ANNALES POLONICI MATHEMATICI LVII.1 (1992)

On one-dimensional diffusion processes living in a bounded space interval

by Anna Milian (Kraków)

Abstract. We prove that under some assumptions a one-dimensional Itô equation has a strong solution concentrated on a finite spatial interval, and the pathwise uniqueness holds.

Introduction. In the present paper we will consider a diffusion satisfying the stochastic integral Itô equation

(1)
$$X(t) = X(0) + \int_{0}^{t} a(s, X(s)) \, ds + \int_{0}^{t} b(s, X(s)) \, dW(s)$$

where W(t) is a given one-dimensional Wiener process on a probability space (Ω, \mathcal{F}, P) .

It is known ([1], p. 372) that if $b(t, r_i) = 0 \leq (-1)^i a(t, r_i), i = 0, 1, t \geq 0$, and if a and b are sufficiently regular, then (1) has a unique solution X(t)concentrated on the interval $[r_0, r_1]$.

In this paper we consider strong solutions of (1) ([3], p. 149). An example of a stochastic integral equation which has a solution but has no strong solution is due to H. Tanaka ([3], p. 152). We will give some sufficient conditions in order that (1) has a unique (in the sense of pathwise uniqueness) strong solution X(t), satisfying $X(t) \in (\alpha(t), \beta(t))$ for $t \ge 0$, where α and β are given sufficiently regular real-valued functions defined for $t \ge 0$.

Existence and pathwise uniqueness of the strong solution of equation (1) on a finite spatial interval. First we give some sufficient conditions in order that a strong solution X(t) of the stochastic equation

¹⁹⁹¹ Mathematics Subject Classification: 60H20.

 $Key\ words\ and\ phrases:$ one-dimensional Itô equation, bounded strong solutions, time-dependent boundaries.

(1) exists and satisfies the additional condition

$$|X(t)| < 1 \quad \text{for } t \ge 0.$$

We will need the following theorem ([1], Theorem 3.11, p. 300 in the case d = 1):

THEOREM 1. Let $a : [0, \infty) \times \mathbb{R} \to \mathbb{R}$ and $b : [0, \infty) \times \mathbb{R} \to \mathbb{R}$ be locally bounded and Borel measurable. Suppose that for each T > 0 and $N \ge 1$ there exist constants K_T and $K_{T,N}$ such that

1)
$$|b(t,x)|^2 \leq K_T(1+x^2)$$
, $xa(t,x) \leq K_T(1+x^2)$,
 $0 \leq t \leq T$, $x \in \mathbb{R}$,
2) $|b(t,x) - b(t,y)| \lor |a(t,x) - a(t,y)| \leq K_{T,N}|x-y|$,
 $0 \leq t \leq T$, $|x| \lor |y| \leq N$.

Given a 1-dimensional Brownian motion W and an independent \mathbb{R} -valued random variable ξ on a probability space (Ω, \mathcal{F}, P) such that $\mathbb{E}[|\xi|^2] < \infty$, there exists a process X with $X(0) = \xi$ a.s. such that $(\Omega, \mathcal{F}, P, \{\mathcal{F}_t\}, W, X)$ is a solution of the stochastic integral equation (1), where $\mathcal{F}_t = \mathcal{F}_t^W \vee \sigma(\xi)$ $(\sigma(\xi)$ denotes the minimal σ -algebra with respect to which ξ is measurable).

Let $\Phi(t, x)$ be a monotone (in x) continuous function, defined for $t \in [0, T], x \in (-1, 1)$, for which the derivatives $\Phi_t(t, x), \Phi_x(t, x)$ and $\Phi_{xx}(t, x)$ exist and are continuous. For each $t \in [0, T]$ there exists a function $\Psi(t, x)$ inverse to $\Phi(t, x)$, i.e. $\Phi(t, \Psi(t, x)) = x, \Psi(t, \Phi(t, x)) = x$. If $\xi(t)$ satisfies (1) and $|\xi(t)| < 1$ for $t \in [0, T]$, then applying Itô's formula ([2], Theorem 4, p. 24) we conclude that the process $X(t) = \Phi(t, \xi(t))$ satisfies the equation

