} and f ∈ C1(Sn,R) is G-invariant then f has at least n + 1
critical orbits. Moreover , if the number of critical orbits is finite then there
exist at least n+ 1 critical values.

In fact Theorem 2 will be obtained as a consequence of the basic theorem
of this paper:

Theorem 1. Let S be the unit sphere in a Hilbert space H. Suppose that
G is a nontrivial finite group which acts freely and orthogonally on H \ {0},
f ∈ C1(S,R) is bounded , G-invariant and the Palais–Smale condition is
satisfied. Then f has an infinite number of critical orbits.

Let us remark that the results concerning the case of infinite dimensions
for G = Z2 are given for example in [5] and [4].

We would like to emphasize that using either the formula given in [9]
([10]) or in [1] we obtain the same lower estimate on the number of critical
points of the functional considered in Theorem 2. Yet, contrary to [2], [1],
[9], [10] we apply neither Morse theory nor the minimax method. We use a
simple geometrical method. Our proofs are based on the general version of
Borsuk’s Antipodal Theorem:

Theorem (Extension of Borsuk’s Antipodal Theorem). Let G be a non-
trivial finite group. If there exists a G-map φ : G(n) → G(k) then k ≥ n.

Let C denote the set of critical points of f . To prove Theorem 1 we
assume that the number of critical orbits is finite (thus C and f(C) are
finite) and construct for an arbitrarily great n ∈ N, G-maps ϕ, ψ, η:

G(n)
φ→ S

ψ→ R0 ∗ . . . ∗Rk
η→ G(k)
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where Ri := f−1(λi) ∩ C for all λi ∈ f(C) (i = 0, . . . , k).
In future we hope to generalize the geometrical method used in this

paper to the class of nondifferentiable functionals invariant with respect to
an orthogonal and free action of a finite group (comp. [10]).

Since we consider free and orthogonal actions of a finite group on a
sphere let us remark that there exist finite groups that cannot act freely on
any sphere Sn (see [3], III.8.1). The complete classification of the possible
groups can be found in [16]. A necessary condition on such a group is given
there ([16], (5.3.1)): each of its subgroups of order pq (where p and q are
not necessarily different prime numbers) must be cyclic. For solvable finite
groups the necessary condition becomes sufficient ([16], (6.1.11)).

In Sections 1 and 2 we recall the definitions and theorems that we use
in the next sections. In Section 3 we formulate and prove a generalization
of Borsuk’s Antipodal Theorem. Section 4 is devoted to construction of G-
maps ϕ and η. We construct a G-map ψ in Section 5. Finally, in Section 6
we give the proofs of Theorems 1 and 2.

I would like to thank K. Gȩba, L. Górniewicz and H. Steinlein for showing
me unpublished notes which included some ideas concerning applications of
the notion of join to critical point theory. I also wish to thank L. Górniewicz
and T. Bartsch for enlightening discussions.

1. Preliminaries. Since our approach involves the notion of join and
some elements of the theory of groups including Sylow’s Theorem we recall
the relevant definitions and theorems.

(1.1) Join. This subsection is devoted to an exposition of the notion of
join (introduced by J. Milnor [11]) which is needed to formulate and prove
Borsuk’s Antipodal Theorem.

The join X0 ∗ . . . ∗ Xn of n + 1 topological groups (topological spaces)
can be defined as follows. A point of the join is specified by:

(1) n+ 1 real numbers t0, . . . , tn satisfying ti ≥ 0, t0 + . . .+ tn = 1;
(2) a point xi ∈ Xi for each ti > 0 (0 ≤ i ≤ n).

Such a point will be denoted by (t0, x0, . . . , tn, xn), where xi may be
chosen arbitrarily or omitted whenever the corresponding ti vanishes.

Now we define a topology in X0 ∗ . . . ∗Xn. For i = 0, . . . , n we consider
the following coordinate functions:

(1) t(i) : X0 ∗ . . . ∗Xn → [0, 1], t(i)(t0, x0, . . . , ti, xi, . . . , tn, xn) = ti;
(2) x(i) : t−1

(i) ]0, 1]→ Xi, x(i)(t0, x0, . . . , ti, xi, . . . , tn, xn) = xi.

We endow X0 ∗ . . . ∗Xn with the strongest topology such that the above
functions are continuous.
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As an immediate consequence we deduce that a sub-basis for the open
sets is given by the sets of the following two types:

(1) {(t0, x0, . . . , ti, xi, . . . , tn, xn) | α < ti < β}, where α, β ∈ R;
(2) {(t0, x0, . . . , ti, xi, . . . , tn, xn) | ti 6= 0 ∧ xi ∈ U}, where U is an

arbitrary open subset of Xi.

