Regularity of solutions of parabolic equations with coefficients depending on t and parameters

by T. Winiarska (Kraków)

Abstract

The main object of this paper is to study the regularity with respect to the parameter h of solutions of the problem $d u / d t+A_{h}(t) u(t)=f_{h}(t), u(0)=u_{h}^{0}$. The continuity of u with respect to both h and t has been considered in [6].

1. Introduction. In this paper, we consider the family of parabolic problems

$$
\begin{align*}
& \frac{d u}{d t}(t)+A_{h}(t) u(t)=f_{h}(t) \quad \text { for } t \in(0, T] \tag{1}\\
& u_{h}(0)=u_{h}^{0} \tag{2}
\end{align*}
$$

with $h \in \Omega$, where Ω is an open subset of \mathbb{R}^{n}. It is well known that, under certain assumptions, the solution of the problem (1), (2) is given by the formula

$$
\begin{equation*}
u_{h}(t)=U_{h}(t, 0) u_{h}^{0}+\int_{0}^{t} U_{h}(t, s) f_{h}(s) d s \tag{3}
\end{equation*}
$$

where U_{h} is the fundamental solution of equation (1), for a fixed $h \in \Omega$. The problem of continuity of the mapping

$$
\begin{equation*}
\Omega \times[0, T] \ni(h, t) \rightarrow u_{h}(t) \in X, \tag{4}
\end{equation*}
$$

with u_{h} given by (3), was considered in [6].
The main object of this paper is to study the differentiability of (4) with respect to h.

Similar problems are considered in [7], [8] but for differential equations with A_{h} independent of t.
2. Preliminaries. Let X, Y be Banach spaces and let Ω be an open subset of \mathbb{R}^{n}. To simplify notation we shall assume that Ω is an open interval in \mathbb{R}.

We denote by $B(X, Y)$ the space of bounded linear operators from X to Y. The space $B(X, X)$ is denoted by $B(X)$. The space of closed linear operators from X to X will be denoted by $\mathcal{C}(X)$. For $A \in \mathcal{C}(X)$ the resolvent set of A will be denoted by $P(A)$.

Let D be a normed vector space such that there exist a Banach space Z and a bijective bounded operator $\mathcal{T}: Z \rightarrow D$. Similarly to [8], we shall consider the space
(5) $\quad S B(D, Y):=\{A: D \rightarrow Y \mid A$ is linear and $A \mathcal{T} \in B(Z, Y)\}$.

The definition of $S B(D, Y)$ is independent of the choice of (Z, \mathcal{T}). The space

$$
\begin{aligned}
\mathcal{M}_{\mathcal{T}}:=\{A:[0, T] \rightarrow & S B(D, Y) \mid \text { the mapping } \\
& {[0, T] \ni t \rightarrow A(t) \mathcal{T} \in B(Z, Y) \text { is continuous }\} }
\end{aligned}
$$

is a Banach space with the norm

$$
\|A\|_{\mathcal{T}}:=\sup \{\|A(t) \mathcal{T}\| \mid t \in[0, T]\}
$$

If $\left(Z^{\prime}, \mathcal{T}^{\prime}\right)$ is another pair as needed in (5) then $\mathcal{M}_{\mathcal{T}}=\mathcal{M}_{\mathcal{T}^{\prime}}$ with equivalent norms. Thus, instead of $\mathcal{M}_{\mathcal{T}}$ we may write \mathcal{M} or $\mathcal{M}(D, Y)$.

Accordingly, a mapping $\Omega \ni h \rightarrow A_{h} \in \mathcal{M}$ is differentiable (continuous) at $h_{0} \in \Omega$ if $\Omega \ni h \rightarrow A_{h} \in \mathcal{M}_{\mathcal{T}}$ is differentiable (continuous) at h_{0}. We have

$$
A_{h_{0}}^{\prime}(t)=\left(\left.\frac{d}{d h}\left(A_{h}(t) \mathcal{T}\right)\right|_{h=h_{0}}\right) \mathcal{T}^{-1} \quad \text { for } t \in[0, T]
$$

The operator $A_{h_{0}}^{\prime}$ is independent of (Z, \mathcal{T}). Higher order differentiability and the \mathcal{C}^{k}-classes are now defined in the standard way.