$$dX(t) = m(t, X(t)) dt + \sigma(t, X(t)) dW(t),$$

where

(2)
$$m(t,x) = \frac{\partial \Phi}{\partial t}(t,\Psi(t,x)) + \frac{\partial \Phi}{\partial x}(t,\Psi(t,x))a(t,\Psi(t,x)) + \frac{1}{2}\frac{\partial^2 \Phi}{\partial x^2}(t,\Psi(t,x))b^2(t,\Psi(t,x)),$$

(3)
$$\sigma(t,x) = \frac{\partial \Phi}{\partial x}(t,\Psi(t,x))b(t,\Psi(t,x))$$

Let

(4)
$$p(x) = \int_{0}^{x} \frac{ds}{\sqrt{1+s^2}},$$

(5)
$$\Phi(x) = p^{-1} \left(\ln \frac{1+x}{1-x} \right).$$

Note that Φ is an increasing one-to-one mapping from (-1, 1) onto \mathbb{R} . Define

(6)
$$\Psi(x) = \Phi^{-1}(x) = \frac{e^{p(x)} - 1}{e^{p(x)} + 1}.$$

THEOREM 2. Assume that a 1-dimensional Wiener process W(t) and an independent \mathbb{R} -valued random variable X_0 on a probability space (Ω, \mathcal{F}, P) are given, $|X_0| < 1$ with probability 1. Let the coefficients a(t, x) and b(t, x)of (1) be defined, Borel measurable and locally bounded for $t \ge 0$, $|x| \le 1$. Suppose further that

1) for each T > 0 there exists a constant K_T such that

$$|a(t,x) - a(t,y)| + |b(t,x) - b(t,y)| \le K_T |x - y|$$

 $t \in [0,T], |x| \le 1, |y| \le 1,$ 2) $b(t, \mp 1) = 0$ for $0 \le t \le T$, 3) $a(t,1) \le 0, a(t,-1) \ge 0$ for $0 \le t \le T$, 4) $\mathbb{E}(\Phi(X_0))^2 < \infty.$

Then there exists a process X(t) with $X(0) = X_0$ a.s. such that $(\Omega, \mathcal{F}, P, \{\mathcal{F}_t\}, W, X(t))$ is a solution of the stochastic integral equation (1), where $\mathcal{F}_t = \mathcal{F}_t^W \lor \sigma(X_0)$, and |X(t)| < 1 for $0 \le t \le T$ a.s. If $X_1(t)$ and $X_2(t)$ are two solutions of (1) with $P(X_i(0) = X_0) = 1$ and $|X_i(t)| < 1$ a.s. for i = 1, 2 and for $t \in [0, T]$, then

$$P\{\sup_{0 \le t \le T} |X_1(t) - X_2(t)| = 0\} = 1.$$

Proof. By 1) and 2) we have $|b(t,x)| = |b(t,x) - b(t,1)| \le K_T |x-1|$. Thus

(7)
$$\left|\frac{b(t,x)}{x-1}\right| \le K_T \quad \text{for } 0 \le t \le T, |x| < 1.$$

Analogously

(8)
$$\left|\frac{b(t,x)}{x+1}\right| \le K_T \quad \text{for } 0 \le t \le T, |x| < 1.$$

From 1) and 3) we have

$$\begin{split} \frac{a(t,x)}{x+1} &= \frac{a(t,x)-a(t,-1)}{x+1} + \frac{a(t,-1)}{x+1} \\ &\geq \frac{a(t,x)-a(t,-1)}{x+1} \geq \frac{-|a(t,x)-a(t,-1)|}{x+1} \,. \end{split}$$

Hence

(9)
$$\frac{a(t,x)}{x+1} \ge -K_T \quad \text{for } 0 \le t \le T, |x| < 1.$$

A. Milian

Analogously

(10)
$$\frac{a(t,x)}{1-x} \le \frac{a(t,x) - a(t,1)}{1-x} \le K_T \quad \text{for } 0 \le t \le T, |x| < 1.$$