The next example (cf. [15]) will be particularly useful for our later work:

(1.1.1) Example. Let X be a topological space and let Dk be the
k-dimensional unit ball. The cone over X is denoted by conX and the
suspension of X by SX. Note that:

(i) X ∗D0 ≈ conX;
(ii) X ∗ S0 ≈ SX;
(iii) ∀k ∈ N, Sk+1X ≈ X ∗ Sk;
(iv) ∀n ∈ N ∀m1, . . . ,mn ∈ N, Sm1 ∗ . . . ∗ Smn ≈ Sm1+...+mn+n−1;
(v) ∀n ∈ N ∀m1, . . . ,mn ∈ N, Dm1 ∗ . . . ∗Dmn ≈ Dm1+...+mn+n−1.

(1.1.2) R e m a r k. Given fi : Xi → Yi for i = 0, . . . , n, where X0, . . . ,
Xn, Y0, . . . , Yn are topological spaces, we define a mapping f0 ∗ . . .∗fn : X0 ∗
. . .∗Xn → Y0∗. . .∗Yn by (f0∗. . .∗fn)(t0, x0, . . . , tn, xn) = (t0, f0(x0), . . . , tn,
fn(xn)). If f : X → Y then by f(n) we denote the (n+1)-fold join f ∗ . . .∗f :
X ∗ . . . ∗X → Y ∗ . . . ∗ Y .

(1.2) G-spaces. We recall some basic facts on G-spaces (we refer to [3]
for details).

Let G be a finite group, X a topological space, H a Hilbert space with
scalar product 〈·,·〉 : H × H → R, S the unit sphere in H. Moreover,
Gx := {gx ∈ X | g ∈ G} for x ∈ X is the orbit of x; X/G is the orbit space
with the quotient topology; g · A := {g · x | x ∈ A}, where A ⊂ X; G(n)

denotes the (n+1)-join G∗. . .∗G (with discrete topology); and | · | : H → R+

is the norm defined by |x| := (〈x, x〉)1/2. This notation is valid throughout
the paper.

(1.2.1) Definition. (1) An action of G on X is called free if

∀x ∈ X ∀g ∈ G gx = x→ g = e .

(2) An action of G on H is said to be orthogonal if

∀x, y ∈ H ∀g ∈ G 〈gx, gy〉 = 〈x, y〉 .
(1.2.2) Definition. (i) X is said to be a G-space if X is a paracompact

Hausdorff space with a fixed action of G.
(ii) X is called a G-set if it is a finite G-space.
(iii) A subset A ⊂ X is called G-invariant if:

∀x ∈ A ∀g ∈ G gx ∈ A .
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(1.2.3) Definition. For G-sets X0, . . . , Xn and k < n, the mapping ϕ :
X0 ∗ . . .∗Xk → X0 ∗ . . .∗Xn defined by ϕ(t0, x0, . . . , tk, xk) = (t0, x0, . . . , tk,
xk, 0, xk+1, . . . , 0, xn) is a standard embedding.

(1.2.4) Definition. Let X,Y be G-spaces.

(i) A continuous map f : X → R is called G-invariant if

∀g ∈ G ∀x ∈ X f(gx) = f(x) .

(ii) A continuous map f : X → Y is called a G-map if

∀g ∈ G ∀x ∈ X f(gx) = g · f(x) .

The following simple facts will be useful in the next section.

(1.2.5) Proposition. (1) If X0, . . . , Xn are G-sets then the mapping
ν : G× (X0 ∗ . . . ∗Xn)→ X0 ∗ . . . ∗Xn defined by

ν(g, (t0, x0, . . . , tn, xn)) := (t0, gx0, . . . , tn, gxn)

is an action of G on X0 ∗ . . . ∗ Xn. Moreover , the join X0 ∗ . . . ∗ Xn is a
G-space.

(2) If fi : Xi → Yi for i = 0, . . . , n are G-maps of G-spaces then f0 ∗
. . . ∗ fn : X0 ∗ . . . ∗Xn → Y0 ∗ . . . ∗ Yn is a G-map.

(1.3) Sylow’s Theorem. We do not recall Sylow’s Theorem in whole
generality (we refer to [8] for details). The version given here is particularly
suitable for an application to the general version of Borsuk’s Antipodal
Theorem (see (3.3)).

(1.3.1) Theorem (Sylow’s Theorem). If |G| = pm ·s, where p is a prime
number , then G contains a subgroup of order p.

2. G-maps on S. This section can be considered as a preparation
to Section 5. We recall the definitions and theorems we need to prove the
Critical Point Theorems.

Notice that the unit sphere in a Hilbert space is a C∞ Finsler manifold
(see Ex. (27.2), Prop. (27.7), Cor. (27.2) in [5]).

Denote the tangent bundle of S by TS and the tangent space at p ∈ S
by TpS.