The Banach space of all continuous mappings from $[0, T]$ into Y, with the topology of uniform convergence, is denoted by $\mathcal{C}([0, T] ; Y)$.

We shall consider a family $\left(A_{h}(t)\right)_{(h, t) \in \Omega \times[0, T]}$ of closed linear operators from X to X defined, for each $(h, t) \in \Omega \times[0, T]$, on a dense linear subspace $D\left(A_{h}(t)\right)=D$ of X.

Assumption Z_{1}. There exist a Banach space Z and a bijective mapping $\mathcal{T}: Z \rightarrow D$ such that $\mathcal{T} \in B(Z, X)$ and the mapping

$$
\Omega \times[0, T] \ni(h, t) \rightarrow A_{h}(t) \mathcal{T} \in B(Z, X)
$$

is continuous.
If Assumption Z_{1} is fulfilled then $A_{h} \in \mathcal{M}_{\mathcal{T}}$ for all $h \in \Omega$ and the mapping $\Omega \ni h \rightarrow A_{h} \in \mathcal{M}_{\mathcal{T}}$ is continuous, and vice versa.

Assumption Z_{2}. There exist a Banach space Z, a continuous linear bijective mapping $\mathcal{T}: Z \rightarrow D$ and $\alpha \in(0,1]$ such that the mapping

$$
[0, T] \ni t \rightarrow A_{h}(t) \mathcal{T} \in B(Z, X)
$$

is Hölder continuous with exponent α, i.e. there exists $\widetilde{L}>0$ such that

$$
\left\|A_{h}(t) \mathcal{T}-A_{h}(s) \mathcal{T}\right\| \leq \widetilde{L}|t-s|^{\alpha}
$$

for $h \in \Omega, 0 \leq s \leq T$ and $0 \leq t \leq T$.
Assumption $Z_{3} . A_{h}(t) \in G\left(C_{0}\right)$ for $(h, t) \in \Omega \times[0, T]$, where
$G\left(C_{0}\right)=\left\{A \in \mathcal{C}(X) \mid \overline{D(A)}=X,[0, \infty) \subset P(-A),\left\|(A+\xi)^{-k}\right\| \leq C_{0} \xi^{-k}\right.$

$$
\text { for } \left.\xi>0, k=1,2, \ldots \text { and }\|A \exp (-t A)\| \leq C_{0} t^{-1} \text { for } t>0\right\}
$$

Let $\Delta=\{(t, s) \mid 0 \leq s \leq t \leq T\}$.
Definition 1. A mapping

$$
\begin{equation*}
U_{h}: \Delta \ni(t, s) \rightarrow U_{h}(t, s) \in B(X) \tag{6}
\end{equation*}
$$

is said to be a fundamental solution of (1) if

1) for every $x \in X$ the mapping $\Delta \ni(t, s) \rightarrow U_{h}(t, s) x \in X$ is continuous,
2) $U_{h}(t, r) U_{h}(r, s)=U_{h}(t, s)$ for $0 \leq s \leq r \leq t \leq T$,
3) $U_{h}(s, s)=I$ for $s \in[0, T]$,
4) for every $x \in X$ the mapping (6) is differentiable with respect to t and

$$
\frac{\partial}{\partial t} U_{h}(t, s) x=A_{h}(t) U_{h}(t, s) x
$$

5) for every $x \in D$ the mapping (6) is differentiable with respect to s and

$$
\frac{\partial}{\partial s} U_{h}(t, s) x=-U_{h}(t, s) A_{h}(s) x
$$

Under Assumptions $Z_{1}-Z_{3}$ we may define (for details see e.g. [5], Chap. 5, and [6])

$$
\begin{aligned}
R_{1}^{h}(t, s) & :=-\left(A_{h}(t)-A_{h}(s)\right) \exp \left(-(t-s) A_{h}(s)\right), \\
R_{m}^{h}(t, s) & :=\int_{s}^{t} R_{1}^{h}(t, \tau) R_{m-1}^{h}(\tau, s) d \tau \quad \text { for } m=2,3, \ldots, \\
R^{h}(t, s) & :=\sum_{m=1}^{\infty} R_{m}^{h}(t, s) \\
W^{h}(t, s) & :=\int_{s}^{t} \exp \left(-(t-\tau) A_{h}(\tau)\right) R^{h}(\tau, s) d \tau
\end{aligned}
$$

(7) $\quad U_{h}(t, s):=\exp \left(-(t-s) A_{h}(s)\right)+W^{h}(t, s)$,
where $\exp \left(-t A_{h}(s)\right)$ is the strongly continuous semigroup with the infinitesimal generator $A_{h}(s)$ for $h \in \Omega, s \in[0, T]$.