Consider the equation (1) with the drift coefficient m(t, x) and the diffusion coefficient $\sigma(t, x)$ given by the formulas (2) and (3); Φ and Ψ are given by (5) and (6). We will prove that they satisfy all assumptions of Theorem 1. By (6)

$$\begin{split} \Psi'(x) &= \frac{2e^{p(x)}}{\sqrt{1+x^2}(e^{p(x)}+1)^2} \,, \\ \Psi''(x) &= \frac{2e^{p(x)}[(1-e^{p(x)})\sqrt{1+x^2}-x(e^{p(x)}+1)]}{(1+x^2)^{3/2}[e^{p(x)}+1]^3} \,. \end{split}$$

Since $\Phi \circ \Psi = id$, we have

$$\Phi'(\Psi(x)) = \frac{\sqrt{1+x^2}(e^{p(x)}+1)^2}{2e^{p(x)}} \,.$$

Differentiating the identity $\Phi'(\Psi(x))\Psi'(x) = 1$, we obtain $\Phi''(\Psi(x)) = -\Psi''(x)\{\Psi'(x)\}^{-3}$. Thus

(11)
$$m(t,x) = a(t,\Psi(x))\frac{\sqrt{1+x^2}(e^{p(x)}+1)^2}{2e^{p(x)}}$$
$$-\frac{1}{2}b^2(t,\Psi(x))\left(\frac{b(t,\Psi(x))}{\Psi'(x)}\right)^2\frac{\Psi''(x)}{\Psi'(x)},$$
(12)
$$\sigma(t,x) = b(t,\Psi(x))\frac{\sqrt{1+x^2}(e^{p(x)}+1)^2}{2e^{p(x)}}.$$

If $x \ge 0$, then $p(x) \ge 0$ and by (7) and (12) we obtain

$$\begin{aligned} |\sigma(t,x)| &= \left| \frac{b(t,\Psi(x))}{1-\Psi(x)} \right| |1-\Psi(x)| \frac{\sqrt{1+x^2}(e^{p(x)}+1)^2}{2e^{p(x)}} \\ &\leq K_T \frac{e^{p(x)}+1}{e^{p(x)}} \sqrt{1+x^2} \leq 2K_T \sqrt{1+x^2} \,. \end{aligned}$$

If $x \leq 0$, then $p(x) \leq 0$ and by (8) and (12) we have

$$\begin{aligned} |\sigma(t,x)| &= \left| \frac{b(t,\Psi(x))}{1+\Psi(x)} \right| |1+\Psi(x)| \frac{\sqrt{1+x^2}(e^{p(x)}+1)^2}{2e^{p(x)}} \\ &\leq K_T \sqrt{1+x^2}(e^{p(x)}+1) \leq 2K_T \sqrt{1+x^2} \,. \end{aligned}$$

Thus $\sigma(t, x)$ satisfies Condition 1) of Theorem 1.

16

If $x \ge 0$, then by (10)

(13)
$$xa(t,\Psi(x))\frac{\sqrt{1+x^2}(e^{p(x)}+1)^2}{2e^{p(x)}} = \frac{a(t,\Psi(x))}{1-\Psi(x)}x\sqrt{1+x^2}(1+e^{-p(x)})$$
$$\leq 2K_T(1+x^2).$$

If $x \leq 0$, then by (9)

(14)
$$xa(t,\Psi(x))\frac{\sqrt{1+x^2}(e^{p(x)}+1)^2}{2e^{p(x)}} = \frac{a(t,\Psi(x))}{1+\Psi(x)}x\sqrt{1+x^2}(e^{p(x)}+1)$$
$$\leq -K_Tx\sqrt{1+x^2}(e^{p(x)}+1) = K_T(-x)\sqrt{1+x^2}(e^{p(x)}+1) \leq 2K_T(1+x^2)$$

Next

(15)
$$-\frac{1}{2}\frac{\Psi''(x)}{\Psi'(x)} = \frac{1}{2}\frac{\Psi(x)}{\sqrt{1+x^2}} + \frac{x}{2(1+x^2)}.$$

Since $b(t, \Psi(x))/\Psi'(x) = \sigma(t, x)$ satisfies Condition 1) of Theorem 1, by (13)–(15) we conclude that m(t, x) satisfies Condition 1) of Theorem 1. Condition 2) of Theorem 1 also holds.