Recall that p∈S is a critical point of f ∈C1(S,R) if df(p)(x) = 0 for all
x ∈ TpS, where df(p) is the derivative of f at p which is the element of the
cotangent space T ∗p S. The function |df | : S → R, p 7→ |df(p)|, is well-defined,
nonnegative and continuous on S.

(2.1) Definition. Let M be a Finsler manifold and let f : M → R be
differentiable at p ∈ M . Then v ∈ TpM is called a pseudo-gradient vector
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for f at p if

|v| ≤ 2|df(p)| ,(2.1.i)
df(p)(v) ≥ |df(p)|2 .(2.1.ii)

If f is differentiable at each point of U ⊆M and v is a Ck vector field on U
(M being of class Cl, l > k) then v is called a pseudo-gradient vector field
for f on U if for each p ∈ U , v(p) is a pseudo-gradient vector for f at p.

Similarly to (8.9) in [4] we obtain the following:

(2.2) Lemma. If f ∈ C1(S,R), then there exists a locally Lipschitz
pseudo-gradient vector field for f on S \ C, where C denotes the set of
critical points of f .

(2.3) R e m a r k. Note that if a group G acts orthogonally on S and
f ∈ C1(S,R) is G-invariant then for any g ∈ G and x ∈ S

TxS = g−1TgxS ,(2.3.i)
|df(x)| = |df(gx)| .(2.3.ii)

We prove the following theorem:

(2.4) Theorem. If a group G acts orthogonally on H \{0}, f ∈ C1(S,R)
is G-invariant and the set C of critical points of f is finite then for every
open neighbourhood N of C there exists a vector field W̃ : S → TS such
that :

|W̃ (v)| ≤ 2|df(v)| for v ∈ S ,(2.4.i)

df(v)(W̃ (v)) ≥ |df(v)|2 for v ∈ S \N ,(2.4.ii)

df(v)(W̃ (v)) ≥ 0 for v ∈ S ,(2.4.iii)

W̃ is Lipschitz continuous ,(2.4.iv)

∀h ∈ G W̃ (hv) = hW̃ (v) .(2.4.v)

P r o o f. Since by our assumption C is finite, we put C = {x0, . . . , xl}.
Moreover, we can find ε > 0 such that

∀0 ≤ i ≤ l B(xi, 3ε) ∩ (C \ {xi}) = ∅

and B(C, ε) ⊂ N .
For i = 0, . . . , l let gi : S → [0, 1] denote an Urysohn function such that

gi|{xi} ≡ 0 and gi|S\B(xi,ε) ≡ 1. Obviously, gi is locally Lipschitz. Note that
if v /∈ C then gi(v) > 0. Now we use Lemma (2.2) to construct a vector field
Ŵ : S → TS (comp. (4.2) in [12])

Ŵ (v) :=
{
g0(v) · . . . · g1(v)W (v) , v 6∈ C ,
0 , v ∈ C ,
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where W : S \ C → TS denotes a pseudo-gradient vector field for f . It is
easily seen that:

|Ŵ (v)| ≤ |W (v)| for every v ∈ S \ C ,(2.4.1)
df(v)(W (v)) ≥ |df(v)|2 for v ∈ S \B(C, ε) ,(2.4.2)

df(v)(Ŵ (v)) ≥ 0 for every v ∈ S ,
(2.4.3)

df(v)(Ŵ (v)) > 0 for every v ∈ S \ C ,
Ŵ : S → TS is locally Lipschitz continuous .(2.4.4)

Now we define a vector field W̃ : S → TS by

W̃ (v) =
1
|G|

∑
g∈G

g−1Ŵ (gv) .

It is easily checked that W̃ has the required properties.

(2.5) Lemma. Let the assumptions of (2.4) hold and let f be bounded.
Then there exists a flow Φ : R× S → S such that

(2.5.i)
{
∂Φ(t, x)/∂t = W̃ (Φ(t, x)) ,
Φ(0, x) = x ,

where W̃ denotes the vector field from (2.4). Moreover ,

(2.5.ii) ∀t ∈ R ∀g ∈ G ∀y ∈ S Φ(t, gy) = gΦ(t, y) .

P r o o f. Since the proof of the first part of the conclusion is analogous
to the proof of Lemma 5.5 in Section 4.5 of [4] we omit it. (2.5.ii) is easy to
check since W̃ is a G-map.

3. Extension of Borsuk’s Antipodal Theorem. In this section we
establish a theorem which represents a general version of Borsuk’s Antipodal
Theorem:

(3.1) Theorem. Let G be a nontrivial finite group. If there exists a
G-map φ : G(n) → G(k) then k ≥ n.