Since sufficient conditions for U_{h} given by (7) to be a fundamental solution of (1) are known (see e.g. [5]), we do not discuss them here.

AsSumption $Z_{4} . U_{h}$ given by (7) is a fundamental solution of (1) for $h \in \Omega$.

We shall use the following two theorems:
Theorem 1. Suppose Assumptions $Z_{1}-Z_{4}$ are fulfilled.
(i) ([5], Th. 5.2.2) If, for any $h \in \Omega$, there exists a solution u_{h} of the problem (1), (2) and the mapping $[0, T] \ni t \rightarrow f_{h}(t) \in X$ is continuous, then u_{h} is given by (3).
(ii) ([6], Th. 1) If the mappings

$$
\begin{gather*}
\Omega \ni h \rightarrow u_{h}^{0} \in X, \tag{8}\\
\Omega \times[0, T] \ni(h, t) \rightarrow f_{h}(t)
\end{gather*}
$$

are continuous, then the mapping (4), with u_{h} given by (3), is continuous.
Theorem 2 ([4], Th. 4 and Th. 5, p. 301). Let k be a nonnegative integer. If, for any $h \in \Omega$,
(a) the mapping $\Omega \ni h \rightarrow A_{h} \in \mathcal{M}$, is k times differentiable and its k-th derivative is Hölder continuous,
(b) the mapping $[0, T] \ni t \rightarrow f_{h}(t) \in X$ is k times differentiable and its k-th derivative is Hölder continuous,
(c) $\{\lambda \in \mathbb{C} \mid \operatorname{Re} \lambda \geq 0\} \subset P\left(-A_{h}(t)\right)$ and $\exists C>0$ such that

$$
\left\|\left(A_{h}(t)+\lambda I\right)^{-1}\right\| \leq C \frac{1}{|\lambda|+1},
$$

then

1) there exists a solution u_{h} of the problem (1), (2),
2) u_{h} is given by (3),
3) u_{h} is of class \mathcal{C}^{1} in $[0, T]$ and \mathcal{C}^{k+1} in $(0, T]$.
3. Differentiability with respect to h. For $h \in \Omega$, let u_{h} be a solution of (1), (2) and let $h_{0} \in \Omega$. The function w_{h} defined by

$$
w_{h}(t)=\frac{u_{h}(t)-u_{h_{0}}(t)}{h-h_{0}} \quad \text { for } h \neq h_{0}
$$

is, for $h \neq h_{0}$, a solution of the problem

$$
\begin{align*}
& \frac{d w_{h}}{d t}(t)+A_{h}(t) w_{h}(t)=F_{h}(t) \quad \text { for } t \in(0, T] \tag{10}\\
& w_{h}(0)=w_{h}^{0} \tag{11}
\end{align*}
$$

where

$$
F_{h}(t)= \begin{cases}\frac{f_{h}(t)-f_{h_{0}}(t)}{h-h_{0}}-\frac{A_{h}(t)-A_{h_{0}}(t)}{h-h_{0}} u_{h_{0}}(t) & \text { for } h \neq h_{0} \\ f_{h_{0}}^{\prime}(t)-A_{h_{0}}^{\prime}(t) u_{h_{0}}(t) & \text { for } h=h_{0}\end{cases}
$$

$$
w_{h}^{0}= \begin{cases}\frac{u_{h}^{0}-u_{h_{0}}^{0}}{h-h_{0}} & \text { for } h \neq h_{0} \\ u_{h_{0}}^{0 \prime} & \text { for } h=h_{0}\end{cases}
$$

and "'"" denotes differentiation with respect to h.
Proposition 1. Under the assumptions of Theorem 1, if the mappings (12) $\Omega \ni h \rightarrow f_{h} \in \mathcal{C}([0, T] ; X), \quad \Omega \ni h \rightarrow A_{h} \in \mathcal{M}, \quad \Omega \ni h \rightarrow u_{h}^{0} \in X$ are differentiable at h_{0} and the mapping