Thus, there exists a process Y(t) satisfying (1) with the coefficients m(t,x) and $\sigma(t,x)$ with the initial condition $Y(0) = \Phi(0, X_0)$. Using Itô's formula, we prove that the process $X(t) = \Psi(t, Y(t))$ satisfies the equation

$$dX(t) = a_1(t, X(t))dt + b_1(t, X(t))dW(t), \text{ where} a_1(t, x) = \Psi'(\Phi(x))m(t, \Phi(x)) + \frac{1}{2}\Psi''(\Phi(x))\sigma^2(t, \Phi(x)), b_1(t, x) = \Psi'(\Phi(x))\sigma(t, \Phi(x)).$$

Applying formulas (2), (3) and the identity $\Psi \circ \Phi = id$, we obtain

$$a_1(t,x) = a(t,x)(\Psi \circ \Phi)'(x) + \frac{1}{2}b^2(t,x)(\Psi \circ \Phi)''(x) = a(t,x)$$

Analogously,

$$b_1(t,x) = b(t,x)(\Psi \circ \Phi)'(x) = b(t,x)$$

Thus X(t) is a strong solution of (1) with the initial condition $X(0) = \Psi(0, Y(0)) = \Psi(0, \Phi(0, X_0)) = X_0$. Moreover, |X(t)| < 1 for $t \ge 0$ a.s. Let $X_1(t)$ and $X_2(t)$ be two solutions of (1) with $P(X_i(0) = X_0) = 1$ and $|X_i(t)| < 1$ for $t \in [0, T]$, i = 1, 2. Extend b to be zero outside [-1, 1] and set a(t, x) = a(t, -1), x < -1, and a(t, x) = a(t, 1), x > 1. Then from Theorem 3.7 of [1], p. 297, we conclude that $P\{X_1(t) = X_2(t)$ for $0 \le t \le T\} = 1$, that is to say, the pathwise uniqueness holds. The proof is finished.

If the coefficients of (1) satisfy the assumptions of Theorem 2 and additionally a(t, x) and b(t, x) are continuous in both arguments, then ([2], Theorem 2, p. 68 and [2], p. 66) the solution of (1) is a diffusion with diffusion coefficient $b^2(t, x)$ and drift coefficient a(t, x). Let f(t, x) be a real function defined in $G = \{(t, x) : 0 \le t \le T, \alpha(t) \le x \le \beta(t)\}$, where $\alpha, \beta \in C^1[0, T]$. Assume that f(t, x) is C^3 in some open neighbourhood of G and $(\partial f/\partial x)(t, x) > 0$ in G. Moreover, suppose $f(t, \cdot)$ is a one-to-one mapping from $(\alpha(t), \beta(t))$ onto (-1, 1) for $t \in [0, T]$. Let $g(t, \cdot)$ denote the inverse of $f(t, \cdot)$, i.e.,

$$g(t, f(t, x)) \equiv x \equiv f(t, g(t, x))$$
 for $t \in [0, T]$.