(3.2) R e m a r k. Note that this is in fact a generalization of Borsuk’s
Antipodal Theorem (see [7]). Consider the group G = Z2. Recall that Z2 ≈
S0. Furthermore, by (1.1.2), (S0)(n) ≈ Sn. Since a Z2-map is antipodal-
preserving we conclude that the theorem below results from (3.1):

Theorem (Borsuk’s Antipodal Theorem). There is no antipodal-pre-
serving map f : Sn → Sn−1.
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Our aim is to prove a more general result:

(3.3) Theorem. Assume that G is a nontrivial finite group which acts
freely on G-sets X0, . . . , Xn (n ∈ N). If there exists a G-map φ : X0 ∗ . . .
. . . ∗Xn → G(k) then k ≥ n.

Now we prove some technical lemmas.

(3.4) Lemma. Assume that G is a nontrivial finite group acting freely on
G-sets X0, . . . , Xn, Y0, . . . , Yn. Moreover , assume that for each i = 0, . . . , n
there exists a surjective G-map fi : Xi → Yi. Then there is a G-map
µ : Y0 ∗ . . . ∗ Yn → X0 ∗ . . . ∗Xn such that

f ◦ µ = idY0∗...∗Yn
,

where f = f0 ∗ . . . ∗ fn : X0 ∗ . . . ∗Xn → Y0 ∗ . . . ∗ Yn.

P r o o f. Since for each i, G acts freely on Xi and on Yi, and fi is a
surjective G-map, it is easy to see that fi maps each orbit in Xi one-to-
one onto an orbit in Yi. We define a G-map µi : Yi → Xi by choosing,
for each orbit in Yi, one of its fi-preimages and reversing fi. Then clearly
µ = µ0 ∗ . . . ∗ µn is the required G-map (see (1.2.5.2)).

We now recall, in a modified form, a classical property of classifying
spaces (cf. [11]). We use the following notation:

p — a prime number ;
Hq(·) — qth homology group with coefficients in Zp ;
B(n) := (Zp)(n)/Zp .

(3.5) Proposition. Let i∼ : B(n) → B(k) denote the mapping induced
by the standard embedding i : (Zp)(n) → (Zp)(k) where k ≥ n. Then:

(i) Hq(B(n)) 6= 0 for q ≤ n;
(ii) Hq(B(n)) = 0 for q > n;
(iii) the induced homomorphism (i∼)∗ : Hq(B(n)) → Hq(B(k)) is non-

trivial for q ≤ n ≤ k.

(3.6) Lemma. Assume that X0, . . . , Xn are Zp-sets, Zp acts freely on
each Xi and fi : Xi → Zp (i = 0, . . . , n) is a surjective Zp-map. Then for
all q ≤ n the homomorphism

f∼∗ : Hq(X0 ∗ . . . ∗Xn/Zp)→ Hq(B(n))

induced by f = f0 ∗ . . . ∗ fn : X0 ∗ . . . ∗Xn → (Zp)(n) is an epimorphism; in
particular , Hq(X0 ∗ . . . ∗Xn/Zp) 6= 0 for q ≤ n.

P r o o f. From (3.4) it follows that there is a Zp-map µ : (Zp)(n) → X0 ∗
. . .∗Xn with f ◦µ = id(Zp)(n)

. Hence f∼∗ : Hq(X0 ∗ . . .∗Xn/Zp)→ Hq(B(n))
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and µ∼∗ : Hq(B(n))→ Hq(X0 ∗ . . . ∗Xn/Zp) also satisfy f∼∗ ◦ µ∼∗ = id, and
the assertion follows from (3.5.i).

(3.7) Lemma. Suppose that X0, . . . , Xn are Zp-sets and Zp acts freely on
Xi for 0 ≤ i ≤ n. If Φ : X0 ∗ . . . ∗Xn → (Zp)(k) is a Zp-map then k ≥ n.

P r o o f. Assume that k < n. Let i : (Zp)(k) → (Zp)(2n+1) denote the
standard embedding. Consider the induced mappings

(Φ∼)∗ : Hn(X0 ∗ . . . ∗Xn/Zp)→ Hn(B(k))

and
(i∼)∗ : Hn(B(k))→ Hn(B(2n+ 1)) .

By (3.5.ii) the homomorphism

(3.7.1) (i∼ ◦ Φ∼)∗ = i∼∗ ◦ Φ∼∗ : Hn(X0 ∗ . . . ∗Xn/Zp)→ Hn(B(2n+ 1))

is trivial.
Consider now the mapping j : (Zp)(n) → (Zp)(2n+1) given by

j(t0, x0, . . . , tn, xn) = (0, x0, . . . , 0, xn, t0, x0, . . . , tn, xn) .

It is easy to see that j is a Zp-map. It is also easy to construct a surjective
Zp-map fi : Xi → Zp, since the action of Zp on Xi is free and we may
identify each orbit with Zp. Hence f = f0 ∗ . . . ∗ fn : X0 ∗ . . . ∗ Xn →
(Zp)(n) is also a Zp-map. From (3.6) it follows that the homomorphism
f∼∗ : Hn(X0 ∗ . . . ∗Xn/Zp)→ Hn(B(n)) is an epimorphism.