$$
\begin{equation*}
[0, T] \ni t \rightarrow A_{h_{0}}(t) u_{h_{0}}(t) \in X \tag{13}
\end{equation*}
$$

is continuous, then the mapping

$$
\begin{equation*}
\Omega \ni h \rightarrow u_{h} \in \mathcal{C}([0, T] ; X) \tag{14}
\end{equation*}
$$

is differentiable at h_{0} and its derivative at h_{0} is given by

$$
\begin{equation*}
u_{h_{0}}^{\prime}(t)=U_{h_{0}}(t, 0) w_{h_{0}}^{0}+\int_{0}^{t} U_{h_{0}}(t, s) F_{h_{0}}(s) d s \tag{15}
\end{equation*}
$$

Proof. Since

$$
\frac{A_{h}(t)-A_{h_{0}}(t)}{h-h_{0}} u_{h_{0}}(t)=\frac{A_{h}(t)-A_{h_{0}}(t)}{h-h_{0}} \mathcal{T}\left(A_{h_{0}}(t) \mathcal{T}\right)^{-1} A_{h_{0}}(t) u_{h_{0}}(t)
$$

and the convergence in \mathcal{M} is uniform with respect to t, the mapping $\Omega \times$ $[0, T] \ni(h, t) \rightarrow F_{h}(t)$ is continuous. By Theorem 1 the mapping

$$
\Omega \times[0, T] \rightarrow \widetilde{w}_{h}(t):=U_{h}(t, 0) w_{h}^{0}+\int_{0}^{t} U_{h}(t, s) F_{h}(s) d s
$$

is continuous and $\widetilde{w}_{h}=w_{h}$ for $h \neq h_{0}$. Thus, (4) is differentiable with respect to h at h_{0}, and its derivative at h_{0} is given by (15).

If $u_{h_{0}}$ is a solution of (1), (2) for $h=h_{0}$, and f is continuous, then (13) is continuous iff $u_{h_{0}}$ is of class \mathcal{C}^{1} in $[0, T]$. For some theorems on regularity of u_{h} with respect to t we refer the reader to [4] and [3]. Combining Theorem 2 with Proposition 1 we have

Theorem 3. If the assumptions of Theorem 1 are fulfilled, $u_{h}^{0} \in D$ for $h \in \Omega$, the mappings (12) are differentiable, $\{\lambda \in \mathbb{C} \mid \operatorname{Re} \lambda \geq 0\} \subset$ $P\left(-A_{h}(t)\right), \exists C>0$ such that

$$
\left\|\left(A_{h}(t)+\lambda I\right)^{-1}\right\| \leq C \frac{1}{|\lambda|+1},
$$

and there exist $K>0$ and $\delta \in(0,1]$ such that

$$
\left\|f_{h}(t)-f_{h}(\tau)\right\| \leq K|t-\tau|^{\delta}
$$

then

1) there exists a solution u_{h} of the problem (1), (2),
2) the solution u_{h} is given by (3),
3) the mapping (14) is differentiable and its derivative is given by

$$
u_{h}^{\prime}(t)=U_{h}(t, 0) u_{h}^{0 \prime}+\int_{0}^{t} U_{h}(t, s) f_{h}^{1}(s) d s
$$

where

$$
\begin{equation*}
f_{h}^{1}(s)=f_{h}^{\prime}(s)-A_{h}^{\prime}(s) u_{h}(s) \quad \text { for } h \in \Omega . \tag{16}
\end{equation*}
$$

4. Higher order regularity. In this section we assume that the assumptions of Theorem 1 are fulfilled, the mappings (12) are differentiable in Ω, there exists a solution u_{h} of the problem (1), (2) and that, for every $h \in \Omega$, it is of class \mathcal{C}^{1} in $[0, T]$.