From Theorem 2 follows:

COROLLARY 1. Assume that a 1-dimensional Wiener process W(t) and an independent \mathbb{R} -valued random variable X_0 on a probability space (Ω, \mathcal{F}, P) are given, and $X_0 \in (\alpha(0), \beta(0))$ a.s. Let a(t, x) and b(t, x) be measurable in G. Suppose the following assumptions are satisfied:

1) $|a(t,x) - a(t,y)| + |b(t,x) - b(t,y)| \le K|x-y|$ for $(t,x), (t,y) \in G$,

2) $b(t, \alpha(t)) = b(t, \beta(t)) = 0$ for $t \in [0, T]$,

- 3) $a(t, \alpha(t)) \ge \alpha'(t), a(t, \beta(t)) \le \beta'(t)$ for $t \in [0, T],$
- 4) $\mathbb{E}(\Phi[f(0,X_0)])^2 < \infty.$

Then there exists a process X(t) satisfying the conditions:

- (A) $X(t) = X_0$ for t = 0,
- (B) $X(t) \in (\alpha(t), \beta(t))$ a.s. for $t \in [0, T]$.
- (C) $(\Omega, \mathcal{F}, P, \{\mathcal{F}_t\}, W, X(t))$ is a solution of (1), where $\mathcal{F}_t = \mathcal{F}_t^W \lor \sigma(X_0)$.
- If X(t) and $\overline{X}(t)$ are two solutions of (1) satisfying (A)–(C), then

$$P\{\sup_{0 \le t \le T} |X(t) - \overline{X}(t)| = 0\} = 1.$$

Proof. Define

(16)
$$a_{1}(t,x) = \frac{\partial f}{\partial t}(t,g(t,x)) + \frac{\partial f}{\partial x}(t,g(t,x))a(t,g(t,x)) + \frac{1}{2}\frac{\partial^{2} f}{\partial x^{2}}(t,g(t,x))b^{2}(t,g(t,x))),$$
(17)
$$b_{1}(t,x) = \frac{\partial f}{\partial x}(t,g(t,x))b(t,g(t,x)).$$

We will show that $a_1(t, x)$ and $b_1(t, x)$ satisfy all the assumptions of Theorem 2.

Since f and g are C^3 , by 1) the coefficients $a_1(t, x)$ and $b_1(t, x)$ satisfy Condition 1) of Theorem 2. Since $g(t, -1) \equiv \alpha(t)$, $g(t, 1) \equiv \beta(t)$, $f(t, \beta(t)) \equiv$ 1 and $f_x(t, x) > 0$, 2)–4) imply Conditions 2)–4) of Theorem 2, respectively.

Thus, by Theorem 2, there exists a solution $X_1(t)$ of (1) with the coefficients $a_1(t,x)$ and $b_1(t,x)$ satisfying $X_1(0) = f(0,X_0)$, $|X_1(t)| < 1$ a.s. for $t \in [0,T]$. In the same way as in Theorem 2 we prove that the process $X(t) = g(t, X_1(t))$ is a solution of (1) with the coefficients a(t,x) and b(t,x). Moreover, X(t) satisfies Conditions (A)–(C). If X(t) and $\overline{X}(t)$ are two solutions of (1) satisfying (A)–(C), then by Theorem 2

$$P\{\sup_{0 \le t \le T} |X(t) - \overline{X}(t)| = 0\} = P\{\sup_{0 \le t \le T} |f(t, X(t)) - f(t, \overline{X}(t))| = 0\} = 1.$$

The corollary is proved.

If the conditions of Corollary 1 are fulfilled and additionally a(t, x) and b(t, x) are continuous in both arguments, then ([2], Theorem 2, p. 68 and [2], p. 66) X(t) is a diffusion with diffusion coefficient $b^2(t, x)$ and drift coefficient a(t, x).

Acknowledgements. The author would like to thank the referee for his suggestions that have helped to generalize an earlier version of Theorem 2.

References

- S. N. Ethier and T. G. Kurtz, Markov Processes. Characterization and Convergence, Wiley, New York 1986.
- [2] I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations, Springer, Berlin 1972.
- [3] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam 1981.

INSTITUTE OF MATHEMATICS TECHNICAL UNIVERSITY OF CRACOW WARSZAWSKA 24 31-155 KRAKÓW, POLAND

> Reçu par la Rédaction le 20.2.1990 Révisé le 8.5.1990, 18.3.1991 et 11.10.1991