Moreover, it is easily seen that the standard embedding i : (Zp)(n) →
(Zp)(2n+1) and j are Zp-homotopic. Hence i

∼
and j∼ are homotopic. Thus

by (3.5.iii) the homomorphism j∼∗ : Hn(B(n)) → Hn(B(2n + 1)) is non-
trivial. Hence

(3.7.2) (j ◦ f)∼∗ is nontrivial.

In view of (3.7.1) and (3.7.2) the desired contradiction follows if we observe
that the mapping H : X× I → (Zp)(2n+1), where X = X0 ∗ . . .∗Xn, defined
by

H(x, t)
= (t(0)(Φ(x)) · (1− t), x(0)(Φ(x)), . . . , t(k)(Φ(x)) · (1− t), x(k)(Φ(x)),

0, xk+1, . . . , t(0)(f(x)) · t, x(0)(f(x)), . . . , t(n)(f(x)) · t, x(n)(f(x)))

is a Zp-homotopy from i ◦ Φ to j ◦ f .

P r o o f o f T h e o r e m (3.3). Since by our assumption G 6= {e}, we can
find a prime number p and a subgroup P of G such that P ≈ Zp (by Sylow’s
Theorem, see (1.3.1)). Clearly, for each i = 0, . . . , n, Xi is a Zp-set. We also
see that G is a Zp-set. Moreover, Zp acts freely on G and on X0, . . . , Xn.
In particular, we can construct a surjective Zp-map κ : G → Zp as in the
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proof of (3.7). Then κ(k) ◦ φ : X0 ∗ . . . ∗ Xn → (Zp)(k) is a Zp-map and
Lemma (3.7) applies.

4. Construction of G-maps ϕ and η. In this section we will keep
the notation introduced earlier in this paper.

First we will prove the existence of a G-map ϕ : G(n) → Sn (see the
introduction).

A subset A of Sn will be called an elementary m-dimensional set if there
exist (m+ 1)-dimensional linear subspaces W1, . . . ,Wk of Rn+1 such that

A = Sn ∩
k⋃
i=1

Wi .

(4.1) Theorem. If G acts orthogonally on Sn then there exists a G-map
ϕ : G(n) → Sn.

P r o o f (by induction). We show that for each l = 0, . . . , n

(4.1.1) there exist a G-invariant elementary l-dimensional set Al and a
G-map ϕl : G(l) → Al.

This is obvious in case l = 0. Assume that (4.1.1) holds for m < n
(in case m = n the proof is complete). Since dimAm < n we can choose
xm+1 ∈ Sn \Am. Let Am := Sn ∩

⋃km

i=1W
m
i . Consider

Am+1 := Sn ∩
( ⋃
g∈G

km⋃
i=1

lin(x(i)
0 , . . . , x(i)

m , gxm+1)
)
,

where {x(i)
0 , . . . , x

(i)
m } denotes a base of Wm

i . Note that among the sub-
spaces lin(x(i)

0 . . . , x
(i)
m , gxm+1) (where i = 1, . . . , km) there exist (m + 2)-

dimensional ones. Thus Am+1 = Sn ∩
⋃km+1
i=1 Wm+1

i , where Wm+1
i for

i = 1, . . . , km+1 are (m + 2)-dimensional linear subspaces of Rn+1. Since
G acts orthogonally on Sn and Am is G-invariant it follows that Am+1 is
G-invariant. Now we define ϕm+1 : G(m+1) → Am+1 by

ϕm+1(y, t, g) =
(1− t)ϕm(y) + t · gxm+1

|(1− t)ϕm(y) + t · gxm+1|
for y ∈ G(m), g ∈ G and t ∈ [0, 1]. Clearly ϕm+1 is a G-map.

(4.2) Corollary. If G acts orthogonally on H \ {0}, where H denotes
a Hilbert space, then for every n ∈ N there exists a G-map ϕ : G(n) → S.

P r o o f. Since the proof is much the same as that given for Theorem (4.1)
we only sketch the essential steps.

Take any x0 ∈ H \{0} and define H0 = span(Gx0). Define ϕ0 : G(0) → S
by setting ϕ0(g) = gx0 for any g ∈ G.
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Suppose Hm ⊂ H and ϕm : G(m) → S have been constructed for all
m < n. Let xm+1 ∈ (H0 ⊕ . . . ⊕ Hm)⊥ \ {0} and Hm+1 = span(Gxm+1).
Defining ϕm+1 : G(m+1) → S by

ϕm+1(y, t, g) =
(1− t)ϕm(y) + t · gxm+1

|(1− t)ϕm(y) + t · gxm+1|
for y ∈ G(m), g ∈ G and t ∈ [0, 1] we are done.