Let f_{h}^{1} be defined by (16).
Lemma 1. If v_{h} is a solution of the problem

$$
\begin{aligned}
& \frac{d v}{d t}(t)+A_{h}(t) v(t)=f_{h}^{1}(t) \quad \text { for } t \in(0, T], \\
& v_{h}(0)=u_{h}^{0 \prime},
\end{aligned}
$$

then

$$
\begin{equation*}
v_{h}(t)=U_{h}(t, 0) u_{h}^{0 \prime}+\int_{0}^{t} U_{h}(t, s) f_{h}^{1}(s) d s \tag{17}
\end{equation*}
$$

and therefore $v_{h}=u_{h}^{\prime}$ for $h \in \Omega$. Moreover, if the mapping

$$
\begin{equation*}
\Omega \times[0, T] \ni(h, t) \rightarrow f_{h}^{1}(t) \in X \tag{18}
\end{equation*}
$$

is continuous, then the mapping (14) is of class \mathcal{C}^{1}.
Proof. Since, for a given $h \in \Omega, f_{h}^{\prime}$ is continuous (because the convergence in $\mathcal{C}([0, T] ; X)$ is uniform) and

$$
A_{h}^{\prime}(t) u_{h}(t)=\left[A_{h}^{\prime}(t) \mathcal{T}\right] \circ\left[\left(A_{h}(t) \mathcal{T}\right)^{-1}\right] \circ\left[A_{h}(t) u_{h}(t)\right]
$$

gives also the continuity of the mapping $t \rightarrow A_{h}^{\prime}(t) u_{h}(t), f_{h}^{1}$ is continuous in $[0, T]$. Therefore, by Theorem 1(i), we have (17). By Theorem 1(ii) and since the mapping (18) is continuous, the mapping (14) is of class \mathcal{C}^{1}.

Lemma 2. If, for $h \in \Omega, u_{h}$ is a solution of the problem (1), (2) of class \mathcal{C}^{1} in $[0, T]$ and \mathcal{C}^{2} in $(0, T], f_{h}$ and A_{h} are differentiable with respect to t, and the mappings

$$
\begin{aligned}
\Omega \ni h & \rightarrow f_{h}(0)-A_{h}(0) u_{h}^{0} \in X, \\
\Omega \times[0, T] \ni(h, t) & \rightarrow \frac{d f_{h}(t)}{d t}-\frac{d A_{h}(t)}{d t} u_{h}(t) \in X
\end{aligned}
$$

are continuous, then the mapping

$$
\Omega \ni h \rightarrow \frac{d u_{h}}{d t} \in \mathcal{C}([0, T] ; X)
$$

is continuous.
Proof. Since u_{h} is of class \mathcal{C}^{1} in $[0, T]$ and \mathcal{C}^{2} in $(0, T], d u_{h} / d t$ is a solution of the problem

$$
\begin{aligned}
& \frac{d \omega_{h}}{d t}(t)+A_{h}(t) \omega_{h}(t)=\frac{d f_{h}(t)}{d t}-\frac{d A_{h}(t)}{d t} u_{h}(t) \quad \text { for } t \in(0, T] \\
& \omega_{h}(0)=f_{h}(0)-A_{h}(0) u_{h}^{0}
\end{aligned}
$$

Now Theorem 1 completes the proof.
Theorem 4. If the assumptions of Lemmas 1 and 2 are fulfilled then the mapping (4) is of class \mathcal{C}^{1}.

Proof. This is an immediate consequence of Lemmas 1 and 2.
The method presented here is the key to the inductive construction of theorems on the higher order regularity of the solution of the problem (1), (2) with respect to the parameter h.

References

[1] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, 1981.
[2] T. Kato, Perturbation Theory for Linear Operators, Springer, 1966.
[3] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, 1983.
[4] P. E. Sobolevskǐ̆, On equations of parabolic type in a Banach space, Trudy Moskov. Mat. Obshch. 10 (1986), 297-350 (in Russian).
[5] H. Tanabe, Equations of Evolution, Pitman, 1979.
[6] T. Winiarska, Parabolic equations with coefficients depending on t and parameters, Ann. Polon. Math. 51 (1990), 325-339.
[7] -, Evolution equation with parameter, Univ. Iag. Acta Math. 28 (1987), 219-227.
[8] -, Differential Equations with Parameters, Monograph 68, Technical University of Cracow, 1988.
[9] K. Yosida, Functional Analysis, Springer, 1980.

INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF CRACOW
WARSZAWSKA 24
31-155 KRAKÓW, POLAND