Now we construct a G-map η (see the introduction). Let S denote the
sphere (either in Rn+1 or in H). Suppose that a finite group G acts freely
on S, the set C of critical points of the G-invariant functional f ∈ C1(S,R)
is finite and that f(C) = {λ0, . . . , λk}. We denote by Rj the set f−1(λj)∩C
for j = 0, . . . , k.

(4.3) Theorem. There exists a G-map η : R0 ∗ . . . ∗Rk → G(k).

P r o o f. It suffices to observe that eachRi is a (free)G-set, construct aG-
map ηi : Ri → G as before (see the proof of (3.7)), and take η := η0∗. . .∗ηk.

5. Construction of a G-map ψ. We keep the previous notation. Let
us introduce:

Condition (P–S). If {f(vn)} is bounded and |df(vn)| → 0 as n → ∞,
then {vn} has a convergent subsequence.

In this section we prove

(5.1) Theorem. Suppose that a finite group G acts freely and orthogo-
nally on H \{0}, f ∈ C1(S,R) is bounded , G-invariant and condition (P–S)
is satisfied. Moreover , let the set C of critical points of f be finite and
f(C) = {λ0, . . . , λk}. Then there exists a G-map

ψ : S → R0 ∗ . . . ∗Rk ,
where Rj denotes the set f−1(λj) ∩ C for j = 0, . . . , k.

Since by our assumption C is finite, we can find ε > 0 such that

∀x ∈ C B(x, 3ε) ∩ (C \ {x}) = ∅ .
Let γ := inf{|∇f(y)| | y ∈ S \ B(C, ε)}. Since f is bounded and condition
(P–S) is satisfied it is easy to show that γ > 0. Now, since by our assumption
f is continuous and C is finite it follows that there exists ε1 > 0 such that

(5.2.i) if x ∈ B(c, 2ε1) then |f(x)− f(c)| < γε/4 for x ∈ S, c ∈ C.

We can assume without loss of generality that 2ε1 ≤ ε.
From (2.4) it follows that for N = B(C, ε1) there exists a G-map W̃ :

S → TS which satisfies the properties (2.4.i)–(2.4.v). Thus by (2.5) there
exists a global flow Φ : R× S → S satisfying (2.5.i) and (2.5.ii).
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For every x ∈ C we define

(5.2.ii) Ax := B(x, ε1) and Bx := B(x, 2ε1) .

We will use the notations introduced here throughout this section.

A. Construction of an open covering V of S

(5.3) R e m a r k. It is easily seen that if a ∈ C and t > 0 then

V(a, t) := {y ∈ S | ∃s ∈ [0, t] ∃b ∈ C \ {a} Φ(s, y) ∈ Ab}
is a closed set.

(5.4) Lemma. Let a ∈ C and

Va := {y ∈ S | ∃t > 0 Φ(t, y) ∈ Ba ∧ y /∈ V(a, t)} .
Then V = {Va}a∈C is an open covering of S satisfying

∀a ∈ C ∀g ∈ G Vga = gVa .

P r o o f. Since Va =
⋃
t>0 Φ

−1
t (Ba) \V(a, t), by (5.3) it follows that each

Va is open.
In order to show that {Va}a∈C is a covering of S it suffices to prove that

for any x ∈ S there exists t > 0 such that Φ(t, x) ∈ B(C, 2ε1). On the
contrary, assume

∃x ∈ S ∀τ > 0 Φ(τ, x) ∈ S \B(C, 2ε1) .

Note that
∂f(Φ(t, x))/∂t = df(Φ(t, x))(W̃ (Φ(t, x))) ≥ 0 .

This implies that f(Φ(·, x)) : R→ R is non-decreasing. Hence

lim
t→∞

f(Φ(t, x)) = c ≤ +∞ .

Moreover, for s ≤ t

f(Φ(t, x))− f(Φ(s, x)) =
t∫
s

df(Φ(τ, x))(W̃ (Φ(τ, x))) dτ(5.4.i)

≥
t∫
s

|df(Φ(τ, x))|2 dτ .

Since f is bounded,
∫∞

0
|df(Φ(τ, x))|2 dτ < +∞. Thus

(5.4.ii) ∀ε > 0 ∃r ∈ R ∀x > r ∀x′ > r
∣∣∣ x∫
x

′

|df(Φ(τ, x))|2 dτ
∣∣∣ < ε .

For n ∈ N we take ε = 1/n. There exists rn ∈ R such that for x > rn and
x′ > rn condition (5.4.ii) is satisfied. We can assume without loss of general-
ity that rn > n and take x = rn + 1, x′ = rn + 2. Since |df(Φ(·, x))| : R→ R
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is continuous there exists tn ∈ [rn + 1, rn + 2] such that

x′∫
x

|df(Φ(τ, x))|2dτ = 1 · |df(Φ(tn, x))|2 < 1
n
.

We obtain a sequence tn → +∞ such that |df(Φ(tn, x))|2 → 0. By condition
(P–S) and the assumption that f is bounded we conclude that there exists
a convergent subsequence {Φ(tnk

, x)} of {Φ(tn, x)}. Let Φ(tnk
, x)→ q. The

continuity of |df | implies that q ∈ C contrary to the assumption. Note that
Aga = gAa and Bga = gBa. By (2.5.ii), Φ(s, ga) = gΦ(s, a) for any s ∈ R.
Moreover, by (2.3) the set C isG-invariant. SinceG acts freely onH\{0}, we
conclude that gV(a, s) = V(ga, s) for s ∈ R. Thus our assertion follows.

B. The properties of the covering V

(5.5) Proposition. If a1, a2 ∈ Rj and a1 6= a2 then Va1 ∩ Va2 = ∅.

P r o o f. We need to prove that if a, b ∈ C, a 6= b and f(a) = f(b)
then Va ∩ Vb = ∅. Indeed, assuming that there exists x ∈ Va ∩ Vb from the
definition of Va and Vb we find:

(i) ta > 0 such that Φ(ta, x) ∈ Ba; and
(ii) tb > 0 such that Φ(tb, x) ∈ Bb.
Since Ba ∩Bb = ∅ it follows that ta 6= tb. Now it suffices to prove that if

a and b are distinct points of C, x ∈ S and there exist t1, t2 ∈ R such that
t1 < t2, Φ(t1, x) ∈ Ba and Φ(t2, x) ∈ Bb then f(a) 6= f(b). Observe that

|f(a)− f(b)| ≥ |f(Φ(t1, x))− f(Φ(t2, x))| − (|f(Φ(t1, x))− f(a)|
+|f(Φ(t2, x))− f(b)|) .

Note that by (5.2.i),

|f(Φ(t1, x))− f(a)| < γε/4 , |f(Φ(t2, x))− f(b)| < γε/4 .

Now it is sufficient to show that |f(Φ(t1, x))− f(Φ(t2, x))| ≥ γε/2. We will
use the properties of the mapping W̃ . We have

|f(Φ(t1, x))− f(Φ(t2, x))|

=
∣∣∣∣ t2∫
t1

∂

∂t
(f(Φ(t, x))) dt

∣∣∣∣ =
∣∣∣ t2∫
t1

df(Φ(t, x))(Φ′t(t, x)) dt
∣∣∣

=
∣∣∣ t2∫
t1

df(Φ(t, x))(W̃ (Φ(t, x))) dt
∣∣∣ =

t2∫
t1

df(Φ(t, x))(W̃ (Φ(t, x))) dt .

Let t3 := sup{t ∈ [t1, t2] | Φ(t, x) ∈ B(a, ε)}. Note that since Ba ⊂ B(a, ε) it
follows that t3 is well-defined. Furthermore, by the continuity of Φ, t3 6= t2.
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We define

t4 := inf{t ∈ [t3, t2] | Φ(t, x) ∈ B(C, ε)} .
Then by a similar argument t4 is well-defined. Moreover, t3 6= t4. It is
obvious that Φ(t, x) ∈ S \B(C, ε) for t ∈ ]t3, t4[. Hence

t4∫
t3

df(Φ(t, x))(W̃ (Φ(t, x))) dt ≥
t4∫
t3

|df(Φ(t, x))|2 dt

≥ γ
t4∫
t3

|df(Φ(t, x))| dt ≥ γ

2

t4∫
t3

|W̃ (Φ(t, x))| dt ≥ γ

2

∣∣∣ t4∫
t3

W̃ (Φ(t, x)) dt
∣∣∣

=
γ

2

∣∣∣∣ t4∫
t3

∂

∂t
(Φ(t, x)) dt

∣∣∣∣ =
γ

2
|Φ(t4, x)− Φ(t3, x)| .

Note that Φ(t4, x) ∈ B(C \ {a}, ε) and Φ(t3, x) ∈ B(a, ε). This implies
|Φ(t4, x)− Φ(t3, x)| ≥ ε as required.

C. Partition of unity subordinate to the covering V

It is not difficult to show

(5.6) Lemma. There exists a partition of unity {θa}a∈C subordinate to
the covering {Va}a∈C such that

(5.6.i) ∀x ∈ S ∀a ∈ C ∀g ∈ G θga(x) = θa(g−1x) .

D. Construction of a mapping ψ : S → R0 ∗ . . . ∗Rk

(5.7) R e m a r k. By (5.5) for every x ∈ S and j ∈ {0, . . . , k} there exists
at most one element ax(j) ∈ Rj such that x ∈ Vax(j). Clearly,

∀x ∈ S
k∑
j=0

θax(j)(x) = 1 .

Now, it is easy to complete the

P r o o f o f T h e o r e m (5.1). It suffices to prove that the map ψ : S →
R0 ∗ . . . ∗Rk defined by

ψ(x) = [θax(0)(x), ax(0), . . . , θax(k)(x), ax(k)]

is a G-map. By the definition of the topology of join and the continuity of
θa for a ∈ C, ψ is continuous. For x ∈ S and g ∈ G we have

ψ(gx) = (θagx(0)(gx), agx(0), . . . , θagx(k)(gx), agx(k)) ,
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where agx(j) is the unique element of Rj such that gx ∈ Vagx(j) for j ∈
{0, . . . , k}. According to (5.6.i),

ψ(gx) = (θg−1agx(0)(x), agx(0), . . . , θg−1agx(k)(x), agx(k))

= g · (θg−1agx(0)(x), g−1agx(0), . . . , θg−1agx(k)(x), g−1agx(k)) .

Note that (5.5) and (5.7) imply that g−1agx(j) = ax(j) for j ∈ {0, . . . , k}.
Thus ψ(gx) = gψ(x).

The results proved so far have the following simple consequence:

(5.8) Theorem. Suppose that a finite group G acts freely and orthogo-
nally on Rn+1 \ {0}, f ∈ C1(Sn,R) is G-invariant and that the set C of
critical points of f is finite and f(C) = {λ0, . . . , λk}. Then there exists a
G-map

ψ : Sn → R0 ∗ . . . ∗Rk ,
where Rj := f−1(λj) ∩ C for j = 0, . . . , k.

6. Critical Point Theorems. Let S denote the unit sphere in a
Hilbert space H.

(6.1) Theorem. Suppose that a finite nontrivial group G acts freely and
orthogonally on H\{0}, f ∈ C1(S,R) is bounded , G-invariant and condition
(P–S) is satisfied. Then f has an infinite number of critical points.

P r o o f. Assume that the set C of critical points of f is finite. Then
(5.1) applies: there exists a G-map ψ : S → R0 ∗ . . . ∗Rk, where k+ 1 is the
number of critical values of f . By (4.2) there exists a G-map ϕ : G(n) → S
for any n ∈ N. By (4.3) there exists a G-map η : R0 ∗ . . .∗Rk → G(k). Then
η ◦ ψ ◦ ϕ : G(n) → G(k) is a G-map. Now we apply the generalized Borsuk
Antipodal Theorem to obtain k + 1 ≥ n + 1 for any n, contradicting our
hypothesis.

The next theorem may be proved like Theorem (6.1), by means of The-
orem (5.8).

(6.2) Theorem. If a finite nontrivial group G acts freely and orthogo-
nally on Sn and f ∈ C1(Sn,R) is G-invariant then f has at least n + 1
critical orbits. Moreover , if the number of critical orbits is finite then there
exist at least n+ 1 critical values.

(6.3) R e m a r k. Let the assumptions of Theorem (6.2) hold. Since
the G-action is free and since if x is a critical point of f then so is gx
(comp. (2.3)), it follows that f has at least (n+ 1)|G| critical points.

(6.4) Theorem. Suppose that G is a nontrivial finite group which acts
freely and orthogonally on H \ {0} and that f ∈ C1(S,R) is G-invariant.
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Then for every n ∈ N there exists a finite-dimensional sphere such that the
restriction of f to it has at least n+ 1 critical orbits.

P r o o f. We choose an element x0 ∈ H \{0} and consider the linear span
of its orbit, H0 := span(Gx0). It is easily seen that H0 is a G-invariant
subset of H and H0 ∩ S is a finite-dimensional sphere. Set Sm0 := H0 ∩ S.
Now suppose that Hi has been constructed for all i < n. Choose xn ∈
(H0 ⊕ . . . ⊕ Hn−1)⊥ \ {0} and let Hn := span(Gxn) ∩ S. Since Hi is G-
invariant for each i = 1, . . . , n, so is H0⊕. . .⊕Hn. Clearly, (H0⊕. . .⊕Hn)∩S
is a finite-dimensional sphere. Let Smn := (H0 ⊕ . . . ⊕Hn) ∩ S. Note that
mn > mn−1. Thus mn ≥ n. We may assume that the set Cn of critical
points of f |Smn is finite. Let f(Cn) = {λn0 , . . . , λnkn

}. According to Theorem
(5.8) there exists a G-map

ψn : Smn → R0 ∗ . . . ∗Rk ,
where Ri := (f |Smn)−1(λni ) ∩ Cn for i = 0, . . . , kn.

By similar arguments to the proof of Theorem (6.1) we conclude that
kn ≥ mn. This implies that kn + 1 ≥ n+ 1 and the assertion follows.
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